第6章-微乳化技术及应用资料

合集下载

《微乳化技术及应用》课件

《微乳化技术及应用》课件
这种乳状液由水相、油相和表面活性 剂组成,具有良好的分散性和稳定性 ,能够实现油水互溶,提高物质的溶 解度和生物利用度。
微乳化技术的形成机制
微乳化技术的形成机制主要包括热力学平衡和动力学稳定性两个方面。
在热力学平衡方面,微乳状液的形成是自发过程,能够降低界面张力,减小自由能,使体系更加稳定。
在动力学稳定性方面,微乳状液的形成需要克服表面张力和黏性阻力等阻力,通过机械搅拌、超声波振 动等方式可以增加能量输入,促进微乳状液的形成。
《微乳化技术及应用》ppt课件
• 微乳化技术简介 • 微乳化技术的应用领域 • 微乳化技术的优势与挑战 • 微乳化技术的发展趋势 • 微乳化技术的前沿研究
01
微乳化技术简介
微乳化技术的定义
微乳化技术是指将两种或多种不相溶 的液体通过特定的技术手段,制备成 粒径在纳米级别的均匀、稳定的乳状 液。
生物相容性良好的微乳化体系研究
生物相容性材料的选择
研究如何选择和设计具有良好生物相容性的 材料,用于构建安全、无毒的微乳化体系。
生物相容性微乳化体系的 应用
在药物传递、生物医学工程等领域,生物相 容性良好的微乳化体系具有广泛的应用前景
,如用于药物载体、组织工程等。
THANK YOU
和美白效果。
医药领域
利用微乳化技术包覆药物,实现药物 的靶向输送和控释,提高药物的疗效
和降低副作用。
食品工业
将微乳化技术应用于食品添加剂的制 备,改善食品口感、提高食品品质和 稳定性。
石油化工
将微乳化技术应用于燃料油和润滑油 的制备,提高油品的性能和稳定性。
微乳化技术的未来展望
加强基础研究
深入探究微乳化现象的机理和影响因素,为新型 微乳化技术的研发提供理论支持。

微乳法

微乳法

(5) Ostwald陈化(Ostwald Ripening), 根据Kelvin公式,小质点 (4)转相, 由于表面活性剂在油、水两相中的溶解度相对大小与 表面活性剂的亲水亲油平衡(Hydrophile-Lipophile Balance),即 HLB密切相关,因此可以说,表面括性剂的HLB是决定乳状液 类型的主要因素。非离子表面活性剂的HLB是温度的函数。在 低温下呈现水溶性的非离子表面活性剂在高温下则呈油溶性。 因此,用非离子表面活性剂作乳化剂时,若在低温下制得O/W 乳液,在高温下则会变为W/O型。发生变形时的温度称为相转 变温度(Phase Inversion Temperature),简称PIT。 式中Cr是微小晶体的溶解度,C是普通晶体的溶解度,γ(s) 及ρ(s)分别为固体的界面张力及密度。 将比大质点具有更大的溶解度。于是小质点将不断溶解,大质 点将不断长大。这一过程称为Ostwald陈化。在乳状液体系中, 它通过分散相经过连续相介质的分子扩散而进行。这一过程导 致体系的平均质点半径随时间增大,因此是一种不稳定过程。
4
纳米化溶剂中,随着双亲物质浓度的增大,也能形成 聚集体.这种聚集体通常以亲水基相互靠拢,而以亲油基朝向溶 剂,其构型与水相中的胶团正好相反,因此被称为反胶团或逆 胶团(Reversed or inserted Micelle)。例如,在水/油/非离子表面 活性剂体系中,低温时表面活性剂在水相形成胶团,但随着温 度的升高,表面活性剂逐步转移到油相,并形成反胶团。
2
纳米化学microemulsion
1.2.1 乳状液的形成 根据热力学理论,乳状液不能自发形成。因此,要使一 个油/水体系变成乳液,必须由外界提供能量。 制备乳状液的主要方法是分散法,即通过搅拌、超声波 作用或其它机械分散作用使两种流体充分混合,最终使得一相 分散在另一相中。 制备乳液时的个关键问题是制得的乳液是哪一种类型, 经验证明,影响乳液类型的因素有: ①两相的体积比。 ③表面活性剂的性质和浓度。 ②两相的粘度差异。 ④温度。

