开关电源高频变压器制作方法及关键点
正激反激式双端开关电源高频变压器设计详解

正激反激式双端开关电源高频变压器设计详解高频变压器作为电源电子设备中的重要组成部分,起到了将输入电压进行变换的作用。
根据不同的使用环境和要求,电源电路中的电感元件可分为正激式、反激式和双端开关电源。
下面就分别对这三种电源的高频变压器设计进行详解。
1.正激式电源变压器设计正激式电源变压器是将输入电压通过矩形波进行激励的一种变压器。
其基本结构包括主磁线圈和副磁线圈两部分,主磁线圈用来耦合能量,副磁线圈用来提供输出电压。
正激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
2.反激式电源变压器设计反激式电源变压器是通过反馈控制来实现变压的一种变压器。
其基本结构包括主磁线圈、副磁线圈和反馈元件等。
反激式电源变压器的设计主要有以下几个步骤:(1)确定主磁线圈的匝数和磁芯的截面积:根据输入电压和电流来确定主磁线圈的匝数,根据输出电压和电流来确定磁芯的截面积。
(2)计算主磁线圈的电感:根据主磁线圈的截面积和匝数来计算电感值。
(3)选择磁芯材料:磁芯材料的选择要考虑其导磁性能和能量损耗等因素。
(4)确定副磁线圈的匝数:根据主磁线圈的输入电压和输出电压的变换比例来计算副磁线圈的匝数。
(5)计算副磁线圈的电感:根据副磁线圈的截面积和匝数来计算电感值。
(6)确定绕线方式和结构:根据磁芯的形状和结构来确定绕线方式和结构。
(7)选择合适的反馈元件:根据反馈控制的需要来选择合适的反馈元件,并设计合适的反馈回路。
开关电源 高频 变压器计算设计

要制造好高频变压器要注意两点:一就是每个绕组要选用多股细铜线并在一同绕,不要选用单根粗铜线,简略地说便就是高频交流电只沿导线的表面走,而导线内部就是不走电流的实习就是越挨近导线中轴电流越弱,越挨近导线表面电流越强。
选用多股细铜线并在一同绕,实习便就是为了增大导线的表面积,然后更有效地运用导线。
二就是高频逆变器中高频变压器最好选用分层、分段绕制法,这种绕法首要目的就是削减高频漏感与降低分布电容。
1、次级绕组:初级绕组绕完,要加绕(3~5层绝缘垫衬再绕制次级绕组。
这样可减小初级绕组与次级绕组之间分布电容的电容量,也增大了初级与次级之间的绝缘强度,契合绝缘耐压的需求。
减小变压器初级与次级之间的电容有利于减小开关电源输出端的共模打扰。
若就是开关电源的次级有多路输出,而且输出之间就是不共地的为了减小漏感,让功率最大的次级接近变压器的初级绕组。
若就是这个次级绕组只要相对较少几匝,则为了改善耦合状况,仍就是应当设法将它布满完好的一层,如能够选用多根导线并联的方法,有助于改善次级绕组的填充系数。
其她次级绕组严密的绕在这个次级绕组的上面。
当开关电源多路输出选用共地技能时,处置方法简略一些。
次级能够选用变压器抽头方式输出,次级绕组间不需要采用绝缘阻隔,从而使变压器的绕制愈加紧凑,变压器的磁耦合得到加强,能够改善轻载时的稳压功能。
2、初级绕组:初级绕组应放在最里层,这样可使变压器初级绕组每一匝用线长度最短,从而使整个绕组的用线为最少,这有效地减小了初级绕组自身的分布电容。
通常状况下,变压器的初级绕组被规划成两层以下的绕组,可使变压器的漏感为最小。
初级绕组放在最里边,使初级绕组得到其她绕组的屏蔽,有助于减小变压器初级绕组与附近器材之间电磁噪声的相互耦合。
初级绕组放在最里边,使初级绕组的开始端作为衔接开关电源功率晶体管的漏极或集电极驱动端,可削减变压器初级对开关电源其她有些电磁打扰的耦合。
3、偏压绕组:偏压绕组绕在初级与次级之间,仍就是绕在最外层,与开关电源的调整就是依据次级电压仍就是初级电压进行有关。
不谈计算--深度讲解开关电源高频变压器的设计原则与流程!

