人教版数学九年级上册 第23章 旋转 同步单元检测卷(含答案)
人教版九年级数学上册第23章:旋转 单元测试卷(含答案)

第二十三章试卷[时间:90分钟分值:120分]一、选择题(每小题3分,共30分)1.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”.现将数字“69”旋转180°,得到的数字是( ) A.96 B.69C.66 D.992.下面四个手机应用图标,属于中心对称图形的是( )3.如图1,△A′B′C′是由△ABC经过平移得到的,△A′B′C′还可以看作是由△ABC经过怎样的图形变化得到的?有下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中正确的结论是( )图1A.①④B.②③C.②④D.③④4.如图2,将一个含30°角的直角三角尺ABC绕点A旋转,使点B,A,C′在同一条直线上,则三角尺ABC旋转的角度是( )图2A.60° B.90°C.120° D.150°5.如图3,将△ABC按顺时针方向转动一个角后成为△AB′C′,下列等式正确的有( )图3①BC=B′C′;②∠BAB′=∠CAC′;③∠ABC=∠AB′C′;④AB=B′C′.A.1个B.2个C.3个D.4个6.如图4,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长度到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为( )图4A.(3,1) B.(1,3)C.(3,-1) D.(1,1)7.如图5,将线段AB先向右平移5个单位长度,再将所得线段绕原点按顺时针方向旋转90°,得到线段A′B′,则点B的对应点B′的坐标是( )图5A.(-4,1) B.(-1,2)C.(4,-1) D.(1,-2)8.如图6,Rt△OCB的斜边在y轴上,OC=3,含30°角的顶点与原点重合,直角顶点C在第二象限,将Rt△OCB绕原点顺时针旋转120°后得到△OC′B′,则点B的对应点B′的坐标是( )图6A.(3,-1) B.(1,-3)C.(2,0) D.(3,0)9.如图7,在△ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到△A′B′C,若点B′恰好落在线段AB上,AC,A′B′交于点O,则∠COA′的度数是( )图7A.50° B.60°C.70° D.80°10.如图8,等边三角形ABC的边长为4,点O是△ABC的中心,∠FOG=120°.绕点O旋转∠FOG,分别交线段AB,BC于D,E两点,连接DE,给出下列四个结论:①OD=OE;②S△ODE=S△BDE;③四边形ODBE的面积始终等于433;④△BDE周长的最小值为6.上述结论正确的个数是( )图8A.1 B.2C.3 D.4二、填空题(每小题4分,共24分)11.若点A(2,1)与点B关于原点对称,则点B的坐标是________.12.如图9,将等边三角形AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边三角形AOB绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是____________.图913.将一副三角尺如图10的方式放置,将三角尺ADE绕点A逆时针旋转α(0°<α<90°),使得三角尺ADE的一边所在的直线与BC垂直,则α的度数为________.图1014.若点M(-1+8n,4-2n)关于原点对称的点在第三象限,则整数n的值为________.15.如图11,四边形ABCD是菱形,O是两条对角线的交点,过点O的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,阴影部分的面积为________.图1116.如图12,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm,将△AOB 绕顶点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB 的中点,则线段B1D=________cm.图12三、解答题(共66分)17.(8分)如图13,在△ABC中,∠B=10°,∠ACB=20°,AB=4 cm,将△ABC逆时针旋转一定角度后与△ADE重合,且C恰好是AD的中点.(1)指出旋转中心,并求出旋转的度数;(2)求出∠BAE的度数和AE的长.图1318.(10分)如图14,在△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,将△CDB绕点C顺时针旋转到△CEF的位置,使点F在AC上.(1)求△CDB旋转的度数;(2)连接DE,判断DE与BC的位置关系,并说明理由.图1419.(10分)△ABC在平面直角坐标系内的位置如图15.(1)分别写出A,B,C三点的坐标;(2)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称,并写出点B1的坐标;(3)请在这个坐标系内画出△A2B2C2,使△A2B2C2与△ABC关于原点对称,并写出点A2的坐标;(4)求出△ABC的面积.图1520.(10分)如图16①,在正方形ABCD和正方形AEFG中,点B在边AG上,点D在线段EA的延长线上,连接BE和DG.(1)如图①,求证:DG⊥BE.(2)如图②,将正方形ABCD绕点A按逆时针方向旋转,使点B恰好落在线段DG上.①求证:DG⊥BE.②若AB=2,AG=3,求线段BE的长.①②图1621.(14分)如图17,O是等边三角形ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形.(2)当α=150°时,试判断△AOD的形状,并说明理由.(3)探究:当α为多少度时,△AOD是等腰三角形?图1722.(14分)如图18①,△ABC是边长为4 cm的等边三角形,边AB在射线OM上,且OA=6 cm,点D从点O出发,沿OM的方向以1 cm/s的速度运动,设运动时间为t s,当点D不与点A重合时,将△ACD绕点C按逆时针方向旋转60°得到△BCE,连接DE.(1)求证:△CDE是等边三角形.(2)如图18②,当6<t<10时,△BDE的周长是否存在最小值?若存在,求出△BDE的最小周长;若不存在,请说明理由.(3)如图18③,当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.参考答案1.B 2.B 3.D 4.D 5.C 6.C 7.D8.A 9.B 10.C11.(-2,-1) 12.(-23,-2) 13.15°或60°14.1 15.12 16.1.517.(1)旋转中心是点A,旋转角度是150°.(2)∠BAE=60°,AE=2 cm.18.(1)旋转角为90°.(2)DE∥BC,理由略.19.(1)A(0,3),B(-4,4),C(-2,1).(2)图略,点B1的坐标为(4,4).(3)图略,点A2的坐标为(0,-3).(4)S△ABC=5.20.(1)略(2)①略②BE=2+721.(1)略(2)△AOD是直角三角形,理由略.(3)当α的度数为125°或110°或140°时,△AOD是等腰三角形.22.(1)略(2)存在,△BDE的最小周长是(23+4) cm.(3)存在,当t的值为2 s或14 s时,以D,E,B为顶点的三角形是直角三角形.。
人教版九年级数学上册第二十三章《旋转》单元测试题(含答案)

人教版九年级数学上册第二十三章《旋转》单元测试题(含答案)一、单选题1.如图已知在ABC ∆中,AB AC =,90BAC ∠=,直角EPF ∠的顶点P 是BC 的中点,两边PE 、PF 分别交AB 和AC 于点E 、F ,给出以下五个结论正确的个数有( ) ①AE CF =;②APE CPF ∠=∠;③BEP ∆≌AFP ∆;④EPF ∆是等腰直角三角形;⑤当EPF ∠在ABC ∆内绕顶点P 旋转时(点E 不与A 、B 重合),12ABC AEPF S S ∆=四边形.A .2B .3C .4D .52.如图,点A ,B ,C ,D ,O 都在方格纸的格点上,若△COD 可以由△AOB 旋转得到,则合理的旋转方式为( )A .绕点O 顺时针旋转90°B .绕点D 逆时针旋转60°C .绕点O 逆时针旋转90°D .绕点B 逆时针旋转135°3.在下列现象中:①时针转动,②电风扇叶片的转动,③转呼啦圈,④传送带上的电视机,其中是旋转的有( )A .①②B .②③C .①④D .③④4.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .矩形C .等腰三角形D .正多边形5.下列四个图形中,既是轴对称图形又是中心对称图形的有( )个.A.0B.1C.2D.36.6.同学们曾玩过万花筒,它是由三块等宽等长的玻璃围成的,图是看到的万花筒的一个图案,图中所有的小三角形均是全等的等边三角形,其中的菱形AEFG可以看成是把菱形ABCD以点A为中心().A.顺时针旋转60︒得到B.顺时针旋转120︒得到C.逆时针旋转60︒得到D.逆时针旋转120︒得到7.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9.下列图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.10.在下列四个汽车标志图案中,是中心对称图形的是()A.B.C.D.第II 卷(非选择题)二、填空题11.如图,在ABCD 中,AD=3,AB=5,4sin 5A =,将ABCD 绕着点B 顺时针旋转()090θθ︒<<︒后,点A 的对应是点'A ,联结'AC ,如果'A C BC ⊥,那么cos θ的值是______.12.已知两点P(1,1)、Q(1,-1),若点Q 固定,点P 绕点Q 旋转使线段PQ∥x 轴,则此时的点P 的坐标是_________________________;13.如图,在平面直角坐标系中,点1A 的坐标为(10),,以1OA 为直角边作12Rt OA A ∆,并使1260A OA ∠︒=,再以2OA 为直角边作23Rt OA A ∆,并使2360A OA ∠︒=,再以3OA 为直角边作34Rt OA A ∆,并使3460A OA ∠︒=…按此规律进行下去,则点2019A 的坐标为_______.14.