《微乳化技术及应用》课件

《微乳化技术及应用》课件

提高石油的采收率
01
微乳化技术可以将表面活性剂 和其他化学剂以微小的液滴形 式分散在石油中,降低油水界 面张力,提高石油的流动性。
02
微乳化技术可以改善油藏的润 湿性,提高油藏的渗透性,从 而提高石油的采收率。
03
微乳化技术可以降低石油中的 杂质含量,提高石油的质量和 纯度。
降低燃料的毒性
微乳化燃料能够降低燃料中的有害物质含量,如硫、氮等,从而减少燃烧 产生的有害气体和颗粒物。
随着环保意识的提高,绿色、环保的微乳化产品将越来越受到市 场的青睐。Βιβλιοθήκη 感谢观看THANKS
农药和医药行业
在农药和医药行业中,微乳化技术主 要用于制备高效、低毒、环保的农药 和药物制剂,提高药物的生物利用度 和药效。
在医药领域,微乳化技术还可用于制 备靶向药物、纳米药物等新型药物制 剂,提高药物的疗效和降低副作用。
通过微乳化技术,可以将农药或药物 包裹在微小的液滴中,从而提高药物 的靶向性和稳定性,减少药物对非目 标生物的毒性。
燃料和石油工业
01
在燃料和石油工业中,微乳化技术主要用于提高燃料的燃 烧效率、降低污染物排放和提高石油采收率。
02
通过微乳化技术,可以将燃料或石油与水进行混合,形成稳定 的微乳液,从而提高燃料的燃烧效率和降低废气排放。
03
在石油开采中,微乳化技术可以用于提高采收率,通过将采出的 石油与表面活性剂和水混合形成微乳液,提高石油的流动性,从
提高药物的稳定性
01
02
03
微乳化技术能够将药物 溶解或分散在微小的液 滴中,形成稳定的药物 体系,防止药物的水解 和氧化等降解反应。
微乳化药物具有较高的 表面能,能够增加药物 的分散度和溶解度,从 而提高药物的稳定性和

微乳液的制备及应用

微乳液的制备及应用

工程师园地文章编号:1002-1124(2004)02-0061-02 微乳液的制备及应用王正平,马晓晶,陈兴娟(哈尔滨工程大学,黑龙江哈尔滨150001) 摘 要:本文翔实的介绍了微乳液的结构、性质、制备以及应用。

关键词:微乳液;性质;制备;应用中图分类号:T Q423192 文献标识码:APrep aration and application of microemulsion M A X iao -jing ,W ANG Zheng -ping ,CHE N X ing -juan(Harbin Engineering University ,Harbin 150001,China ) Abstract :In this article ,the conception ,structure ,properties ,preparation and application of micromeulsion havebeen summarized.K ey w ords :microemulsion ;property ;preparation ;application收稿日期:2003-12-16作者简介:王正平(1958-),男,教授,1982年毕业于浙江大学,硕士生导师,主要从事精细化学品的研究开发工作。

1 前言微乳液最初是1943年由H oar 和Schulman [1]提出的,目前,公认的最好的定义是由Danielss on 和Lindman [2]提出的,即“微乳液是一个由水、油和两亲性物质(分子)组成的、光学上各向同性、热力学上稳定的溶液体系”。

微乳液能够自发的形成,液滴被表面活性剂和助表面活性剂组成的混合界面膜所稳定,直径一般在10~100nm 范围内。

微乳液的结构有三种:水包油型(O/W )、油包水型(W/O )和油水双连续型。

O/W 型微乳液由油连续相、水核及界面膜三相组成。

微乳化技术及其在植物提取物中的应用

微乳化技术及其在植物提取物中的应用

微乳化技术及其在植物提取物中的应用微乳化通常定义为两种含有适量的表面活性剂和助表面活性剂的互不相溶的液体所形成的稳定、各向同性、外观透明的分散体系。

一般分为油包水型(W/O)、水包油型(O/W)和双连续型(B.C)。

在油包水型(W/O)型的微乳液中,细小的水相颗粒分散于油相中,表面覆盖一层由表面活性物质分子构成的单分子膜;在水包油型(O/W)的微乳液中,细小的油相颗粒分散于水相中,水包油型微乳液可与水相共存。

当油水两相比例适当时会形成双连续型(B.C)微乳液。

微乳液虽然和普通乳状液一样含有不相互溶的液体,但是性质明显不同于普通乳状液,在外观上,微乳液是透明的液体,而普通乳状液是不透明液体;在稳定性方面,微乳液很稳定,用离心机离心也不能使之分层,而普通乳状液不够稳定,用离心机离心易于分层。