不谈计算--深度讲解开关电源高频变压器的设计原则与流程!前言开关电源中主要的发热元器件为半导体开关管、功率二极管、高频变压器、滤波电感等。
不同器件有不同的控制发热量的方法。
功率管是高频开关电源中发热量较大的器件之一,减小它的发热量,不仅可以提高功率管的可靠性,而且可以提高开关电源的可靠性,提高平均无故障时间(MTBF)。
开关管的发热量是由损耗引起的,开关管的损耗由开关过程损耗和通态损耗两部分组成,减小通态损耗可以通过选用低通态电阻的开关管来减小通态损耗;开关过程损耗是由于栅电荷大小及开关时间引起的,减小开关过程损耗可以选择开关速度更快、恢复时间更短的器件来减少。
但更为重要的是通过设计更优的控制方式和缓冲技术来减小损耗,如采用软开关技术,可以大大减小这种损耗。
减小功率二极管的发热量,对交流整流及缓冲二极管,一般情况下不会有更好的控制技术来减小损耗,可以通过选择高质量的二极管来减小损耗。
对于变压器二次侧的整流可以选择效率更高的同步整流技术来减小损耗。
对于高频磁性材料引起的损耗,要尽量避免趋肤效应,对于趋肤效应造成的影响,可采用多股细漆包线并绕的办法来解决。
高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。
按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。
传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。
这样,既有工作频率的差别,又有送功率的差别,工作频率不同档次的电源变压器设计方法不一样.高频电源变压器的设计原则高频电源变压器的设计原则,是在具体使用条件下完成具体的功能中追求性能价格比最好。
有时可能偏重性能和效率,有时可能偏重价格和成本。
现在,轻、薄、短、小,成为高频电源的发展方向,是强调降低成本。
高频开关电源变压器设计

开关电源功率变压器的设计方法1开关电源功率变压器的特性功率变压器是开关电源中非常重要的部件,它和普通电源变压器一样也是通过磁耦合来传输能量的。
不过在这种功率变压器中实现磁耦合的磁路不是普通变压器中的硅钢片,而是在高频情况下工作的磁导率较高的铁氧体磁心或铍莫合金等磁性材料,其目的是为了获得较大的励磁电感、减小磁路中的功率损耗,使之能以最小的损耗和相位失真传输具有宽频带的脉冲能量。
图1(a)为加在脉冲变压器输入端的矩形脉冲波,图1(b)为输出端得到的输出波形,可以看出脉冲变压器带来的波形失真主要有以下几个方面:图1脉冲变压器输入、输出波形(a)输入波形(b)输出波形(1)上升沿和下降沿变得倾斜,即存在上升时间和下降时间;(2)上升过程的末了时刻,有上冲,甚至出现振荡现象;(3)下降过程的末了时刻,有下冲,也可能出现振荡波形;(4)平顶部分是逐渐降落的。
这些失真反映了实际脉冲变压器和理想变压器的差别,考虑到各种因素对波形的影响,可以得到如图2所示的脉冲变压器等效电路。
图中:Rsi——信号源Ui的内阻Rp——一次绕组的电阻Rm——磁心损耗(对铁氧体磁心,可以忽略)T——理想变压器Rso——二次绕组的电阻RL——负载电阻C1、C2——一次和二次绕组的等效分布电容Lin、Lis——一次和二次绕组的漏感Lm1——一次绕组电感,也叫励磁电感n——理想变压器的匝数比,n=N1/N2图2脉冲变压器的等效电路将图2所示电路的二次回路折合到一次,做近似处理,合并某些参数,可得图3所示电路,漏感Li包括Lin和Lis,总分布电容C包括C1和C2;总电阻RS包括Rsi、RP和Rso;Lm1是励磁电感,和前述的Lm1相同;RL′是RL等效到一次侧的阻值,RL′=RL/n2,折合后的输出电压U′o=Uo/n。
经过这样处理后,等效电路中只有5个元件,但在脉冲作用的各段时间内,每个元件并不都是同时起主要作用,我们知道任何一个脉冲波形可以分解成基波与许多谐波的叠加。
开关电源之高频变压器设计

开关电源之高频变压器设计摘要:开关电源设计中的难点之一就是高频变压器的设计,由于高频变压器是开关电源中进行能量储存和能量传输的重要部件,其合理性与参数计算的正确性将直接影响到开关电源的整体性能。
而衡量高频变压器的好坏,除了要考虑一般变压器中涉及的效率、运行特性等方面,还要考虑到其交直流损耗、漏感、线圈本身分布参数等诸多方面影响。