在平面直角坐标系中,将函数y =2x 2+2的图象绕坐标原点0顺时针旋转45°后,得到新曲线l.(1)如图①,已知点A(-1,a),B(b ,10)在函数y =2x 2+2的图象上,若A’、B’是A 、B 旋转后的对应点,连结OA’,OB’,则S △OA’B’=____.(2)如图②,曲线与直线322y =相交于点M 、N ,则S △OMN 为_________.15.如图,在△ABC 中,∠ABC=112°,将△ABC 绕着点B 顺时针旋转一定的角度后得到△DBE (点A 与点D 对应),当A 、B 、E 三点在同一直线上时,可得∠DBC 的度数为_______.16.如图1是实验室中的一种摆动装置,BC 在地面上,支架ABC 是底边为BC 的等腰直角三角形,摆动臂AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转,30AD = ,10DM =.(1)在旋转过程中,当A D M ,,为同一直角三角形的顶点时,AM 的长为______________.(2)若摆动臂AD 顺时针旋转90°,点D 的位置由ABC 外的点1D 转到其内的点2D 处,连结12D D ,如图2,此时2135AD C ∠=︒,260CD =,2BD 的长为______________.17.如图,在△ABC 中,∠BAC=45°,AB=4cm ,将△ABC 绕点B 按逆时针方向旋转45°后得到△A′BC′,则阴影部分的面积为 ___________.18.如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为______.三、解答题19.已知正方形ABCD ,点P 是其内部一点.(1)如图1,点P 在边AD 的垂直平分线l 上,将DAP ∆绕点D 逆时针旋转,得到11DA P ∆,当点1P 落在DC 上时,恰好点1A 落在直线l 上,求ADP 的度数;(2)如图2,点P 在对角线AC 上,连接PB ,若将线段BP 绕点P 逆时针旋转90︒后得到线段1B P ,试问点1B 是否在直线CD 上,请给出结论,并说明理由;(3)如图3,若135APB ∠=︒,设PA a =,PD b =,PC c =,请写出a 、b 、c 这三条线段长之间满足的数量关系是____________.20.(1)问题发现如图①,△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,点B 在线段AE 上,点C 在线段AD 上,请直接写出线段BE 与线段CD 的数量关系: ;(2)操作探究如图②,将图①中的△ABC 绕点A 顺时针旋转,旋转角为α(0<α<360),请判断线段BE 与线段CD 的数量关系,并说明理由.21.如图,四边形ABCD 是正方形,△ADF 绕着点A 顺时旋转90°得到△ABE ,若AF =4,AB =7.(1)求DE 的长度;(2)指出BE 与DF 的关系如何?并说明由.22.如图,已知:如图点()4,0A ,点B 在y 轴正半轴上,且5AB =,将线段BA 绕点A 沿顺时针旋转90,设点B 旋转后的对应点是点1B ,求点1B 的坐标.23.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,请写出新的结论并说明理由.24.如图,在正方形网格中,点A 、B 、C 、M 、N 都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.25.(1)如图1,已知正方形ABCD,点M和N分别是边BC,CD上的点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论;(2)如图2,将图(1)中的△APB绕着点B逆时针旋转90º,得到△A′P′B,延长A′P′交AP 于点E,试判断四边形BPEP′的形状,并说明理由.26.下列图形是中心对称图形吗?如果是中心对称图形,在图中用点O标出对称中心.27.已知:如图所示,△ABC为任意三角形,若将△ABC绕点C顺时针旋转180°得到△DEC.(1)试猜想AE与BD有何关系?并且直接写出答案.(2)若△ABC的面积为4cm2,求四边形ABDE的面积;(3)请给△ABC 添加条件,使旋转得到的四边形ABDE 为矩形,并说明理由参考答案1.D2.C3.A4.B5.B6.D7.B8.D9.C10.B11.72512.(-1,-1)或(3,-1)13.()201720172,23- 14.99415.44° 16.202或1010; 306.17.42【详解】 解: AC 与BA′相交于D ,如图,∵△ABC 绕点B 按逆时针方向旋转45°后得到△A′BC′,∴∠ABA′=45°,BA′BA=4,△ABC ≌△A′BC′,∴S △ABC =S △A′BC′,∵S 四边形AA′C′B =S △ABC +S 阴影部分=S △A′BC′+S △ABA′,∴S 阴影部分=S △ABA′,∵∠BAC=45°,∴△ADB 为等腰直角三角形,∴∠ADB=90°,AD=222, ∴S △ABA′=12AD•BA′=12×2×2(cm 2), ∴S 阴影部分2cm 2.故答案为:42.18.1.6【详解】由旋转的性质可得:AD=AB ,∵∠B=60°,∴△ABD 是等边三角形,∴BD=AB ,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为1.6.19.(1)30;(2)点1B 在直线CD 上,理由见解析;(3)222320a b c -+= 连接1AA ,∵点1A 在边AD 的垂直平分线l 上,∴11AA DA =.又∵AD DA =,∴1AA D ∆是等边三角形,∴160ADA ∠=︒,∴1160PDP ADA ∠=∠=︒,∴19030ADP PDP ∠=︒-∠=︒.(2)点1B 在直线CD 上.证明如下:作PQ PB ⊥交CD 于点Q ,过点P 作//EF AD 交AB 于点E 交CD 于点F . ∴90BPQ BEP PFQ ∠=∠=∠=︒,∴90EBP EPB PQF FPQ ∠+∠=∠+∠=,90EPB FPQ ∠+∠=∴=EBP FPQ ∠∠又∵P 在正方形对角线AC 上,∴∠EAP=∠APE=45°∴AE EP =,∵AE EB EP PE +=+,∴BE FP =,∴()BEP PFQ ASA ∆≅∆,∴1BP PQ B P ==.即将线段BP 绕点P 8逆时针旋转90︒后得到线段1B P ,点1B 在直线CD 上.(3)如图,将△ABP 绕点A 逆时针旋转90°得到△AMD,由题意可知:∠APB=∠AAMD=135°,DM=BP,AP=AM=a ,∠PAM=90°∴∠AMP=45°∴∠PMD=90°∴在Rt△APM 中,22222PM AM AP a =+=在Rt△PMD 中,222PM DM PD +=∴2222DM b a =-将△ABP 绕点B 顺时针旋转90°得到△BNC,同理可证在Rt△PNC 中,22222PN PC NC c a =-=-在Rt△BPN 中,222PN BP BN =+ ∴2222==22PN c a BP - 所以可得:2222-2=2c a b a - 整理得:222320a b c -+=.20.(1)BE=CD ;(2)BE=CD ;证明见解析.【详解】解:(1)BE=CD ,理由如下;∵△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°, ∴AB=AC ,AE=AD ,∴AE ﹣AB=AD ﹣AC ,∴BE=CD ;故答案为:BE=CD .(2)∵△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,∴AB=AC ,AE=AD ,由旋转的性质得,∠BAE=∠CAD ,在△BAE 与△CAD 中,,∴△BAE ≌△CAD (SAS )∴BE=CD .21.(1)3;(2)BE =DF ,BE ⊥DF .【详解】解:(1)∵△ADF 按顺时针方向旋转一定角度后得到△ABE ,∴AE =AF =4,AD =AB =7,∴DE =AD ﹣AE =7﹣4=3;(2)BE 、DF 的关系为:BE =DF ,BE ⊥DF .理由如下:∵△ADF 按顺时针方向旋转一定角度后得到△ABE ,∴△ABE ≌△ADF ,∴BE =DF ,∠ABE =∠ADF ,∵∠ADF +∠F =180°﹣90°=90°, ∴∠ABE +∠F =90°, ∴BE ⊥DF ,∴BE 、DF 的关系为:BE =DF ,BE ⊥DF .22.1B 点的坐标为()7,4.【详解】解:如图,作1B C x ⊥轴于C ,∵4OA =,5AB =,∴22543OB -=,∵线段BA 绕点A 沿逆时针旋转90得1A B ,∴1BA A B =,且190BA B ∠=,∴190BAO B AC ∠+∠=而90BAO ABO ∠+∠=,∴1ABO B AC ∠=∠,在ABO 和1B AC 中111AOB B CA ABO B AC AB B A ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴1ABO B AC ≅,∴3AC OB ==,14B C OA ==,∴7OC OA AC =+=,∴1B 点的坐标为()7,4.23.(1)证明见解析;(2)DE=AD-BE试题解析:证明:(1)∵AD ⊥DE ,BE ⊥DE ,∴∠ADC =∠BEC =90°,∵∠ACB =90°,∴∠ACD +∠BCE =90°,∠DAC +∠ACD =90°,∴∠DAC =∠BCE ,在△ADC 和△CEB 中CDA BEC DAC ECB AC BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC ≌△CEB (AAS ),∴AD=CE ,CD=BE ,∵DC+CE=DE ,∴AD+BE=DE .(2)DE=AD-BE ,理由:∵BE ⊥EC ,AD ⊥CE ,∴∠EBC+∠ECB=90°,∵∠ACB=90°,∴∠ECB+∠ACE=90°,∴∠ACD=∠EBC,在△ADC和△CEB中,ACD CBEADC BECAC BC∠∠⎧⎪∠∠⎨⎪⎩===,∴△ADC≌△CEB(AAS),∴AD=CE,CD=BE,∴DE=EC-CD=AD-BE.24.