最新甘肃省中考数学押题预测密卷有答案 最新题必考题必考题型
最新中考数学押题预测密卷 有答题卡有答案 最新题必考题必考题型

最新中考数学押题预测密卷 有答案 最新题必考题必考题型第Ⅰ卷 (选择题,共30分)一、选择题(共10小题,每小题3分,共30分) 1. 下列数中,绝对值最大的是( )A .2B .0.C .-2.D .-1. 2. 函数y =2-x 中,自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .全体实数 3. 下列计算正确的是( )A .(﹣4)+6=-2 B.9 =±3 C .-6-9=﹣15 D .8 + 3 =8+3 4. 某班为了解学生“多读书、读好书”活动的开展情况,对该班50名学生一周阅读课外书的时间进行了统计,统计结果如下:由上表知,这50名学生一周阅读课外书时间的极差和中位数分别为( )A .4,13B .15,19C .15,3D .4,2 5. 下列运算正确的是( ) A .x 2+x 3=x 5 B .2x 2-x 2=1 C .x 2•x 3=x 6 D .x 6÷x 3=x 36. 如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,点A 的坐标为(1,0),则E 点的坐标为( ) A .)0,2(- B .)23,23(--C .)2,2(--D .)2,2(-- 7. 由若干个大小相同的小正方体组成的几何体的三视图如图所示, 则这个几何体只能是( )A B C D8. 为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查。
已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:x根据图表提供的信息,样本中,请身高在160≤x <170之间的女学生人数为( ) A .8 B .6 C .14 D .16.9. 如图是经典手机游戏“俄罗斯方块”中的图案, 图1 中有8个矩形, 图2中有11个矩形, 图3中有15个矩形, 根据此规律, 图5中共有( )个矩形A. 19B. 25C. 26D. 3110. 在平面直角坐标系xoy 中,以原点O 为圆心的圆过点A (0,53),直线y=kx -3k +4与⊙O 交于点B 、C 两点,则弦BC 长的最小值为 A .5B .52C .53D .54第Ⅱ卷 (非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11. 因式分解:2a 2-4ab +2b 2=12. 近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为13. 小明是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小明报到奇数的概率是14. 因长期干旱,甲水库水量降到了正常水位的最低值a ,为灌溉需要,由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过40h 后,乙水库停止供水,甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲书库蓄水量Q (万m 3)与时间t (h )之间的函数关系,则乙水库停止供水后,经过 小时后甲书库蓄水量又降到了正常水位的最低值. 15. 如图,在直角坐标系中,点A 在y 轴正半轴上,AC ∥x 轴,点B ,C 的横坐标都是3,且BC=2,点D 在AC 上,且横坐标为1,若反比例函数y =xk(x >0)的图象经过点B ,D ,则k= 16. 如图,△ABC 内接于⊙O ,∠B=90°,AB=BC ,D 是⊙O 上与点B 关于圆心O 成中心对称的点,P 是BC 边上一点,连接AD 、DC 、AP .已知AB=8,CP=2,Q 是线段AP 上一动点,连接BQ 并延长交四边形ABCD 的一边于点R ,且满足AP=BR ,则QRBQ=.第14题图 第15题图 第16题图图1图2图3三、解答题(共9小题,共72分)17. 解方程:5113--=-x xx 18. 已知一次函数2+=kx y 的图象经过A (-3, 1), 求不等式2kx +1≥0的解集19. 如图,AB=AE ,∠1=∠2,∠C=∠D .求证:△ABC ≌△AED .20. 在直角坐标系中, △ABC 的顶点坐标是A (-1, 2), B (-3, 1), C (0, -1).将ABC △向右平移2个单位,向下平移3个单位得到△A 1B 1C 1,将 △A 1B 1C 1绕O 点旋转90度得到△A 2B 2C 2. (1)画出三角形△A 2B 2C 2. (2)直接写出C 2的坐标. (3)求B 1运动的路径长21. 某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B 、E 两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A 组发言的学生中恰有1位女生,E 组发言的学生中有2位男生.现从A 组与E 组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.22. 