本文主要介绍高频变压器具体参数的确定、及其在设计过程应当注意的问题及并提出相应的解决办法。
关键词:开关电源;高频变压器;设计要点1 开关电源之高频变压器的主要构成及分类从广义上来说,凡以半导体功率的开关器件为开关管,经对开关管进行高频开通以及关断控制,会将电能形态转化为其他电能形态装置,这就是所谓的开关转换器。
用开关转换器作为主要的组成部件,以闭环自动控制来稳定它的输出电压,并且在电路中增加保护环节电源,此为开关电源。
若用高频DC/DC 转换器作为开关电源工作时的开关转换器则就成为高频开关电源。
高频开关电源基本的路线是由开关型的功率变换器,整流滤波电路,交流直线转换电路以及控制电路组成。
高频开关电源变压器分类方式:(1)按照驱动方式的不同可以分为他激式和自激式;(2)按照电路的拓扑结构可以分为隔离式和非隔离式;前者包括正激式,反激式与半桥式,全桥式,推挽式;后者包括降压型与升压型等;(3)按照输出输入间是否有着电器隔离,可将其分为隔离式与非隔离式;(4)按照DC 转换器/DC 开关条件,可将其分为硬开关以及软开关。
2 开关电源之高频变压器的设计要点2.1 整体设计对于实用的可调开关电源,需能控制输出电压在合适的范围内调节,并且保证电流不超过所设计的最大值。
高压可调高频开关电源设计方案的结构框。
采用电压补偿网络和电流补偿网络,能设定输出电压和最大工作电流。
当工作电流超过设定的最大电流时,电压无法继续升高,从而起到保护电源的作用。
DC/DC 变换器采用半桥拓扑结构,使用采样电阻采集输出电压和输出电感电流,电压补偿网络和电流补偿网络均使用运算放大器构成有源校正网络,补偿网络输出的2 个控制量通过最小函数选择后再输出给DC/DC 变换器,这样就构成了一种控制输出电压和限制最大工作电流的电源设计方案。
怎样设计高频变压器

怎样设计高频变压器高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。
在高频链的硬件电路设计中,高频变压器是重要的一环。
设计高频变压器首先应该从磁芯开始。
开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。
磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。
磁芯矫顽力低,磁滞面积小,则铁耗也少。
高的电阻率,则涡流小,铁耗小。
铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。
高频变压器的设计通常采用两种方法[3>:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP (AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。
注意:1)设计中,在较大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。
2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。
同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。
对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。
单片开关电源高频变压器的设计要点高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。
单片开关电源集成电路具有高集成度、高性价比、较简外围电路、较佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。
在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、TOtch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。
开关电源变压器的方案与制造办法