(1)见解析;(2)3.【详解】解:(1)如图,△A′B′C′为所作;(2)△ABC的面积=12×3×2=3.25.(1)AM⊥BN,证明见解析;(2)四边形BPEP′是正方形,理由见解析.【详解】(1)AM⊥BN证明:∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°∵BM=CN,∴△ABM≌△BCN∴∠BAM=∠CBN∴∠ABN+∠BAM=90°,∴∠APB=90°∴AM⊥BN.(2)四边形BPEP′是正方形.△A′P′B是△APB绕着点B逆时针旋转90º所得,∴BP= BP′,∠P′BP=90º.又由(1)结论可知∠APB=∠A′P′B=90°,∴∠BP′E=90°.所以四边形BPEP′是矩形.又因为BP= BP′,所以四边形BPEP′是正方形.26.图形1,图形3,图形4,图形5,图形8为中心对称图形,其对称中心为图形中的点O.【详解】这些图形中:图形1,图形3,图形4,图形5,图形8为中心对称图形,其对称中心为图形中的点O.27.(1)AE∥BD,且AE=BD.(2)16;(3)当∠ACB=60°时,四边形ABFE为矩形.【解析】试题分析:(1)易证四边形ABDE是平行四边形,根据平行四边形的性质即可求解;(2)根据平行四边形的性质:平行四边形的对角线互相平分,即可得到平行四边形的面积是△ABC的面积的四倍,据此即可求解;(3)四边形ABDE是平行四边形,只要有条件:对角线相等即可得到四边形ABDE是矩形.试题解析:(1)AE∥BD,且AE=BD;(2)四边形ABDE的面积是:4×4=16;(3)AC=BC.理由是:∵AC=CD,BC=CE,∴四边形ABDE是平行四边形.∵AC=BC,∴平行四边形ABDE是矩形.考点:1.旋转的性质;2.矩形的判定。
最新人教版九年级数学上册第23章 旋转单元检测题(附答案)

最新人教版九年级数学上册第23章 旋转单元检测题(附答案)班级:___________姓名:___________等级:___________时间:120分钟 满分:150分一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )1.已知:()3,4A ,将OA 绕原点O 逆时针旋转90o 得到'OA ,则点'A 的坐标是( )A. (-3, 4)B. (-4, 3)C. (3, -4)D. (4, -3)【答案】B【解析】作AB⊥x 轴于B ,A′C⊥x 轴于C ,先证明∠3=∠2,再证明△OCA′≌△ABO,得出OC=AB=4,A′C=OB=3,即可得出点A ′的坐标.【详解】解:作AB⊥x 轴于B ,A′C⊥x 轴于C ,如图所示:则∠ABO=∠OCA′=90°,∴∠1+∠2=90°,∵A(3,4),∴OB=3,AB=4,∵OA 绕原点O 逆时针旋转90°得到OA′,∴∠AOA′=90°,OA′=OA,∴∠1+∠3=90°,∴∠3=∠2,在△OCA ′和△ABO 中,32OCA ABO OA OA ∠'∠⎧⎪∠∠⎨⎪'⎩===, ∴△OCA′≌△ABO(AAS ),∴OC=AB=4,A′C=OB=3,∴点A ′的坐标是(-4,3),故选B .【点睛】考查了坐标与图形变化-旋转以及全等三角形的判定与性质;解决问题的关键是证明三角形△OCA ′和△ABO 全等.2.已知点(),2A a --与点()3,B b 是关于原点O 的对称点,则a ,b 的值分别为( )A. 3,-2B. 3,2C. -3,2D. -3,-2【答案】B【解析】根据关于原点对称的点的坐标特点解答即可.【详解】解:∵点A (-a ,-2)与点B (3,b )是关于原点O 的对称点,∴a=3,b=2,故选B .【点睛】考查的是关于原点对称的点的坐标特点,解题的关键是掌握两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P′(-x ,-y ).3.如图,ABC V 中,90ACB ∠=o ,25A ∠=o ,若以点C 为旋转中心,将ABC V 旋转到DEC V 的位置,点B 在边DE 上,则旋转角的度数是( )A. 50oB. 55oC. 65oD. 70o【答案】A【解析】 直接利用旋转的性质得出EC=BC ,再利用三角形内角和定理得出∠E=∠ABC=65°,即可得出∠ECB 的度数,得出答案.【详解】解:∵以点C 为旋转中心,将△ABC 旋转到△DEC 的位置,点B 在边DE 上,∴EC=BC,∵∠ACB=90°,∠A=25°,∴∠E=∠ABC=65°,∴∠EBC=65°,∴∠ECB=180°-65°-65°=50°,∴则旋转角的度数是50°.故选A.【点睛】考查了旋转的性质以及三角形内角和定理,解题关键是求出∠E=∠ABC的度数.4.如图,EF过矩形ABCD对角线的交点O,且分别交AB,CD于点E,F,若AB=3,BC=4,那么阴影部分的面积为( )A. 4B. 12C. 6D. 3【答案】D试题分析:根据矩形的性质可得△BOE和△DOF全等,则阴影部分的面积等于△AOB的面积,即为矩形面积的四分之一.考点:图形的对称5. 如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()A. 4种B. 5种C. 6种D. 7种【答案】B试题分析:根据轴对称的概念,选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,如图:可以选择的位置有以下几种:1处,2处,3处,4处,5处,选择的位置共有5处.故选B.考点:轴对称图形6.下列图形中,不是中心对称图形的是()A. 菱形B. 矩形C. 五角星D. 线段【答案】C【解析】 依据中心对称图形定义(把一个图形绕一点旋转180度,能够与原来的图形重合,则这个点就叫做对称点,这个图形就是中心对称图)对各选项进行判断.【详解】解:根据中心对称图形的概念:把一个图形绕一点旋转180度,能够与原来的图形重合,则这个点就叫做对称点,这个图形就是中心对称图,可知:A 、B 、D 都是中心对称图形,而C 不是中心对称图形.故选C .【点睛】考查了中心对称图形的概念.判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.7.点A 和点B 的坐标分别为()0,2A ,()1,0B ,若将OAB V 绕点B 顺时针旋转180o 后,得到''A O B V ,则点A 的对应点'A 的坐标是( )A. (0, 2)B. (2, 2)C. (-2, 2)D. (2, -2)【答案】D【解析】先画出旋转后的图象,再得出点A 的对应点A ′的坐标.【详解】解:如图所示:点A 和点B 的坐标分别为A (0,2),B (1,0),若将△OAB 绕点B 顺时针旋转180°后,得到△A′O′B, 则点A 的对应点A ′的坐标为:(2,-2).故选D .【点睛】考查了图形的旋转变换,解题关键是根据顺时针旋转180°得出对应点坐标.8.点()0,2-关于原点的对称点的坐标为( )A. (0, 2)B. (2, 0)C. (-2, 0)D. (-2, 2)【答案】A【解析】利用两点关于原点对称的特点解答.【详解】解:∵两点关于原点对称,∴横坐标为-0=0,纵坐标为-(-2)=2,∴点(0,-2)关于原点的对称点的坐标为(0,2).故选A.【点睛】考查两点关于原点对称的特点;解题关键是利用两点关于原点对称,横纵坐标均互为相反数解题.9.给出下列说法:①平行四边形既是轴对称图形,也是中心对称图形;②关于某点成中心对称的两个三角形是全等三角形;③菱形的两条对角线将菱形分割成四个全等的直角三角形;④若将一个图形绕某点旋转和另一个图形完全重合,则这两个图形关于这点成中心对称,其中正确的说法是()A. ①②B. ①③C. ②③D. ②④【答案】C【解析】根据中心对称的概念对各小题分析判断后利用排除法求解.【详解】解:①平行四边形不是轴对称图形,是中心对称图形,故本小题错误;②关于某点成中心对称的两个三角形是全等三角形,故本小题正确;③菱形的两条对角线将菱形分割成四个全等的直角三角形,故本小题正确;④应为:若将一个图形绕某点旋转180∘和另一个图形完全重合,则这两个图形关于这点成中心对称,故本小题错误;综上,正确的说法是②③.故选C.【点睛】本题主要考查中心对称知识点,熟悉掌握是关键.10.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是().A. 15°B. 20°C. 25°D. 30°【答案】C【解析】先根据正方形的性质和旋转的性质得到∠AOF 的度数,OA=OF ,再根据等腰三角形的性质即可求得∠OFA 的度数【详解】∵正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,∴∠AOF=90°+40°=130°,OA=OF ,∴∠OFA=(180°-130°)÷2=25°.故选C .二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )11.如图,在Rt ABE V 中,A Rt ∠=∠,5AB =,13BE =,以点B 为旋转中心,将BE 顺时针旋转90o 至BC ,过点C 作//CD AB 分别交AE 、BE 于点D 、F ,则DF 的长为________.【答案】3512【解析】 先由勾股定理求出AE ,再证明△FBC ∽△ABE ,得出比例式BF BC AB AE =,求出BF ,得出EF ,然后证出△DFE ∽△ABE ,得出对应边成比例,即可求出DF 的长.【详解】解:∵∠A=90°,∴222213512BE AB -=-=,∵CD ∥AB ,∴∠DFE=∠ABE ,∵∠DFE=∠BFC ,∴∠BFC=∠ABE ,又∵∠CBF=∠A=90°,∴△FBC ∽△ABE , ∴BF BC AB AE=,即13512BF =, ∴BF=6512, ∴EF=BE ﹣BF=13﹣6512=9112, ∵CD ∥AB ,∴△DFE ∽△ABE , ∴DF EF AB BE=, 即9112513DF =, ∴DF=3512; 故答案是:3512. 【点睛】考查了旋转的性质、相似三角形的判定与性质、勾股定理;解决问题的关键是熟练掌握旋转的性质,证明三角形相似.12.在平面直角坐标系中.