如图,⊙O 的半径r=25,四边形ABCD 内接圆⊙O ,AC ⊥BD 于点H ,P 为CA 延长线上的一点,且∠PDA=∠ABD . (1)试判断PD 与⊙O 的位置关系,并说明理由; (2)若tan ∠ADB=43,PA=3334-AH ,求BD 的长; 23. 某书店以每本20元的价格购进一批畅销书《莫言精品集》.销售过程中发现,每月销售量y(本)与销售单价x(元)(1)每月销售量y 反比例函数和二次函数)关系中的一种.试求出y 与x 之间的函数关系式,不要求写出自变量x 的取值范围. (2)销售单价在什么范围时,书店不亏损?每本进价×销售量)24. 我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.请你利用重心的概念完成如下问题:(1)如图1,若O 是△ABC 的重心(),连结AO 并延长交BC 于D ,证明:AD AO =32(2)如图2,若O 是△ABC 的重心,若AB =5,点G 从A 出发,在AB 边上以每秒一个单位的速度向B 运动,运动时间为t 秒,连GO ,直线GO 交直线AC 与H 点(G 、H 均不与△ABC 的顶点重合). ①求OHGO(用含有t 的式子表示) ③若G 、H 分别在边AB 、AC 上,S 四边形BCHG ,S △AGH 分别表示四边形BCHG 和△AGH 的面积,直接写出AGHBCHG S S △四边形的最大值.图1 图225. 如图1,点A 为抛物线21122c y x x =-的顶点,点B 的坐标为(3,0),直线AB 交抛物线C 1于另一点D 。
甘肃省张掖市甘州中学2024届中考数学押题卷含解析

甘肃省张掖市甘州中学2024年中考数学押题卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=()A.12B.34C.45D.352.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND 的周长为()A.28 B.26 C.25 D.223.如图,若a∥b,∠1=60°,则∠2的度数为()A.40°B.60°C.120°D.150°4.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图象是()A .B .C .D .5.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于点O ,且BE=BF ,∠BEF=2∠BAC ,FC=2,则AB 的长为( )A .83B .8C .43D .66.点A 、C 为半径是4的圆周上两点,点B 为AC 的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆半径的中点上,则该菱形的边长为( )A .7或22B .7或23C .26或22D .26或237.下列图形中,属于中心对称图形的是( )A .B .C .D .8.解分式方程2236111x x x +=+-- ,分以下四步,其中,错误的一步是( ) A .方程两边分式的最简公分母是(x ﹣1)(x +1)B .方程两边都乘以(x ﹣1)(x +1),得整式方程2(x ﹣1)+3(x +1)=6C .解这个整式方程,得x =1D .原方程的解为x =1A .﹣1或1B .1或﹣3C .﹣1或3D .3或﹣310.若关于x 、y 的方程组4xy k x y =⎧⎨+=⎩有实数解,则实数k 的取值范围是( ) A .k >4 B .k <4 C .k≤4 D .k≥4二、填空题(共7小题,每小题3分,满分21分)11.如图,BD 是⊙O 的直径,BA 是⊙O 的弦,过点A 的切线交BD 延长线于点C ,OE ⊥AB 于E ,且AB=AC ,若CD=22,则OE 的长为_____.12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值是 .13.如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形的面积之和(即阴影部分)为 cm 2(结果保留π).14.抛物线 221y x =-的顶点坐标是________.15.若二次根式12x +有意义,则x 的取值范围为__________.16.如图,在△ABC 中,∠ACB =90°,∠ABC =60°,AB =6cm ,将△ABC 以点B 为中心顺时针旋转,使点C 旋转到AB 边延长线上的点D 处,则AC 边扫过的图形(阴影部分)的面积是_____cm 1.(结果保留π).线MN折叠,使点A的对应点D恰好落在线段BC上,当△DCM为直角三角形时,折痕MN的长为__.三、解答题(共7小题,满分69分)18.(10分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD 中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA 的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)19.(5分)某服装店用4000元购进一批某品牌的文化衫若干件,很快售完,该店又用6300元钱购进第二批这种文化衫,所进的件数比第一批多40%,每件文化衫的进价比第一批每件文化衫的进价多10元,请解答下列问题:(1)求购进的第一批文化衫的件数;(2)为了取信于顾客,在这两批文化衫的销售中,售价保持了一致.