开关电源变压器的方案与制造办法1导语高频开关电源的方案首要有两有些,一是电路有些的方案,二是磁路有些的方案.相对电路有些的方案而言,磁路有些的方案要杂乱得多.磁路有些的方案,不光央求方案者具有悉数的理论常识,并且要有丰盛的实习履历.在磁路有些方案结束后,还有必要放到实习电路中验证其功用.由此可见,在高频开关电源的方案中,真实难以掌握的是磁路有些的方案.高频开关电源的磁性元件首要包含变压器、电感器.这篇文章依据变压器的安全规范,合理挑选资料,介绍变压器的详细系作办法,使方案出来的变压器契合lsquo;阻隔变压器和安全阻隔变压器》的规范.2引证规范①国际电工委员会电工商品安全认证安排(IECEE):1985年由国际电工委员会(IEC)树立,该安排下设有三个委员会和一个秘书处:处理委员会、认证安排委员会、查看实验委员会.如今对14类商品进行安全认证,其间有电线电缆、家电用品、电子医疗设备等,而第12类即是安全变压器.②国内规范SJ3270一;90阻隔变压器和安全阻隔变压器》.3变压器的安全规范3.1规范规范磁性元件用于沟通式电源供应器的构造中,有必要遵照必定国家或是国际上的安全规范.中国的电子变压器可按国内规范SJ3270.90lsquo;阻隔变压器的安全央求》央求认证:而出口到欧美等国的变压器,则别离按各有关国的规范进行对口认证.例如:U.L(UnderwriterLaboratories)为美国规范.c.S.A(CandanianStandardsAssociation)为加拿大的规范.v.D.E(VerbandDeutsherElektronotechniker)为欧盟所运用的德国规范,如今V.D.E已变成较受等候的规范,其安全规范思考较为严峻.其规范要害为维护操作人员的安全,对线圈绕线办法,输入与输出的阻隔有较严峻的央求,需耐高压3750VAC.3.2变压器的绝缘电阻安全规范在变压器构造中,绕组与磁芯与铁架之间,在一分钟供应500VDC的电压状况下,起码要有IOOMQ以上的阻抗.3.3变压器的湿度阻抗安全规范在高湿度91-95%的环境下,温度在20-一30C之间,接连在环境查验机48小时后,变压器一次侧与二次侧须可以接受3750VAC,即变压器在此环境中须坚持绝缘阻抗及介电强度.3.4变压器的安全规范电子设备依据安全功用央求可分为三品种型.榜首类(ClassI):此类设备用以下两种办法来防护电击:用根柢绝缘:假定根柢绝缘被损坏,而风险电压用导线联接到大地导体的维护办法.此类设备也可用两层绝缘(doubleinsulation)或加强绝缘(reinforcedinsulation)来方案,或许只用于安全性极低的电压线路上.第二类(ClassⅡ):此设备不单只靠根柢绝缘来防护电击,且须添加安全办法,如用两层绝缘或加强绝缘办法,而不供应接地维护者.第三类(ClassⅢ):此类设备靠SELV(SafetyExtraVoltage)电路来防止电击.变压器在详细方案中要依据电路来挑选类型.3.5变压器的安全温度变压器有温度等级之分,当温度高于周围温度25C以上时,U.L/C.S.A规范会对变压器温度订出额外值,用两种办法来做温度的量测,榜首种称为热偶法(运用热电偶所发作的位差,由仪器记载);第二种称为电阻法(运用铜的必定零电阻温度为基准来核算),核算公式:(234.5+T1)/RI=(234.5+T2)/r2.其间,铜的零电阻温度:.234.5C;查验前环境温度为:T。
开关电源用高频变压器设计

技术机密文件开关电源变压器的设计——电路相关技术参数计算公式及其推导刃禾一、正激式开关电源高频变压器:No 1 2 待求参数项 副边电压 Vs 最大占空比θonmax 详细公式 Vs = Vp*Ns/Np θonmax = Vo/(Vs-0.5)1、θonmax 的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
2、0.5 是考虑输出整流二极管压降的调整值,以下同。
3 临界输出电感 LsotonLso = (Vs-0.5)*(Vs-0.5-Vo)*θonmax /(2*f*Po)21、由能量守恒:(1/T)*∫0 {Vs*[(Vs-Vo)*t/Lso]}dt = Po 2、Ton=θon/f 4 实际工作占空比θon 如果输出电感 Ls≥Lso:θon=θonmax 否则: θon=√{2*f*Ls*Po /[(Vs-0.5)*(Vs-0.5-Vo)]}ton1、由能量守恒:(1/T)*∫0 {Vs*[(Vs-Vo)*t/Ls]}dt = Po 2、Ton=θon/f 5 6 导通时间 Ton 最小副边电流 IsmintonTon =θon /f