点()2,P a -与(),3Q b 关于原点对称,则a b +的值为________.【答案】1-【解析】利用关于原点对称点的性质得出a 、b 的值,再求a+b 的值.【详解】∵点P (-2,a )与Q (b ,3)关于原点对称,∴b=2,a=-3,则a+b 的值为:2-3=-1.故答案是:-1.【点睛】考查了关于原点对称点的性质,解题关键是利用于原点对称点的性质:两个点的横、纵坐标的和分别为0.13.如图,线段AB 的两个顶点都在方格纸的格点上,建立直角坐标系后点A 的坐标是()1,0-,将线段AB 绕点A 顺时针旋转180o ,则旋转后点B 的对应点的坐标是________.【答案】()1,3-【解析】画出将线段AB 绕点A 顺时针旋转180°后的对应线段AB ′,由图可得点B 对应点的坐标.【详解】如图,将线段AB 绕点A 顺时针旋转180°后为线段AB′,由图可知点B 的对应点B ′的坐标为(1,-3),故答案是:(1,-3).【点睛】考查坐标与图形的变化-旋转,解题的关键是熟练掌握旋转的定义及其性质.14.图中是________图形,它的对称轴有________条,它也是________对称图形,它绕对称________旋转________度能与自身重合.【答案】 (1). 轴对称 (2). 2 (3). 中心 (4). 中心 (5). 180【解析】根据轴对称图形和中心对称图形的概念,进行分析.【详解】解:根据轴对称图形和中心对称图形的概念,可知:图中是轴对称图形,有2条对称轴;它也是中心对称图形,它绕对称中心旋转180°能够与自身重合.故答案是:轴对称 ,2,中心,中心,180.【点睛】考查轴对称图形和中心对称图形的概念,解题关键是抓住轴对称图形的关键是寻找对称轴,两边图形折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后重合.15.如图,第1个图案是由同样规格的黑白两种颜色的正方形地砖组成,第2个、第3个图案可以看做是第1个图案经过平移得到的,那么第n 个图案中需要黑色正方形地砖________块(用含n 的式子表示).【答案】()3n 1+【解析】第一个图形有黑色瓷砖3+1=4块,第二个图形有黑色瓷砖3×2+1=7块,第三个图形有黑色瓷砖3×3+1=10块,第n 个图形中需要黑色瓷砖(3n+1)块,故答案为(3n+1).【点睛】本题主要考查了图形的变化,关键是通过归纳与总结,得到其中的规律.16.若点(),5P a b +-与()1,3Q a b -关于原点对称,则a b =________.【答案】2-【解析】根据关于原点的对称点,横纵坐标都变为相反数,可得方程组,解方程组可得a 、b 的值,再计算a b 的值.【详解】解:由点P (a+b ,-5)与Q (1,3a-b )关于原点对称,得:135a b a b +-⎧⎨-⎩== 解得:12a b ⎧⎨-⎩== , b a =(-2)1=-2,故答案是:-2.【点睛】考查了关于原点对称的点的坐标,解题关键是抓住关于原点的对称点,横纵坐标都变成相反数,列出方程组.17.如图,边长为3的正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,EF 交AD 于点H ,那么DH 的长是______.【答案】3.【解析】思路分析:把所求的线段放在构建的特殊三角形内【详解】如图所示.连接HC、DF,且HC与DF交于点P∵正方形ABCD绕点C按顺时针方向旋转30°后得到正方形EFCG ∴∠BCF=∠DCG=30°,FC =DC,∠EFC=∠ADC=90°∠BCG=∠BCD+∠DCG=90°+30°=120°∠DCF=∠BCG-∠BCF-∠DCG=120°-30°-30°=60°∴△DCF是等边三角形,∠DFC=∠FDC=60°∴∠EFD=∠ADF=30°,HF=HD∴HC是FD的垂直平分线,∠FCH=∠DCH=12∠DCF=30°在Rt△HDC3∵正方形ABCD的边长为333试题点评:构建新的三角形,利用已有的条件进行组合.18.以下几何图形中:①等边三角形;②矩形;③平行四边形;④等腰三角形;⑤菱形.既是轴对称图形,又是中心对称图形的是________(填序号).【答案】②⑤【解析】根据轴对称图形(如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴)与中心对称图形的概念(如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心)求解.【详解】解:①等边三角形是轴对称图形,不是中心对称图形,不符合题意;②矩形是轴对称图形,也是中心对称图形,符合题意;③平行四边形不是轴对称图形,是中心对称图形,不符合题意;④等腰三角形是轴对称图形,不是中心对称图形,不符合题意;⑤菱形是轴对称图形,也是中心对称图形,符合题意.故答案是:②⑤.【点睛】考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.19.如图,将ABC V 绕点A 旋转得到ADE V ,则ABC V 与ADE V 的关系是________,此时,BC =________,1∠=________.【答案】 (1). ADE ABC ≅V V (2). DE (3). 3∠【解析】由旋转的性质可得:两个三角形全等,再根据全等三角形的性质得出结论.【详解】解:∵△ADE 是由△ABC 旋转得到,∴△ADE ≌△ABC ,∴BC=DE,∠DAE=∠BAC,∴∠1=∠3.故答案是:△ADE ≌△ABC ,DE ,∠3.【点睛】考查旋转的性质,解题的关键是理解旋转前、后的图形全等,学会利用全等三角形的性质解决问题.20.在平面直角坐标系中,Rt ABC V 的斜边BC 在x 轴上,点B 的坐标为()1,0,2AC =,30ABC o ∠=,把Rt ABC V 先绕点B 顺时针旋转180o ,然后向下平移2个单位,则点A 的对应点D 的坐标为________.【答案】()2,23---【解析】根据直角三角形的性质和勾股定理可得BC ,AB ,利用直角三角形的面积可得AE ,再利用射影定理易得BE ,可得点A 的坐标,根据旋转的性质易得D 的坐标,再利用平移的性质可得结果.【详解】解:作AE⊥BC,并作出把Rt△ABC 先绕B 点顺时针旋转180°后所得△DBC 1,如图所示,∵AC=2,∠ABC=30°,∴BC=43,∴AE =·2323AB AC BC ⨯== ∴BE =22(23)3AB BC ==, ∵点B 坐标为(1,0),∴A 点的坐标为(43),∵BE=3,∴BD 1=3,∴D 1坐标为(-2,0)∴D 坐标为(-2,3,∵再向下平移2个单位,∴D 的坐标为(-2,-2-3),故答案是:(-2,-2-3 ). 【点睛】考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,解答此题的关键是作出图形利用旋转的性质和平移的性质.三、解答题(共 6 小题 ,每小题 10 分 ,共 60 分 )21.如图,ABC V 经过怎样的变换得到DEF V .【答案】详见解析.【解析】根据题意利用图形平移的性质以及旋转的性质进而得出即可.【详解】解:将ABC V 先向右平移5个格,再向上平移1个格,最后绕点C 顺时针旋转90o ,即可得到DEF V .【点睛】考查了几何变换的类型,解题关键是利用平移的性质得出结论.22.把两个直角三角形如图()1放置,使ACB ∠与DCE ∠重合,AB 与DE 相交于点O ,其中90DCE ∠=o ,45BAC ∠=o ,62AB cm =,5CE cm =,10CD cm =.()1图1中线段AO 的长=________cm ;DO =________cm()2如图2,把DCE V 绕着点C 逆时针旋转α度(090)α<<o o 得11D CE V ,1D C 与AB 相交于点F ,若1BCE V 恰好是以BC 为底边的等腰三角形,求线段AF 的长.【答案】(1) 4245;(22427【解析】(1)过点O作OM⊥DC于点M,作ON⊥CB于点N,进而得出AD的长,再利用锐角三角函数关系得出DO的长,再利用勾股定理得出AO的长;(2)利用旋转的性质以及锐角三角函数关系得出tan∠BCE1=tanα=43,再利用tan∠D1CA=tanα=6FGFG-,即可得出FG的长,进而得出AF的长.【详解】解:(1)过点O作OM⊥DC于点M,作ON⊥CB于点N,∵∠BAC=45°,2cm,∴BC=AC=6cm,∵CE=5cm,CD=10cm,∴BE=1cm,AD=4cm,设MO=xcm,∴AM=xcm,∴tanD=5410 MO x ECMD x DC===+,解得:x=4,∴DM=8cm,MO=4cm,5,∵MO=AM=4cm,2 cm,故答案为25 ()2作FG AC⊥于G点,设旋转角度为α度,即11BCE D CA α∠=∠=,1BCE V 中,115BE CE ==,6BC =, 所以14tan tan 3BCE α∠==, 因为FG AC ⊥,90ACB ∠=o ,所以//FG BC ,所以FG AG =, 所以1tan tan 6FG D CA FG α∠==-, ∴436FG FG=-, 解得:247FG =, 所以)2427AF cm =. 【点睛】考查了旋转的性质以及锐角三角函数关系等知识,解题关键是熟练结合锐角三角函数关系得出MO 的长.23.如图①,在Rt ABC V 中,90C o ∠=.将ABC V 绕点C 逆时针旋转得到''A B C V ,旋转角为α,且0180o o α<<.在旋转过程中,点'B 可以恰好落在AB 的中点处,如图②.()1求A ∠的度数;()2当点C 到'AA 的距离等于AC 的一半时,求α的度数.【答案】(1) 30A ∠=o ;(2) 120α=o .【解析】(1)利用旋转的性质结合直角三角形的性质得出△CBB ′是等边三角形,进而得出答案;(2)利用锐角三角函数关系得出sin∠CAD=12CD AC =,即可得出∠CAD=30°,进而得出α的度数. 【详解】()1将ABC V 绕点C 逆时针旋转得到''A B C V ,旋转角为α,∴'CB CB =∵点'B 可以恰好落在AB 的中点处,∴点'B 是AB 的中点.∵90ACB ∠=o , ∴1''2CB AB BB ==, ∴''CB CB BB ==,即'CBB V 是等边三角形.∴60B ∠=o .