若售完这两批文化衫服装店的总利润不少于4100元钱,那么服装店销售该品牌文化衫每件的最低售价是多少元?20.(8分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.连接CE.B(1)当点E在BC边上时,画出图形并求出∠BAD的度数;(2)当△CDE为等腰三角形时,求∠BAD的度数;(3)在点D的运动过程中,求CE的最小值.(参考数值:sin75°=624+,cos75°=624-,tan75°=23+)22.(10分)问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.(1)在AB边上取点E,使AE=4,连接OA,OE;(2)在BC边上取点F,使BF=______,连接OF;(3)在CD边上取点G,使CG=______,连接OG;(4)在DA边上取点H,使DH=______,连接OH.由于AE=______+______=______+______=______+______=______.可证S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA.23.(12分)先化简:(1111x x--+)÷221xx,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值.24.(14分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可. 【题目详解】∵D(0,3),C(4,0),∴OD=3,OC=4,∵∠COD=90°,∴CD=2234+=5,连接CD,如图所示:∵∠OBD=∠OCD,∴cos∠OBD=cos∠OCD=45 OCCD=.故选:C.【题目点拨】本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.【解题分析】如图,运用矩形的性质首先证明CN=3,∠C=90°;运用翻折变换的性质证明BM=MN(设为λ),运用勾股定理列出关于λ的方程,求出λ,即可解决问题.【题目详解】如图,由题意得:BM=MN(设为λ),CN=DN=3;∵四边形ABCD为矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五边形ABMND的周长=6+5+5+3+9=28,故选A.【题目点拨】该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答.3、C【解题分析】如图:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,故选C.点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.4、C【解题分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【题目详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢。
甘肃省平凉市重点达标名校2024届中考数学押题试卷含解析

甘肃省平凉市重点达标名校2024届中考数学押题试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,已知D 是ABC 中的边BC 上的一点,BAD C ∠=∠,ABC ∠的平分线交边AC 于E ,交AD 于F ,那么下列结论中错误的是( )A .△BAC ∽△BDAB .△BFA ∽△BEC C .△BDF ∽△BECD .△BDF ∽△BAE 2.若x >y ,则下列式子错误的是( )A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x+3>y+3D .x y >333.如图所示,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF ,若∠ABE=20°,那么∠EFC′的度数为( )A .115°B .120°C .125°D .130°4.已知3a ﹣2b=1,则代数式5﹣6a+4b 的值是( )A .4B .3C .﹣1D .﹣35.﹣0.2的相反数是( ) A .0.2 B .±0.2 C .﹣0.2 D .26.如图,直线 AB 与▱ MNPQ 的四边所在直线分别交于 A 、B 、C 、D ,则图中的相似三角形有( )A .4 对B .5 对C .6 对D .7 对7.根据《九章算术》的记载中国人最早使用负数,下列负数中最大的是( )A .-1B .-C .D .–π 8.若分式14a -有意义,则a 的取值范围为( ) A .a≠4 B .a >4 C .a <4 D .a =49.下列四个几何体,正视图与其它三个不同的几何体是( )A .B .C .D .10.已知线段AB=8cm ,点C 是直线AB 上一点,BC=2cm ,若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度为( )A .5cmB .5cm 或3cmC .7cm 或3cmD .7cm二、填空题(共7小题,每小题3分,满分21分)11.