Ismin = [Po-(Vs-0.5)*(Vs-0.5-Vo)*θon /(2*f*Ls)]/[(Vs-0.5)*θon]21、由能量守恒:(1/T)*∫0 {Vs*[(Vs-Vo)*t/Ls+Ismin]}dt = Po 2、Ton=θon/f 7 8 9 副边电流增量 ΔIs 副边电流峰值 Ismax 副边有效电流 IstonΔIs = (Vs-0.5-Vo)* Ton/ Ls Ismax = Ismin+ΔIs Is = √[(Ismin + Ismin*ΔIs+ΔIs /3)*θon]2 2 21、Is=√[(1/T)*∫0 (Ismin+ΔIs*t/Ton) dt] 2、θon= Ton/T 10 11 12 副边电流直流分量 Isdc 副边电流交流分量 Isac 副边绕组需用线径 Ds 电流密度取 5A/mm 13 14 15 原边励磁电流 Ic 最小原边电流 Ipmin 原边电流增量 ΔIp2Isdc = (Ismin+ΔIs/2) *θon Isac = √(Is - Isdc ) Ds = 0.5*√Is2 2Ic = Vp*Ton / Lp Ipmin = Ismin*Ns/Np ΔIp = (ΔIs* Ns/Np+Ic)/η第1页 共9页技术机密文件开关电源变压器的设计——电路相关技术参数计算公式及其推导刃禾16 17原边电流峰值 Ipmax 原边有效电流 IptonIpmax = Ipmin+ΔIp Ip = √[(Ipmin + Ipmin*ΔIp+ΔIp /3)*θon]2 2 21、Ip=√[(1/T)*∫0 (Ipmin+ΔIp*t/Ton) dt] 2、θon= Ton/T 18 19 20 原边电流直流分量 Ipdc 原边电流交流分量 Ipac 原边绕组需用线径 Dp 电流密度取 4.2A/mm 21 22 23 24 25 262Ipdc = (Ipmin+ΔIp/2) *θon Ipac = √(Ip - Ipdc ) Dp = 0.55*√Ip2 2最大励磁释放圈数 Np′ 磁感应强度增量 ΔB 剩磁 Br 最大磁感应强度 Bm 标称磁芯材质损耗 PFe (100KHz 100℃ KW/m3) 选用磁芯的损耗系数ω 1.08 为调节系数Np′=η*Np*(1-θon) /θon ΔB = Vp*θon / (Np*f*Sc) Br = 0.1T Bm = ΔB+Br 磁芯材质 PC30:PFe = 600 磁芯材质 PC40:PFe = 450 ω= 1.08* PFe / (0.2 *100 )2.4 1.227 28 29磁芯损耗 Pc 气隙导磁截面积 Sg 有效磁芯气隙δ′ 1、根据磁路欧姆定律:H*l = I*Np 又有:H = B/μPc = ω*Vc*(ΔB/2) *f2.41.2方形中心柱:Sg= [(a+δ′/2)*( b+δ′/2)/(a*b)]*Sc 2 2 圆形中心柱:Sg= {π*(d/2+δ′/2) /[π*(d/2) ]} *Sc δ′=μo*(Np *Sc/Lp-Sc/AL) 有空气隙时:Hc*lc + Ho*lo = Ip*Np2Ip = Vp*Ton/Lp 代入上式得:ΔB*lc/μc +ΔB*δ/μo = Vp*Ton*Np /Lp式中:lc 为磁路长度,δ为空气隙长度,Np 为初级圈数,Lp 为初级电感量,ΔB 为工作磁感应强度增量; μo 为空气中的磁导率,其值为 4π×10 H/m; 2、ΔB=Vp*Ton/Np*Sc 3、μc 为磁芯的磁导率,μc=μe*μo 4、μe 为闭合磁路(无气隙)的有效磁导率,μe 的推导过程如下: 由:Hc*lc=Ip*Np Hc=Bc/μc=Bc/μe*μo Ip=Vp*Ton/Lpo 得到:Bc*lc/(μe*μo)=Np*Vp*Ton/Lpo2 -7又根据:Bc=Vp*Ton/Np*Sc代入上式化简 得:μe = Lpo*lc/μo*Np *Sc第2页 共9页技术机密文件开关电源变压器的设计——电路相关技术参数计算公式及其推导2刃禾5、Lpo 为对应 Np 下闭合磁芯的电感量,其值为:Lpo = AL*Np26、将式步骤 5 代入 4,4 代入 3,3、2 代入 1 得:Lp =Np *Sc/(Sc/AL +δ/μo) 如果δ′/lc≤0.005: δ=δ′ 2 如果δ′/lc>0.03: δ=μo*Np *Sc/Lp 否则 