关于微乳液的形成机理,目前有3种理论,第一种是界面混合膜理论,该理论认为微乳液之所以能自发形成是由于表面活性剂的作用,使油/水界面产生瞬时负界面张力,形成由表面活性剂、油和水组成的混合膜,体系自发扩张界面,形成微乳液。

第二种是溶解理论,该理论认为微乳是油相和水相增溶于胶束或反胶束中,胶束逐渐变大而溶胀到一定颗粒范围内形成的。

第三种理论是热力学理论,该理论认为微乳液形成的自由能是由表面活性剂降低了油水表面张力的程度所决定的。

目前微乳化技术在植物提取物主要应用于澄清化方面。

我们都知道,对于大部分液态的植物提取物都存在外观浑浊、久放会出现后沉淀的现象。

解决这一问题的传统方法冷冻过滤法,该方法的缺点是在冷冻过程中可能会导致植物提取物中的一些活性成分和风味成分析出,在过滤过程中除去从而影响提取物的品质。

同时该方法得到的提取物在短时间内不会有沉淀析出,但是久放后还是有后沉淀现象出现。

而通过微乳化技术既能保留植物提取物中的活性成分和风味成分,又能保证产品的外观澄清透明,且久放也不会出现沉淀。

最新-微乳化技术在纳米材料制备中的应用研究 精品

最新-微乳化技术在纳米材料制备中的应用研究 精品

微乳化技术在纳米材料制备中的应用研究一般情况下,我们将两种互不相溶液体在表面活性剂作用下形成的热力学稳定的、各向同性、外观透明或半透明、粒径~100的分散体系称为微乳液。

相应地把制备微乳液的技术称之为微乳化技术。

自从80年代以来,微乳的理论和应用研究获得了迅速的发展,尤其是90年代以来,微乳应用研究发展更快,在许多技术领域如三次采油,污水治理,萃取分离,催化,食品,生物医药,化妆品,材料制备,化学反应介质,涂料等领域均具有潜在的应用前景。

我国的微乳技术研究始于80年代初期,在理论和应用研究方面也取得了相当的成果。

1982年,首先报道了应用微乳液制备出了纳米颗粒用水合胼或者氢气还原在/型微乳液水核中的贵金属盐,得到了单分散的,,,金属颗粒3~。

从此以后,不断有文献报道用微乳液合成各种纳米粒子。

本文从纳米粒子制备的角度出发,论述了微乳反应器的原理、形成与结构,并对微乳液在纳米材料制备领域中的应用状况进行了阐述。

1微乳反应器原理在微乳体系中,用来制备纳米粒子的一般是/型体系,该体系一般由有机溶剂、水溶液。

活性剂、助表面活性剂4个组分组成。

常用的有机溶剂多为6~8直链烃或环烷烃;表面活性剂一般有[2一乙基己基]磺基琥珀酸钠]。

、十二烷基硫酸钠、十六烷基磺酸钠阴离子表面活性剂、十六烷基三甲基溴化铵阳离子表面活性剂、聚氧乙烯醚类非离子表面活性剂等;助表面活性剂一般为中等碳链5~8的脂肪酸。

/型微乳液中的水核中可以看作微型反应器或称为纳米反应器,反应器的水核半径与体系中水和表面活性剂的浓度及种类有直接关系,若令=[2/[表面活性剂],则由微乳法制备的纳米粒子的尺寸将会受到的影响。