∵90ACB ∠=o ,∴30A ∠=o ;()2如图,过点C 作'CD AA ⊥于点D ,点C 到'AA 的距离等于AC 的一半,即12CD AC =. 在Rt ADC V 中,90ADC ∠=o ,1sin 2CD CAD AC ∠==, ∴30CAD ∠=o ,∴'30A CAD ∠=∠=o .∴'120ACA o ∠=,即120α=o .【点睛】考查旋转的性质以及等边三角形的判定等知识,解题关键是正确掌握直角三角形的性质.24.如图所示,有两条笔直的公路BD 和EF (宽度不计),从一块矩形的土地ABCD 中穿过,已知EF 是BD 的垂直平分线,40BD =米,30EF =米,求四边形BEDF 的面积.【答案】600.【解析】连接DE 、BF ,因为四边形ABCD 是矩形,所以AB∥CD,进而求证DF=BE ,再求证FD=FB ,即可判定四边形BFDE 是菱形,根据菱形面积计算公式即可计算菱形BFDE 的面积.【详解】解:如图,连接DE 、BF ,∵四边形ABCD 是矩形,∴//AB CD ,∴ODF OBE ∠=∠,由EF 垂直平分BD ,得OD OB =,90DOF BOE ∠=∠=o ,∴DOF V 是BOE V 成旋转对称,故DF BE =,∴四边形BEDF 平行四边形,又∵EF 是BD 的垂直平分线,因此BFDE 是菱形, ∴11304060022BFDE S EF BD =⋅=⨯⨯=菱形(米2). 【点睛】考查了菱形的判定,矩形对边相等且平行的性质,垂直平分线的性质,解题的关键是求证DF=BE .25.如图,ABO V 与CDO V 关于O 点中心对称,点E 、F 在线段AC 上,且AF=CE .求证:FD=BE .【答案】详见解析【解析】根据中心对称得出OB=OD ,OA=OC ,求出OF=OE ,根据SAS 推出△DOF ≌△BOE 即可.【详解】证明:∵△ABO 与△CDO 关于O 点中心对称,∴OB=OD,OA=OC .∵AF=CE,∴OF=OE.∵在△DOF 和△BOE 中,OB OD DOF BOE OF OE =⎧⎪∠=∠⎨⎪=⎩,∴△DOF ≌△BOE (SAS ).∴FD=BE.26..如图①,在△ABC 中,D 、E 分别是 AB 、AC 上的点,AB =AC ,AD =AE ,然后将△ADE 绕点 A 顺时针旋转一定角度,连接 BD ,CE ,得到图②,将 BD 、CE 分别延长至 M 、N ,使 DM =12 BD ,EN =12CE ,得到图③,请解答下列问题:(1)在图②中,BD 与 CE 的数量关系是 ;(2)在图③中,猜想 AM 与 AN 的数量关系,∠MAN 与∠BAC 的数量关系,并证明你的猜想.【答案】(1)BD=CE ;(2)AM=AN ,∠MAN=∠BAC ,理由见解析.【解析】(1)根据题意和旋转的性质可知△AEC ≌△ADB,所以BD=CE ;(2)根据题意可知∠CAE=BAD,AB=AC ,AD=AE ,所以得到△BAD ≌△CAE,在△ABM 和△ACN 中,DM=12BD ,EN=12CE ,可证△ABM ≌△ACN,所以AM=AN ,即∠MAN=∠BAC. 【详解】(1)由旋转的性质可得:BD CE =;()2AM AN =,MAN BAC ∠=∠,由()1知BAD CAE ≅V V ,∴ABD ACE ∠=∠,BD CE =, 又∵12DM BD =,12EN CE =, ∴BM CN =,在ABM V 和ACN V 中,∵BM CN ABM ACN BA CA =⎧⎪∠=∠⎨⎪=⎩,∴()ABM ACN SAS ≅V V ,∴AM AN =,BAM CAN ∠=∠,即BAC CAM CAM MAN ∠+∠=∠+∠,∴AMN V 为等腰三角形,且MAN BAC ∠=∠.【点睛】考查三角形全等的判定方法和性质.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.。
人教版九年级上册数学 第二十三章 旋转 单元综合测试(含解析)

第二十三章旋转单元综合测试一.选择题1.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为()A.3B.4C.5D.62.如图,将△AOB绕着点O顺时针旋转,得到△COD,若∠AOB=40°,∠BOC=25°,则旋转角度是()A.25°B.15°C.65°D.40°3.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是()A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC4.如图,若△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,则∠AB1B=()A.50°B.55°C.60°D.65°5.下列图案中,既是中心对称图形又是轴对称图形的是()A.B.C.D.6.如图,将△ABC绕点C(0,)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A.(﹣a,﹣b)B.(a,﹣b+2)C.(﹣a,﹣b+)D.(﹣a,﹣b+2)7.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(0,4),点B在第一象限,将等边△AOB绕点O顺时针旋转180°得到△A′OB′,则点B的对应点B′的坐标是()A.B.C.D.(0,﹣4)8.如图,在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°得到△BAE,连接ED,若BC=8,BD=7,则△AED的周长是()A.15B.14C.13D.129.如图,CD是△ABC的边AB上的中线,将线段AD绕点D顺时针旋转90°后,点A的对应点E恰好落在AC边上,若AD=,BC=,则AC的长为()A.B.3C.2D.410.在平面直角坐标系xOy中,点A(4,3),点B为x轴正半轴上一点,将△AOB绕其一顶点旋转180°,连接其余四个顶点得到一个四边形,若该四边形是一个轴对称图形,则满足条件的点有()A.5个B.4个C.3个D.2个二.填空题11.如图,四角星的顶点是一个正方形的四个顶点,将这个四角星绕其中心旋转,当第一次与自身重合时,其旋转角的大小是度.12.一副三角尺按如图的位置摆放(顶点C与F重合,边CA与边FE叠合,顶点B、C、D 在一条直线上).将三角尺DEF绕着点F按顺时针方向旋转n°后(0<n<180),如果EF⊥AB,那么n的值是.13.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.14.如图,在正方形ABCD中,AB=4,点M在CD边上,且DM=1,△AEM与△ADM关于AM所在直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为.15.已知点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,则xy的值是.16.如图,△ABC和△DEC关于点C成中心对称,若AC=1,AB=2,∠BAC=90°,则AE的长是.17.已知点P(a﹣3,2﹣a)关于原点对称的点在第四象限,则a的取值范围是.18.用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为b,依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为.(用含a,b的代数式表示)19.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则项点A的对应点A2020的坐标是.三.解答题20.在平面直角坐标系中,已知点P(a,﹣1),请解答下列问题:(1)若点P在第三象限,则a的取值范围为;(2)若点P在y轴上,则a的值为;(3)当a=2时,点P关于y轴对称的点的坐标为点P关于原点对称的点的坐标为.21.如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B 按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.22.如图所示,把△ABC绕点A旋转至△ADE位置,延长BC交AD于F,交DE于G,若∠CAD=10°,∠D=25°,∠EAB=120°,求∠DFB的度数.23.已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D 关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.24.如图,正△ABC与正△A1B1C1关于某点中心对称,已知A,A1,B三点的坐标分别是(0,4),(0,3),(0,2).(1)求对称中心的坐标;(2)写出顶点C,C1的坐标.25.如图,在△ABC中,AB=AC,△ABC与△DEC关于点C成中心对称,连接AE、BD.(1)线段AE、BD具有怎样的位置关系和大小关系?说明你的理由.(2)如果△ABC的面积为5cm2,求四边形ABDE的面积.(3)当∠ACB为多少度时,四边形ABDE为矩形?说明你的理由.参考答案1.解:∵△ABC绕点A顺时针旋转60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=4,∴BE=4.故选:B.2.解:∵∠AOB=40°,∠BOC=25°,∴∠AOC=65°,∵将△AOB绕着点O顺时针旋转,得到△COD,∴旋转角为∠AOC=65°,故选:C.3.解:将△ADE绕点D顺时针旋转,得到△CDB,∴∠ADE=∠CDB,AD=CD,AE=BC,故A、B、D选项正确;∵∠B=∠E,但∠B不一定等于∠BDC,∴BD不一定平行于AE,故C选项错误;故选:C.4.解:∵△ABC绕点A按逆时针方向旋转50°后与△AB1C1重合,∴AB=AB1,∠BAB1=50°,∴∠AB1B=(180°﹣50°)=65°.故选:D.5.解:A、是轴对称图形,不是中心对称图形,不符合题意;B、既不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.6.