在Rt △ABC 中,∠C =90°,AB =2,BC =3,则sin 2A =_____. 12.若实数m 、n 在数轴上的位置如图所示,则(m+n )(m-n )________ 0,(填“>”、“<”或“=”)13.分式213a b 与21a b的最简公分母是_____. 14.计算:(π﹣3)0+(﹣13)﹣1=_____. 15.因式分解:212x x --= .16.如图,在等腰直角三角形ABC 中,∠C=90°,点D 为AB 的中点,已知扇形EAD 和扇形FBD 的圆心分别为点A 、点B ,且AB=4,则图中阴影部分的面积为_____(结果保留π).17.如图,有一块边长为4的正方形塑料模板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点,两条直角边分别与CD 交于点F ,与CB 延长线交于点E .则四边形AECF 的面积是 .三、解答题(共7小题,满分69分)18.(10分)今年深圳“读书月”期间,某书店将每本成本为30元的一批图书,以40元的单价出售时,每天的销售量是300本.已知在每本涨价幅度不超过10元的情况下,若每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元.请解答以下问题:(1)填空:每天可售出书 本(用含x 的代数式表示);(2)若书店想通过售出这批图书每天获得3750元的利润,应涨价多少元?19.(5分)如图,抛物线2y ax bx c =++()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x =–1,P 为抛物线上第二象限的一个动点.(1)求抛物线的解析式并写出其顶点坐标;(2)当点P 的纵坐标为2时,求点P 的横坐标;(3)当点P 在运动过程中,求四边形PABC 面积最大时的值及此时点P 的坐标.20.(8分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?21.(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段 频次 频率 A 60≤x <70 17 0.17B 70≤x <80 30 a C80≤x <90 b 0.45 D 90≤x <100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B 组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.22.(10分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m 3,求该市今年居民用水的价格.23.(12分)P 是C 外一点,若射线PC 交C 于点A ,B 两点,则给出如下定义:若0PA PB 3<⋅≤,则点P 为C的“特征点”. ()1当O 的半径为1时.①在点()1P 2,0、()2P 0,2、()3P 4,0中,O 的“特征点”是______; ②点P 在直线y x b =+上,若点P 为O 的“特征点”.求b 的取值范围;()2C 的圆心在x 轴上,半径为1,直线y x 1=+与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是C 的“特征点”,直接写出点C 的横坐标的取值范围.24.(14分)(12sin45°+(2﹣π)0﹣(13)﹣1;(2)先化简,再求值2a a ab•(a 2﹣b 2),其中a ,b =﹣.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】根据相似三角形的判定,采用排除法,逐项分析判断.【题目详解】∵∠BAD=∠C ,∠B=∠B ,∴△BAC ∽△BDA .故A 正确.∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∴△BFA ∽△BEC .故B 正确.∴∠BFA=∠BEC ,∴∠BFD=∠BEA ,∴△BDF ∽△BAE .故D 正确.而不能证明△BDF ∽△BEC ,故C 错误.故选C .【题目点拨】本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.2、B【解题分析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A 、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.3、C【解题分析】分析:由已知条件易得∠AEB=70°,由此可得∠DEB=110°,结合折叠的性质可得∠DEF=55°,则由AD∥BC可得∠EFC=125°,再由折叠的性质即可得到∠EFC′=125°.详解:∵在△ABE中,∠A=90°,∠ABE=20°,∴∠AEB=70°,∴∠DEB=180°-70°=110°,∵点D沿EF折叠后与点B重合,∴∠DEF=∠BEF=12∠DEB=55°,∵在矩形ABCD中,AD∥BC,∴∠DEF+∠EFC=180°,∴∠EFC=180°-55°=125°,∴由折叠的性质可得∠EFC′=∠EFC=125°.