利用微胶束反应器制备纳米粒子时,粒子形成一般有三种情况可见图1、2、3所示。

将2个分别增溶有反应物、的微乳液混合,此时由于胶团颗粒间的碰撞,发。

微乳化技术及应用知识讲解

微乳化技术及应用知识讲解
Metal cluster
Reduced particle
Step 1
Step 2
Solubilization of reactants A Contact of different of reactants
A-Metal salt B-Reducing agent
diffusion
Reducing agent
在最优反应物浓度条件下可获得最小的粒子粒径。
Ravet et al(1987)利用成核过程解释这一现象: 反应物浓度较低时,用于形成成核中心的粒子数量较少,
因此反应之初只形成少量的成核中心,导致粒径较大; 增加反应物浓度,成核数目增多,粒径尺寸降低; 继续增加反应物浓度,成核数目达到一定程度时保持不变,
其光学、催化及电流变等性质.
Step 1 Solubilization of reactants
Step 2 Contact of different rfactant
Organic solvent
Reducing agent
Step 3 Reaction, nucleation and growth of primary particle
▪ 絮凝、洗涤法-在己生成有纳米粒子的反胶团微乳液中加入丙酮或丙酮 与甲醇的混合液,立刻发生絮凝。分离出絮凝胶体,用大量的丙酮清洗, 然后再用真空烘干机干燥即得产品。
产品粒径及形态的影响因素
▪ 微乳液组成的影响 纳米微粒的粒径与微乳液的水核半径有关,很多文献实验表明:相同
条件、制备相同微粒的情况下,在一定范围内:
微乳化技术及应用
Introduction
▪ 1943 Hoar and Schulman ▪ 1959 Schulman