解:将点A的坐标为(a,b)向下平移个单位,得到对应点坐标为(a,b),再将其绕原点旋转180°可得对称点坐标为(﹣a,﹣b+),然后再向上平移个单位可得点A'的坐标为(﹣a,﹣b+2),故选:D.7.解:作BH⊥y轴于H,如图,∵△OAB为等边三角形,∴OH=AH=2,∠BOA=60°,∴BH=OH=2,∴B点坐标为(2,2),∵等边△AOB绕点O顺时针旋转180°得到△A′OB′,∴点B′的坐标是(﹣2,﹣2).故选:C.8.解:∵将△BCD绕点B逆时针旋转60°得到△BAE,∴BD=BE,∠DBE=60°,CD=AE,∴△DBE是等边三角形,∴BD=DE=7,∴△AED的周长=AE+AD+DE=CD+AD+DE=8+7=15,故选:A.9.解:如图,连接BE,∵CD是△ABC的边AB上的中线,∴AD=BD,∵将线段AD绕点D顺时针旋转90°,∴AD=DE,∠ADE=90°,∴∠A=45°,AE=AD=2,AD=DE=BD,∴∠AEB=90°,∴∠A=∠ABE=45°,∴AE=BE=2,∴EC===1,∴AC=AE+EC=3,故选:B.10.解:观察图象可知,满足条件的点B有5个.故选:A.11.解:该图形被平分成四部分,旋转90°的整数倍,就可以与自身重合,故当此图案第一次与自身重合时,其旋转角的大小为90°.故答案为:90.12.解:如图1,延长EF交AB于H,∵EF⊥AB,∠A=45°,∴∠ACH=45°,∴∠ACE=135°,∴n=135;如图2,∵EF⊥AB,∠A=45°,∴∠ACE=45°,∴n=360﹣45=315,∵0<n<180,∴n=315不合题意舍去,故答案为:135.13.解:∵AB∥CC',∴∠ABC+∠C′CB=180°,而∠B=90°,∴∠C′CB=90°,∴∠ACC′=90°﹣∠ACB=90°﹣50°=40°,∵Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,∴AC=AC′,∠C′AC等于旋转角,∴∠AC′C=∠ACC′=40°,∴∠C′AC=180°﹣40°﹣40°=100°,即旋转角为100°.故答案为100.14.解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠F AB=∠MAD.∴∠F AB=∠MAE,∴∠F AB+∠BAE=∠BAE+∠MAE.∴∠F AE=∠MAB.∴△F AE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=4.∵DM=1,∴CM=3.∴在Rt△BCM中,BM==5,∴EF=5,故答案为:5.15.解:∵点A(x﹣2,3)与B(x+4,y﹣5)关于原点对称,∴x﹣2+x+4=0,3+y﹣5=0,解得:x=﹣1,y=2,则xy的值是:﹣2.故答案为:﹣2.16.解:∵△DEC与△ABC关于点C成中心对称,∴△ABC≌△DEC,∴AB=DE=2,AC=DC=1,∠D=∠BAC=90°,∴AD=2,∵∠D=90°,∴AE==2,故答案为2.17.解:∵点P(a﹣3,2﹣a)关于原点对称的点在第四象限,∴点P(a﹣3,2﹣a)在第二象限,,解得:a<2.∴故答案为:a<2.18.解:如图,连接DK,DN,∵∠KDN=∠MDT=90°,∴∠KDM=∠NDT,∵DK=DN,∠DKM=∠DNT=45°,∴△DKM≌△DNT(ASA),∴S△DKM=S△DNT,∴S四边形DMNT=S△DKN=a,∴正方形ABCD的面积=4×a+b=a+b.故答案为(a+b).19.解:将△OAB绕点O顺时针旋转90°得△OA1B1;此时,点A1的坐标为(2,﹣1);再将△OA1B1绕点O顺时针旋转90°得△OA2B2;此时,点A2的坐标为(﹣1,2);再将△OA2B2绕点O顺时针旋转90°得△OA3B3;此时,点A3的坐标为(﹣2,1);再将△OA3B3绕点O顺时针旋转90°得△OA4B4;此时,点A4的坐标为(1,2);∴每旋转4次一个循环,∵2020÷4=505,∴第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标与点A4的坐标相同,为(1,2);故答案为:(1,2).20.解:(1)∵点P(a,﹣1),点P在第三象限,∴a<0;故答案为:a<0;(2)∵点P(a,﹣1),点P在y轴上,∴a=0;故答案为:0;(3)当a=2时,点P(a,﹣1)的坐标为:(2,﹣1)关于y轴对称的点的坐标为:(﹣2,﹣1),点P关于原点对称的点的坐标为:(﹣2,1).故答案为:(﹣2,﹣1),(﹣2,1).21.(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴BD=BE,∠EBD=120°,∵AB=BC,∠ABC=120°,∴∠ABD+∠DBC=∠ABD+∠ABE=120°,∴∠DBC=∠ABE,∴△ABE≌△CBD(SAS),∴AE=CD;(2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,∴∠BED=∠BDE=(180°﹣120°)=30°,∴∠BFE=180°﹣∠BED﹣∠ABE=180°﹣30°﹣45°=105°.22.解:由旋转可知:△ABC≌△ADE,∵∠D=25°,∴∠B=∠D=25°,∠EAD=∠CAB,∵∠EAB=∠EAD+∠CAD+∠CAB=120°,∠CAD=10°,∴∠CAB=(120°﹣10°)÷2=55°,∴∠F AB=∠CAB+∠CAD=55°+10°=65°,∵∠DFB是△ABF的外角,∴∠DFB=∠B+∠F AB,∴∠DFB=25°+65°=90°.23.解:(1)∵点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,∴2b+1=﹣1,3a﹣1=2,解得a=1,b=﹣1,∴点A(﹣1,2),B(﹣1,﹣2),C(3,﹣1),∵点C(a+2,b)与点D关于原点对称,∴点D(﹣3,1);(2)如图所示:四边形ADBC的面积为:.24.解:(1)∵A,A1,B三点的坐标分别是(0,4),(0,3),(0,2),所以对称中心的坐标为(0,2.5);(2)等边三角形的边长为4﹣2=2,所以点C的坐标为(,3),点C1的坐标(,2).25.解:(1)∵△ABC与△DEC关于点C成中心对称,∴AC=CD,BC=CE,∴四边形ABDE是平行四边形,∴AE与BD平行且相等;(2)∵四边形ABDE是平行四边形,∴S△ABC=S△BCD=S△CDE=S△ACE,∵△ABC的面积为5cm2,∴四边形ABDE的面积=4×5=20cm2;(3)∠ACB=60°时,四边形ABDE为矩形.理由如下:∵AB=AC,∠ACB=60°,∴△ABC是等边三角形,∴AC=BC,∵四边形ABDE是平行四边形,∴AD=2AC,BE=2BC,∴AD=BE,∴四边形ABDE为矩形.。
【3套】人教版九年级数学上册第23章旋转单元练习卷含答案

人教版九年级数学上册第23章旋转单元练习卷含答案一、单选题1.已知点与点关于坐标原点对称,则实数a、b的值是A. ,B. ,C. ,D. ,2.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A. B. C. D.3.将图绕中心按顺时针方向旋转60°后可得到的图形是()A. B. C. D.4.如图,四边形ABCD是正方形,△ADE绕着点A旋转90°后到达△ABF的位置,连接EF,则△AEF的形状是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等边三角形5.如图,□ABCD绕点A逆时针旋转32°,得到□AB′C′D′,若点B′与点B是对应点,若点B′恰好落在BC边上,则∠C=()A. 106°B. 146°C. 148°D. 156°6.如图所示的图案绕旋转中心旋转一定角度后能够与自身重合,那么这个旋转角可能是( )A. B. C. D.7.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有()个.A. 1B. 2C. 3D. 48.已知点P1(a,3)与P2(﹣5,﹣3)关于原点对称,则a的值为()A. 5B. 3C. 4D. -5二、填空题9.在平面直角坐标系中,规定把一个点先绕原点逆时针旋转45°,再作出旋转后的点关于原点的对称点,这称为一次变换,已知点A的坐标为(﹣1,0),则点A经过连续2016次这样的变换得到的点A2016的坐标是________.10.我们知道,在平面内,如果一个图形绕着一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转的这个角称为这个图形的一个旋转角.例如,正方形绕着它的对角线的交点旋转90°后能与自身重合所以正方形是旋转对称图形,它有一个旋转角为90°.(1)判断下列说法是否正确(在相应横线里填上“对”或“错”)①正五边形是旋转对称图形,它有一个旋转角为144°.________②长方形是旋转对称图形,它有一个旋转角为180°.________(2)填空:下列图形中时旋转对称图形,且有一个旋转角为120°的是________ .(写出所有正确结论的序号)①正三角形②正方形③正六边形④正八边形11.在下列图案中可以用平移得到的是________(填代号).12.如图是奥迪汽车的车牌标志,右边的三个圆环可以看作是左边的圆环经过________得到的.13.将一个自然数旋转180°后,可以发现一个有趣的现象,有的自然数旋转后还是自然数.例如,808,旋转180°后仍是808.又如169旋转180°后是691.而有的旋转180°后就不是自然数了,如37.试写一个五位数,使旋转180°后仍等于本身的五位数________.(数字不得完全相同)14.如图,在平面直角坐标系中,是由绕着某点旋转得到的,则这点的坐标是________.15.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________ .三、解答题16.如图,在直角坐标系中,已知△ABC各顶点坐标分别为A(0,1),B(3,﹣1),C(2,2),试作出与△ABC关于原点对称的图形△A1B1C1,并直接写出A1,B1,C1的坐标.17.找出图中的旋转中心,说出旋转多少度能与原图形重合?并说出它是否是中心对称图形.18.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)四、作图题19.如图,阴影部分是由4个小正方形组成的一个直角图形,请用三种方法分别在下图方格内添涂黑一个小正方形,使涂黑后整个图形的阴影部分成为轴对称图,并画出其对称轴.答案一、单选题1.【答案】D【解析】【解答】点与点关于坐标原点对称,实数a、b的值是:,.故答案为:D【分析】根据关于原点对称点的坐标特点:横纵坐标都互为相反数,就可求出a、b的值。