δ=δ′*Sg/Sc ΔD = 132.2/√f Uceo = √2 *Vinmax+√2 *Vinmax*Np/ Np′ Ud = Vo+√2 *Vinmax*Ns/Np′ Ud′=√2 *Vinmax*Ns/Np30实际磁芯气隙 δ31 32 33 34穿透直径 ΔD 开关管反压 Uceo 输出整流管反压 Ud 副边续流二极管反压 Ud′第3页 共9页技术机密文件开关电源变压器的设计——电路相关技术参数计算公式及其推导刃禾二、双端开关电源高频变压器:No 1 2 待求参数项 副边电压 Vs 最大占空比θonmax 如果为半桥:Vs = Vp*Ns/(2*Np) 否则: Vs = Vp*Ns/Np θonmax = Vo/(Vs-0.5) 详细公式1、θonmax 的概念是指:根据磁通复位原则,其在闭环控制下所能达到的最大占空比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开关电源高频变压器制作方法及关键点
高频变压器经常出现在中频到高频转换的电路中,应用最为广泛。
变压器的好坏将直接影响到高频电源的性能及安全性。
接下来将介绍绕制高频逆变电源中变压器的两个关键点,只要掌握了这两点,就能轻松完成绕制。
1、多股绕制
在绕制变压器时一定要注意不要使用单一一根粗铜线来绕制,而是需要每个绕组多股细铜线的模式。
因为高频交流电有集肤效应。
所谓集肤效应,简单地说就是高频交流电只沿导线的表面走,而导线内部是不走电流的(实际是越靠近导线中轴电流越弱,越靠近导线表面电流越强)。
采用多股细铜线并在一起绕,实际就是为了增大导线的表面积,从而更有效地使用导线。
至于截面积,我们通过举例来说明,使用直径2.5毫米与0.41毫米的单根漆包线,均能达到截面积的要求。
然而,第二种方法导线的表面积大得多,第一种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=2.5×3.14×1×
L=7.85L,第二种方法导线的表面积为:单股导线截面周长×股数×绕组总长度=0.41×3.14×38×L=48.92L,后者是前者的48.92L/7.85L=6.2倍。
导线有效使用率更高,电流更通畅,并且因为细导线较柔软,更好绕制。
次级75T高压绕组用3~5根并绕即可。
02、分层分段绕制
在铜线的股数之外,层与段的分别也是变压器绕制中重要的一环。
这种绕法主要目的是减少高频漏感和降低分布电容。
例如上述变压器的绕法,初级分两层,次级分三层三段。
具体步骤:
第一步当中需要注意的就是绝缘纸的厚度,绝缘纸越薄越好,在绕制第一段时就将引出线头接好,用5根并绕次级高压绕组25T,线不要剪断,然后包一层绝缘纸(绝缘纸要薄,包一层即可,否则由于以下多次要用到绝缘纸,有可能容不下整个线包),准备绕初级低压绕组的一半。
第二步的关键点是预留,要在低压绕组的绕制进行到一半时,预留出多余的线头,方便在后面引出线。
以下初级用“预留”一词时同理。
用19根并绕3T,预留中心抽头,再并绕3T,预留引出线(尾),线剪断。
在具体操作时这里还有一个技巧,即由于股数多,19股线一次并绕不太方便,扭矩张力也大,就可以分做多次,如这里可分做三次,每次用线6到7股,这样还可绕得更平整。
注意三次的头、中、尾放在一起,且绕向要相同。
然后又包一层绝缘纸,准备绕次级高压绕组第二段。
第三步,在进行到高压绕组的第二阶段时,可以将之前没有剪断的次级高压绕组线翻转上来(注意与前面的初级绕组线不要相碰,必要时可用绝缘纸隔开),又
并绕25T,注意绕向要与前面的第一段相同,线仍不剪断。
又包一层绝缘纸,准备绕初级低压绕组的另一半。
第四步,现在可以开始绕制初级低压绕组的另一部分。
再按第二步同样的方法绕一次初级低压绕组,注意绕向要与前面的一半相同。
同样线剪断,包一层绝缘纸,准备绕次级高压绕组第三段。
第五步,开始着手绕制高压绕组部分的第三段。
再按第三步提示的方法绕完剩下的次级高压绕组25T,仍注意绕向与前面的两段相同。
接好引出线(尾),线剪断。
至此,所有的绕组都绕完了。
第六步,在收尾阶段,要将之前绕制的初级低压绕组中的头与头进行合并,中心抽头与中心抽头并接,尾与尾并接(这样绕组匝数仍是3T+3T,而总的并线为38根),接好引出线,即得到初级低压绕组的头、中、尾三个引出端。
最后缠一层绝缘胶带,至此线包制作完成。