微乳的制备与应用

微乳的制备与应用

染色法 : 取相同体积的微乳液 2 , 份 同时分别加入苏丹红 成的自由能及其相转变的条件而支持热力学理论。 染料 和亚 甲基蓝染料溶液各 2 , 观察 , 滴 静置 如蓝色的扩散速 这些理论 因其各 自 限性都不 能完整地解释微乳 的形 成 局
度大于红色 , 则为 WI O型微乳 ; 反之则形 成 OW 型微乳 ; I 二者 速度相同 , 则为双连续型微乳液 。 2制备方法 电导法 : / 型微乳应带 电荷 , O型微乳应不带电荷。 OW W/ 21HL . B法 按文献【 定方法恒温 2 。测定 。 慨 0c 表面活性剂 的 H B值对微乳 的形成至关重要 , L 一般认 为 折光率 : 粒径 : 采用粒度分布仪测定微乳粒径。 表 面活性剂的 H B在 47 L ~ 时可形成 W/ O型微乳 , 1 ̄0 在 42 时
北方药学 2 1 年第 8 01 卷第 8 期
4 1
乳处方 , 考察 5种吸收促进 剂对 吲哚美辛原药及微乳 的促渗作 参 考 文 献 用。 结果表明, 微乳 中 Ce rh r H6 rmop o 0与 L bao 的比例为 1 『] or ,c uma Tasaetw tri— idses n: R a rsl : 1 aT P S hl n JH.rnprn ae—n o i ro s H l p i 2时 , / 微乳 区最大。 OW 月桂氮酮是 吲哚美辛微乳的最佳透皮促 teoepti hdo mi l [ .a r,9 312 12 . h loa c yr— e l JN t e 14 5 (0 ) h ee ] u 进剂 , 用量为 5 %时渗透 速率 为(3 22 0w ・ -h 4 累 [ D ne snI Ln ma . h e nt no com l o J 7. +. )ga 2 -2h 2 ail o , ld nB T edf io f r us n[ . 5 3 m .1 ] s i i mi e i 】 C l is n uf e ,9 13 3 1 o o dS r cs 18 :(9 ) ld a a 积渗透量 可达 10  ̄ / 70 g m。 c 朱 晓亮等[ 1 7 1 绘制伪 三元相 图考察 不 同( 面活性 剂, [] 通过 表 3吴顺 琴 , 李三鸣 , 国斌 . 及其在 药剂 学中的应 用阴. 赵 微乳 沈 助表 面活性剂 ) 值对利多 卡因微 乳 区形成 的影 响 , 根据微乳 区 阳药科 大学学报 ,0 3 2 ( )3 1 3 5 2 0 ,0 5 :8 — 8 . 面积大小选择 制备利多卡 因微乳 的最 佳 K m值 ,测定 利多卡 [ 陈华兵 , 4 ] 翁婷 , 杨祥 良. 乳在现代 药剂 学 中的研 究进展 田. 微 2 0 ,5 8 :0 — 0 . 因微乳 的粒径 大小及粒径分布范 围 ,测定利多 卡因微乳 的理 中国医药工业杂志,0 4 3 ( )5 2 5 6 化特性 , 对利多卡因微乳 的形态 及体系类型进行电镜观察。 【] 5寇欣. 乳给 药 系统的研 究进 展 [. 微 J 天津 药学 ,0 5 1 ( ) ] 2 0 ,7 6 : 张建春等【选用油酸正丁酯租 肉豆蔻酸异丙酯作 为油相 , 49. l 8 1 聚山梨醇 酯作 为表 面活性剂 ,正 丁醇和正戊醇作 为助表面活 [ 陈宗淇 , 闽光. 体化 学[】 6 】 戴 胶 M. : 北京 高等教育 出版社 ,95 18: 2 4. 性剂 , 在制备三元相 图的基 础上 , 考察 微乳 的组分对微 乳形成 34 —3 5 的影 响 , H L 用 P c法测定微乳 中环磷酰胺 的含量 。 [ 顾惕人. 面化 学[ . 7 ] 表 M] 北京: 学 出版社 ,9 98 — 2 科 19: 9 . 8 张琰等【 用 V l 5为表面活 性剂 , 醇类作 助表 面 [ 张正 全 , o2 p 短链 8 ] 陆彬 . 乳给 药 系统研 究概 况【 . 国医药工业 杂 微 J中 】 活性 剂与不同的油相 , 用伪 三元相 图法筛 选微乳处方 , 采 研究 志 ,0 13 ( ) 3— 4 . 2 0 ,2 3 : 9 12 1 表 面活性 剂、助表面活性剂及油 相等因素对微乳 区形成大小 【】 才 武 , 丽 霞 . 乳 液 的 微 观 结 构 、 备 和 性 质 【 . 西 民 9蒋 张 微 制 J广 ] 的影 响, 考察 了甘 草酸二铵微乳 的稳 定性。 族 学院学报 ,9 8 4 4 :0 3 . 1 9 ,( ) — 3 3 陈菡等【通过溶解度实验 、 嘲 处方 配伍 实验和伪三元相 图的 【O崔正 刚. 乳化技 术及 应 用【 .匕 : 国轻 工业 出版社 , l] 微 M] 京 中 j 9 绘制, 以乳化时 间、 色泽为指标 , 筛选 油相 、 表面 活性剂 、 助表 1 99. 面活性 剂的最佳搭配和处方 配比 ,结果发现葛根 素在微乳 中 [1李干佐 , 1] 郭荣 , 秀文. 乳液的形成 和相 态【. 王 微 J 日用化学工 ] 业 ,9 9 5 :0 4 . 18( ) — 5 4 的溶解度最高可达 7 .1 / 。 71mg mL 5微乳制剂的缺 点 [2 ̄ - , 1] 平 马晓晶 , 陈兴娟 . 微乳液 的制备及 应用【. 学工程 J化 ] 尽管在提高生物利用度方面有其独到之处 , 但其存在 的问 师 ,0 ,0 ( ) 1 6 . 20 1 12 : — 2 4 6 题不容忽视。首先 , 微乳 中使用高浓度 的表 面活性 剂和助表 面 [3杨锦 宗, 1] 兰云军. 乳状 液制备技 术及其发 展状 况【 . 细 微 J精 ] 活性 剂 , 它们大多对 胃肠道 黏膜有刺激性 , 对全身有 慢性毒性 化 工,9 5 1 ( ) 一 1 1 9 ,2 4 : l . 7 作用 。 因而一方面应努力寻找高效低毒 的表面活性剂和助表面 [ 】 , . 1 张琰 刘梅 甘草酸二铵微乳制备 工艺研 究[解放军药学学 4 J 】 活性剂 , 另一方面可采用改 良的三角相 图法研究微乳形成 的条 报 ,0 8 2 ( ) 4 — 5 . 2 0 ,4 2 : 8 10 1 件 。通过优化微乳 的工艺条件 , 寻找用最少 的表面活性剂和助 [5I 1]  ̄家药典委 员会. 中华人 民共和 国药典【】 京: s 匕 化学工业出 20. 4 表面活性剂制备微乳 的方法 。另外 , 通过外力 如高压乳匀机促 版 社 。0 5附 录 4 . 使微乳形成 减少表面活性剂和助表 面活性剂 的用量也 是一个 [6廉 云飞 , 1] 李娟 , 平其能 , 严菲. 美辛微乳的制备及 经皮吸 吲哚 有效的办法 。 其次 , 微乳稀释往往会 由于各相 比例改变 , 使微乳 收研 究[ . J 中国医药工业杂志 ,0 5 3 ( ) 4— 5 . ] 2 0 ,6 3 : 8 1 1 1 破坏 。因此 , 口服或注射后 , 乳被大量的血液和 胃液稀释 后 , 『7朱 晓亮, 微 1] 陈志 良, 国锋 , 李 曾杭 . 多卡 因微 乳的制备及 电镜 利 如何保持微乳性质和粒径的稳定也是一个要解决的问题阁 o 观察[ . 医科 大学学报 ,0 62 ( ) 1 - 1. J 南方 ] 2 0 ,6 4 : 5 5 7 5 6总 结 [8张建春 , 1] 李培 勋 , 王原 , 陈鼎继 , 徐凤玲 , 黄旭 刚. 酰胺微 环磷 微乳 作为一种 新 的药 物载体 , 定 、 稳 吸收迅 速完 全 , 能增 乳制剂 的研制[ 中国 医院药学杂志 ,0 3 2 ( ) — 1 J ] 2 0 ,3 1 : 1. 9 强疗效 , 降低毒副作用 。其 口服、 注射 、 鼻腔 给药 、 给药均 [ 】 透皮 1 陈菡, 9 钟延强 , 鲁莹. 素微乳 的制备[. 葛根 J药剂学 ,082 ] 20 ,6 有很大潜力 。随着研 究的不 断深入 , 微乳在药剂学领域将有更 ( ) 0 . 3: 0 2 广 阔的发展前景并将得 到广泛应用 ,必将 成为一种重 要的药 [0应娜 , 高通 . 2 ] 林 微乳的研 究进展及应 用叨海峡 药学 ,0 8 2 2 0 ,0 () 2— 2. 9 : 6 18 1 物传递系统 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