人教版九年级数学上册《第23章旋转》单元测试卷含答案

人教版九年级数学上册《第23章旋转》单元测试卷一、选择题(每小题3分,共30分)1.下列图形中,是中心对称图形的是( )A .B .C .D .2.平面直角坐标系内一点P (-2,3)关于原点对称的点的坐标是( )A .(3,-2)B . (2,3)C .(-2,-3)D . (2,-3)3.如图所示,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=110°,则α=( )A .20°B .30°C .40°D .50°4.在下图右侧的四个三角形中,不能由△ABC 经过旋转或平移得到的是( )5.已知a <0,则点P (﹣a 2,﹣a+1)关于原点的对称点P ′在( )A .第一象限B .第二象限C .第三象限D .第四象限6.从数学上对称的角度看,下面几组大写英文字母中,不同于另外三组的一组是( )A .A N E GB .K B X NC .X I H OD .Z D W H7.四边形ABCD 的对角线相交于O ,且AO=BO=CO=DO ,则这个四边形( ) A .仅是轴对称图形B .仅是中心对称图形C .既是轴对称图形又是中心对称图形D .既不是轴对称图形,又不是中心对称图形8.下列这些复杂的图案都是在一个图案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个图案都可以由一个“基本图案”通过连续旋转得来,旋转的角度是( )A B CA B C DA.︒30 B.︒9045 C.︒60 D.︒9.下列命题正确的个数是( )(1)成中心对称的两个三角形是全等三角形;(2)两个全等三角形必定关于某一点成中心对称;(3)两个三角形对应点的连线都经过同一点,则这两个三角形关于该点成中心对称;(4)成中心对称的两个三角形,对称点的连线都经过对称中心.A.1B.2C.3D.410.如图,在正方形网格中,将∠ABC绕点A旋转后得到∠ADE,则下列旋转方式中,符合题意的是( )A.顺时针旋转90°B.逆时针旋转90°C.顺时针旋转45°D.逆时针旋转45°二、填空题(每小题3分,共24分)11.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是( )A.点M B.格点N C.格点P D.格点Q12.已知a<0,则点P(a2,-a+3)关于原点的对称点P1在第________象限.13.如图4,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是.14.如图5,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积是__________.15.如图6,四边形ABCD中,∠BAD=∠C=90º,AB=AD,AE⊥BC于E,若线段AE=5,则S四A边形ABCD=.16.如图,设P是等边三角形ABC内任意一点,∠ACP′是由∠ABP旋转得到的,则PA__________PB+PC(选填“>”、“=”、“<”)17.已知点P(﹣b,2)与点Q(3,2a)关于原点对称,则a+b的值是__________.18.直线y=x+3上有一点P(3,n),则点P关于原点的对称点P′为__________.三、解答题(共66分)19.如图,在Rt∠OAB中,∠OAB=90°,OA=AB=6,将∠OAB绕点O沿逆时针方向旋转90°得到∠OA1B1.(1)线段OA1的长是__________,∠AOB1的度数是__________;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.20.(9分)如图10,E、F分别是正方形ABCD的边CD、DA上一点,且CE+AF=EF,请你用旋转的方法求∠EBF的大小.21.(9分)已知正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上. (1)如图11(1), 连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中,线段DF与BF的长始终相等”是否正确,若正确请说明理由,若不正确请举反例说明;(2)若将正方形AEFG绕点A按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图11(2)为例说明理由.图1022.如图,在Rt∠ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:∠BCD∠∠FCE;(2)若EF∠CD,求∠BDC的度数.23.如图,将正方形ABCD中的∠ABD绕对称中心O旋转至∠GEF的位置,EF交AB于M,GF交BD于N.请猜想BM与FN有怎样的数量关系?并证明你的结论.24.如图,∠ABC是直角三角形,延长AB到点E,使BE=BC,在BC上取一点F,使BF=AB,连接EF,∠ABC旋转后能与∠FBE重合,请回答:(1)旋转中心是哪一点?(2)旋转了多少度?(3)AC与EF的关系如何?答案:一、选择题(每小题3分,共30分)1.B 2.D 3.A 4.B 5.D 6.D 7.C 8.C 9.B 10.B二、填空题(每小题3分,共24分)11.B12.故答案为15°.13.故答案为:4.14.故填空答案:4π.15.∠PA <PB+PC .16.故答案为:(3,﹣4).17.故答案为:2.18.故答案为:(﹣3,﹣6).三、解答题(共66分)19.(1)解:因为,∠OAB=90°,OA=AB ,所以,∠OAB 为等腰直角三角形,即∠AOB=45°,根据旋转的性质,对应点到旋转中心的距离相等,即OA 1=OA=6,对应角∠A 1OB 1=∠AOB=45°,旋转角∠AOA 1=90°,所以,∠AOB 1的度数是90°+45°=135°.(2)证明:∠∠AOA 1=∠OA 1B 1=90°,∠OA ∠A 1B 1,又∠OA=AB=A 1B 1,∠四边形OAA 1B 1是平行四边形.(3)解:∠OAA 1B 1的面积=6×6=36.20.解:将△BCE 以B 为旋转中心,逆时针旋转90º,使BC 落在BA 边上,得△BAM ,则∠MBE=90º,AM=CE,BM=BE,因为CE +AF =EF ,所以MF =EF ,又BF=BF,所以△FBM ≌△FBE,所以∠MBF=∠EBF, 所以∠EBF=ºº190452⨯= 21.解:(1)解:(1)不正确.若在正方形GAEF 绕点A 顺时针旋转45°,这时点F 落在线段AB 或AB 的延长线上.(或将正方形GAEF 绕点A 顺时针旋转,使得点F 落在线段AB 或AB 的延长线上).如图:设AD=a ,AG=b ,则22a 2b +a ,2b|<a ,∴DF >BF ,即此时DF ≠BF ;(2)连接BE ,则DG=BE .如图,(2)连接BE ,则DG=BE .如图,∵四边形ABCD 是正方形,∴AD=AB ,∵四边形GAEF 是正方形,∴AG=AE ,又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.22.(1)证明:∠将线段CD绕点C按顺时针方向旋转90°后得CE,∠CD=CE,∠DCE=90°,∠∠ACB=90°,∠∠BCD=90°﹣∠ACD=∠FCE,在∠BCD和∠FCE中,,∠∠BCD∠∠FCE(SAS).(2)解:由(1)可知∠BCD∠∠FCE,∠∠BDC=∠E,∠BCD=∠FCE,∠∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∠EF∠CD,∠∠E=180°﹣∠DCE=90°,∠∠BDC=90°.23.解:猜想:BM=FN.证明:在正方形ABCD中,BD为对角线,O为对称中心,∠BO=DO,∠BDA=∠DBA=45°,∠∠GEF为∠ABD绕O点旋转所得,∠FO=DO,∠F=∠BDA,∠OB=OF,∠OBM=∠OFN,在∠OMB和∠ONF中,∠∠OBM∠∠OFN,∠BM=FN.24.解:(1)∠BC=BE,BA=BF,∠BC和BE,BA和BF为对应边,∠∠ABC旋转后能与∠FBE重合,∠旋转中心为点B;(2)∠∠ABC=90°,而∠ABC旋转后能与∠FBE重合,∠∠ABF等于旋转角,∠旋转了90度;(3)AC=EF,AC∠EF.理由如下:∠∠ABC绕点B顺时针旋转90°后能与∠FBE重合,∠EF=AC,EF与AC成90°的角,即AC∠EF.。
人教版初中数学九年级上册同步测试 第23章 旋转(共14页)附答案

人教版初中数学九年级上册同步测试第23章旋转(共14页)附答案人教版初中数学九年级上册同步测试第23章旋转(共14页)附答案第二3章轮换测试1图形的旋转学习要求1.通过实例认识图形的旋转变换,理解旋转的含义;通过探索它的基本特征,理解旋转变换的基本性质.2.能够根据需要制作简单的平面图形和旋转图形课堂学习检测一、填空1.在平面内,把一个图形绕着某______沿着某个方向转动______的图形变换叫做旋转.这个点o叫做______,转动的角叫做______.因此,图形的旋转是由______和______决定的.2.如果图形上的点P在旋转后变为点P',则这两个点称为_____3.如图,△aob旋转到△a′ob′的位置.若∠aoa′=90°,则旋转中心是点______.旋转角是______.点a的对应点是______.线段ab的对应线段是______.∠b的对应角是______.∠bob′=______.3.标题图4.如图,△abc绕着点o旋转到△def的位置,则旋转中心是______.旋转角是______.ao=______,ab=______,∠acb=∠______.4.标题图5.如图,正三角形abc绕其中心o至少旋转______度,可与其自身重合.5.标题图6.一个平行四边形abcd,如果绕其对角线的交点o旋转,至少要旋转______度,才可与其自身重合.7.时钟的移动可视为一种旋转现象。