而对抗微乳液滴的聚结。
微乳液技术研究的主要方向
➢ 配方:主要是表面活性剂和助表面活性剂的研究 ➢ 利用乳化设备制备表面活性剂含量低的微乳液
– 常规的设备有超声波、胶体磨和高剪切搅拌器。 – 现在先进的设备有:高压均化器和微射流乳化器
➢ 利用微乳化技术制备微小乳状液
(minemulsion,粒径<0.5m)
第6章 微乳化技术及应用
6.1 概述
➢ 乳浊液的定义及结构
简单乳浊液
双重或多重乳浊 液:相当于简单 乳液的分散相 (内相)中又包 含了尺寸更小的 分散质点,常用 作活性组分的贮 器。
乳化剂
➢ 乳化剂的存在是形成乳浊液的必要条件 根据乳浊液的类型,乳化剂可分成:
– 油包水型乳化剂 – 水包油型乳化剂
➢ 影响超细微粒制备的因素
微乳液组成的影响 纳米微粒的粒径与微乳液的水核半径有关,很多文献实验表
明:相同条件、制备相同微粒的情况下,在一定范围内:
➢半导体材料,CdS、PbS、CuS等;
➢Ni、Co、Fe等金属的硼化物;
➢SiO2、Fe2O3等氧化物; ➢AgCl、AuCl3等胶体颗粒; ➢CaCO3、BaCO3等金属碳酸盐; ➢磁性材料BaFe12O19等
6.2 微乳化技术制备纳米材料
微乳液中纳米微粒的形成机理:
水核 作为“微型反应器”,其大小可控制在10~ 100nm,是理想的化学反应介质。
油/水界面张力迅速降低达10-3~10-5 mN/m ,甚至
瞬时负界面张力 < 0。但是负界面张力是不存在的,
所以体系将自发扩张界面,表面活性剂和助表面活
性剂吸附在油/水界面上,直至界面张力恢复为零或 微小的正值,这种瞬时产生的负界面张力使体系形
成了微乳液。若是发生微乳液滴的聚结,那么总的
界面面积将会缩小,随后又产生瞬时界面张力,从
琥珀酸酯二异辛酯磺酸钠 (AOT)
助表面活性剂的作用
➢ 降低界面张力 可使表活剂在其cmc下仍能降低界面张力,甚 至为负值。
➢ 增加界面膜的流动性 增加柔性,减少微乳液生成时所需的弯曲能, 使微乳液液滴易生成。
➢ 调节表面活性剂的HLB值等。 常见的有:乙醇、正丙醇、异丙醇、正丁醇、
异丁醇
微乳液的形成机理:
常用乳化剂
➢表面活性剂类 ➢高分子乳化剂:动物胶、植物胶、聚乙烯醇等 ➢天然乳化剂:卵磷脂、羊毛脂、阿拉伯胶等 ➢固体粉末:粘土、二氧化硅 / 石墨、碳黑
➢ 微乳液
“微乳状液”,或 “微乳液” 定义:由表面活性剂,助表面活性剂(通常 (C4~C8脂肪醇)、油(通常为碳氢化合物) 和水(或电解质水溶液)组成的透明或半透 明的、各向同性的热力学稳定体系。
Schulman和Prince——瞬时负界面张力形成机理
微乳液的结构:
油包水型(W/O) 水包油型(O/W) 双连续相结构:具有W/O和O/W两种结构的综合特
性,但其中水相和油相均不是球状,而是类似于水 管在油相中形成的网络。

普通乳浊液——油/水界面张力几个mN/m;

加入助表面活性剂形成微乳液,产生混合吸附,
▪ 通过选择不同的表面活性剂分子对粒子表面进行修饰, 可获得所需特殊物理、化学性质的纳米材料 。
▪ 粒子表面包覆表面活性剂分子,不易聚结,稳定性好。 ▪ 纳米粒子表面的表面活性剂层类似于一个“活性膜”,
该层可以被相应的有机基团取代,从而制得特定需求 的纳米功能材料。 ▪ 纳米微粒表面的包覆,改善了纳米材料的界面性质, 同时显著地改善了其光学、催化及电流变等性质。
微乳液的水核尺寸是由增溶水的量决定的,随增 溶水量的增加而增大。化学反应就在水核内进行成核 和生长,由于水核半径是固定的,由于界面强度的作 用,不同水核内的晶核或粒子之间的物质交换受阻, 在其中生成的粒子尺寸也就得到了控制。这样,水核 的大小就决定了超细颗粒的最终粒径。
微乳液法的特点
▪ 粒径分布较窄,易控制,可以较易获得粒径均匀的纳 米微粒.
水核内(反相胶束微反应器)超细颗粒的形成机理
(1)
形成微乳液A
反应物A
(2)
反应物B
加入反应物B 混合
直接加 入法
发生化学反应
共 混 形成AB沉淀 法
➢ 渗透反应机理 ➢ 融离心沉淀法收集含有大量表面活 性剂及有机溶剂的粒子,经灼烧得到产品。 此法虽然简单,但粒子一经灼烧就会聚集,使粒径
表6-1 普通乳浊液、微乳液和胶束溶液的性质比较
普通乳浊液
微乳液
胶束溶液
外观
不透明
透明或半透明
一般透明
质点大小 质点形状 热力学稳定性
>0.1μm,一般为 多分散体系
一般为球状 不稳定,易于分层
0.01~0.1μm, 一般为单分散 体系
球状
稳定
<0.1μm
稀溶液中为球状, 浓溶液中可呈 各种形状 稳定
表面活性剂用量 少,一般不用 多,一般加助剂 浓度大于cmc即可
O/W与水混溶 ,W/O 与油、水在一定 能增溶油或水直
与油、水混溶性
与油混溶
范围内可混溶
至饱和
微乳液用表面活性剂
• 形成微乳状液对表面活性剂和助剂的类型和 用量有严格的要求
• 阴离子表面活性剂AOT广泛用于微乳液的制 备,且不需要使用助剂 Na+-O3S CH COOCH2CH(C2H5)C4H9 CH2 COOCH2CH(C2H5)C4H9
增大很多,而且表面活性剂被烧掉,浪费很大。 烘干洗涤法——让含有纳米粒子的反胶团微乳液在
真空箱中放置以除去其中的水和有机溶剂,残余物再 加同样的有机溶剂搅拌,离心沉降,再分别用水和有 机溶剂洗涤以除去表面活性剂。
此法未经高温处理,粒子不会团聚,但需要大量溶 剂,且表面活性剂不易回收,浪费较大。
絮凝、洗涤法——在己生成有纳米粒子的反胶团微 乳液中加入丙酮或丙酮与甲醇的混合液,立刻发生絮 凝。分离出絮凝胶体,用大量的丙酮清洗,然后再用 真空烘干机干燥即得产品。
➢ 将微乳液技术的适用范围扩展
– 如将固态油状、高粘度油状和高分子制成微乳液
➢ 微乳液作为反应介质
➢ 用于有机合成 ➢ 微乳聚合 ➢ 微乳用于生化反应 ➢ 无机反应及纳米反应器 ➢ 超临界流体微乳液
➢ 利用微乳技术合成新材料
➢ 合成有机材料 ➢ 合成无机材料 ➢ 微乳凝胶 ➢ 其它
➢金属纳米微粒,除Pt、N、Rh、Ir,还有Au、 Ag、Mg、Cu等;
相关文档
最新文档