当分针以匀速旋转时,其旋转中心是时钟旋转轴的轴,该时钟在45分钟后旋转8.旋转的性质是对应点到旋转中心的______相等;对应点与旋转中心所连线段的夹角等于______;旋转前、后的图形之间的关系是______.二、多项选择题9.下图中,不是旋转对称图形的是().10.下面有四条陈述,其中正确陈述的数量为()①图形旋转时,位置保持不变的点只有旋转中心;② 当图形旋转时,图形上的每个点围绕旋转中心旋转相同的角度;③ 当图形旋转时,对应点与旋转中心之间的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化a.1个b.2个c.3个d.4个11.如图所示,围绕O点顺时针旋转钻石aboc,获得钻石dfoe,非旋转角度为().答。
人教版 九年级数学上册第二十三章 旋转 单元检测(含答案)

人教版九年级数学上册第二十三章旋转单元检测(含答案)一、单选题1.下面说法正确的是()A.全等的两个图形成中心对称B.能够完全重合的两个图形成中心对称C.旋转后能重合的两个图形成中心对称D.旋转180°后能重合的两个图形成中心对称2.下列图案中,是中心对称图形的是( )A.B.C.D.3.如图,△DEF是△ABC经过某种变换后得到的图形.△ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点N,点N的坐标是()A.(﹣y,﹣x)B.(﹣x,﹣y)C.(﹣x,y)D.(x,﹣y)4.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)5.如图所示,ABC V 中,5AC =,中线7AD =,EDC V 是由ADB V 旋转180o 所得,则AB 边的取值范围是( )A .1<AB<29B .4<AB<24C .5<AB<19D .9<AB<196.如图,将△ABC 绕点B 顺时针旋转60°得△DBE ,点C 的对应点E 恰好落在AB 延长线上,连接AD .下列结论一定正确的是( )A .△ABD =△EB .△CBE =△C C .AD △BC D .AD =BC 7.下列图形是中心对称图形,但不是轴对称图形的是( )A .正方形B .等边三角形C .圆D .平行四边形8.如图,将△AOB 绕点O 按逆时针方向旋转45︒后得到△COD ,若15AOB ∠=︒,则AOD ∠的度数是( )A .75︒B .60︒C .45︒D .30°9.如图所示,△ABC 与△A′B′C′是成中心对称的两个图形,则下列说法不正确的是( )A .AB=A′B′,BC=B′C′B .AB△A′B′,BC△B′C′C .S △ABC =S △A′B′C′D .△ABC△△A′OC′10.如图,在Rt 直角△ABC 中,△B =45°,AB =AC ,点D 为BC 中点,直角△MDN 绕点D 旋转,DM ,DN 分别与边AB ,AC 交于E ,F 两点,下列结论:△△DEF 是等腰直角三角形;△AE =CF ;△△BDE△△ADF ;△BE+CF =EF ,其中正确结论是( )A .△△△B .△△△C .△△△D .△△△△二、填空题 11.如图,在正方形网格中,格点ABC ∆绕某点顺时针旋转角()0180αα<<︒得到格点111A B C ∆,点A 与点1A ,点B 与点1B ,点C 与点1C 是对应点,则α=_____度.12.如图,将△ABC 绕点A 逆时针旋转的到△ADE ,点C 和点E 是对应点,若△CAE=90°,AB=1,则BD=_________.13.如图,直线443y x =+与x 轴轴分别交于A ,B 两点,把AOB ∆绕点A 逆时针旋转90︒后得到''AO B ∆,则点'B 的坐标是______.14.如图所示,一段抛物线:()()303y x x x =--≤≤,记为1C ,它与x 轴交于点O ,1A ; 将1C 绕点1A 旋转180︒得2C ,交x 轴于点2A ;将2C 绕点2A 旋转180︒得3C ,交x 轴于点3A ;⋅⋅⋅如此进行下去,直到13C .若()37,P m 在第13段抛物线13C 上,则m =______.三、解答题15.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别为(1,1)A 、(5,1)B 、(4,4)C .(1)按下列要求作图:△将ABC ∆向左平移5个单位得到111A B C ∆,并写出点1A 的坐标;△将ABC ∆绕原点O 逆时针旋转90°后得到222A B C ∆,并写出点2B 的坐标;(2)111A B C ∆与222A B C ∆重合部分的面积为 (直接写出答案).16.如图,在平面直角坐标系网格中,△ABC 的顶点都在格点上,点C 坐标(0,﹣1).(1)作出△ABC 关于原点对称的△A 1B 1C 1,并写出点A 1的坐标;(2)把△ABC 绕点C 逆时针旋转90°,得△A 2B 2C ,画出△A 2B 2C ,并写出点A 2的坐标;(3)直接写出△A 2B 2C 的面积.17.如图,已知点A(1,0),B(0,3),将△AOB绕点O逆时针旋转90°,得到△COD,设E为AD的中点.(1)判断AB与CD的关系并证明;(2)求直线EC的解析式.18.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由答案1.D2.D3.B4.C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第23章旋转
一.选择题
1.如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()
A.10B.6C.3D.2
2.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()
A.3个B.4个C.5个D.无数个
3.如图是P1、P2、…、P10十个点在圆上的位置图,且此十点将圆周分成十等分.今小玉连接P1P2、P1P10、P9P10、P5P6、P6P7,判断小玉再连接下列哪一条线段后,所形成的图形不是轴对称图形?()
A.P2P3B.P4P5C.P7P8D.P8P9
4.下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()
A.B.C.D.
5.下列四个图形中,可以由图通过平移得到的是()
A.B.C.D.
6.如图,在方格纸中,线段a,b,c,d的端点在格点上,通过平移其中两条线段,使得和第三条线段首尾相接组成三角形,则能组成三角形的不同平移方法有()
A.3种B.6种C.8种D.12种
7.下列各网格中的图形是用其图形中的一部分平移得到的是()
A.B.
C.D.
8.如图的图形中能用其中一部分平移可以得到的是()
A.B.
C.D.
9.图1的摩天轮上以等间隔的方式设置36个车厢,车厢依顺时针方向分别编号为1号到36号,且摩天轮运行时以逆时针方向等速旋转,旋转一圈花费30分钟.若图2表示21号车厢运行到最高点的情形,则此时经过多少分钟後,9号车厢才会运行到最高点?
()
A.10B.20C.D.
10.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()
A.B.C.4D.
二.填空题
11.如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的
小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是.
12.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).
13.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.
14.如图所示,在正方形网格中,图①经过变换可以得到图②;图③是由图②经过旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”).
15.图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O 转动.
(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是cm.
(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为cm.
三.解答题
16.在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).
(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;
(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)
17.学校在艺术周上,要求学生制作一个精美的轴对称图形,请你用所给出的几何图形:○○△△﹣﹣(两个圆,两个等边三角形,两条线段)为构件,构思一个独特,有意义的轴对称图形,并写上一句简要的解说词.
18.如图,下列网格中,每个小正方形的边长都是1,图中“鱼”的各个顶点都在格点上.(1)把“鱼”向右平移5个单位长度,并画出平移后的图形.
(2)写出A、B、C三点平移后的对应点A′、B′、C′的坐标.
19.(1)按要求在网格中画图:画出图形“”关于直线l的对称图形,再将所画图形与原图形组成的图案向右平移2格;
(2)根据以上构成的图案,请写一句简短、贴切的解说词:.
参考答案
一.选择题
1.C.
2.C.
3.D.
4.A.
5.D.
6.B.
7.C.
8.B.
9.B.
10.B.
二.填空题
11..
12.a+8b.
13.3.
14.平移,A.
15.16..
三.解答题
16.解:(1)如图2所示,C点的位置为(﹣1,2),A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴;
(2)如图1所示:P(0,﹣1),P′(﹣1,﹣1)都符合题意.
17.解:所设计图形如下所示(答案不唯一,可供参考):
.
18.解:(1)如图所示:
.
(2)结合坐标系可得:A'(5,2),B'(0,6),C'(1,0).19.解:(1)如图所示:(6分)
(2)解说合理即可,如爱心传递或我们心连心等.(8分)。