故选C.点睛:这是一道有关矩形折叠的问题,熟悉“矩形的四个内角都是直角”和“折叠的性质”是正确解答本题的关键.4、B【解题分析】先变形,再整体代入,即可求出答案.【题目详解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故选:B.【题目点拨】本题考查了求代数式的值,能够整体代入是解此题的关键.【解题分析】根据相反数的定义进行解答即可.【题目详解】负数的相反数是它的绝对值,所以﹣0.2的相反数是0.2.故选A.【题目点拨】本题主要考查相反数的定义,熟练掌握这个知识点是解题关键.6、C【解题分析】由题意,AQ∥NP,MN∥BQ,∴△ACM∽△DCN,△CDN∽△BDP,△BPD∽△BQA,△ACM∽△ABQ,△DCN∽△ABQ,△ACM∽△DBP,所以图中共有六对相似三角形.故选C.7、B【解题分析】根据两个负数,绝对值大的反而小比较.【题目详解】解:∵−>−1>−>−π,∴负数中最大的是−.故选:B.【题目点拨】本题考查了实数大小的比较,解题的关键是知道正数大于0,0大于负数,两个负数,绝对值大的反而小.8、A【解题分析】分式有意义时,分母a-4≠0【题目详解】依题意得:a−4≠0,解得a≠4.故选:A【题目点拨】此题考查分式有意义的条件,难度不大【解题分析】根据几何体的三视图画法先画出物体的正视图再解答.【题目详解】解:A、B、D三个几何体的主视图是由左上一个正方形、下方两个正方形构成的,而C选项的几何体是由上方2个正方形、下方2个正方形构成的,故选:C.【题目点拨】此题重点考查学生对几何体三视图的理解,掌握几何体的主视图是解题的关键. 10、B【解题分析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C 在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.二、填空题(共7小题,每小题3分,满分21分)11、1 2【解题分析】根据∠A 的正弦求出∠A =60°,再根据30°的正弦值求解即可.【题目详解】解:∵sin BC A AB == ∴∠A =60°, ∴1sinsin 3022A ︒==. 故答案为12. 【题目点拨】本题考查了特殊角的三角函数值,熟记30°、45°、60°角的三角函数值是解题的关键.12、>【解题分析】根据数轴可以确定m 、n 的大小关系,根据加法以及减法的法则确定m +n 以及m−n 的符号,可得结果.【题目详解】解:根据题意得:m <1<n ,且|m|>|n|,∴m +n <1,m−n <1,∴(m +n )(m−n )>1.故答案为>.【题目点拨】本题考查了整式的加减和数轴,熟练掌握运算法则是解题的关键.13、3a 2b【解题分析】利用取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母求解即可.【题目详解】 分式213a b 与21a b的最简公分母是3a 2b .故答案为3a 2b . 【题目点拨】本题考查最简公分母,解题的关键是掌握求最简公分母的方法.14、-1【解题分析】先计算0指数幂和负指数幂,再相减.【题目详解】(π﹣3)0+(﹣13)﹣1, =1﹣3,=﹣1,故答案是:﹣1.【题目点拨】考查了0指数幂和负指数幂,解题关键是运用任意数的0次幂为1,a -1=1a . 15、()()34x x +-;【解题分析】根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【题目详解】x 2﹣x ﹣12=(x ﹣4)(x +3).故答案为(x ﹣4)(x +3).16、4﹣π【解题分析】由在等腰直角三角形ABC 中,∠C=90°,AB=4,可求得直角边AC 与BC 的长,继而求得△ABC 的面积,又由扇形的面积公式求得扇形EAD 和扇形FBD 的面积,继而求得答案.【题目详解】解:∵在等腰直角三角形ABC 中,∠C=90°,AB=4,∴ ∴S △ABC =12AC•BC=4, ∵点D 为AB 的中点,∴AD=BD=12AB=2, ∴S 扇形EAD =S 扇形FBD =45360×π×22=12π, ∴S 阴影=S △ABC ﹣S 扇形EAD ﹣S 扇形FBD =4﹣π.故答案为:4﹣π.【题目点拨】此题考查了等腰直角三角形的性质以及扇形的面积.注意S 阴影=S △ABC ﹣S 扇形EAD ﹣S 扇形FBD .17、1【解题分析】∵四边形ABCD 为正方形,∴∠D=∠ABC=90°,AD=AB ,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE ,∴△AEB ≌△AFD ,∴S △AEB =S △AFD ,∴它们都加上四边形ABCF 的面积,可得到四边形AECF 的面积=正方形的面积=1.三、解答题(共7小题,满分69分)18、(1)(300﹣10x ).(2)每本书应涨价5元.【解题分析】试题分析:(1)每本涨价1元,则每天就会少售出10本,设每本书上涨了x 元,则每天就会少售出10x 本,所以每天可售出书(300﹣10x )本;(2)根据每本图书的利润×每天销售图书的数量=总利润列出方程,解方程即可求解. 试题解析:(1)∵每本书上涨了x 元,∴每天可售出书(300﹣10x )本.故答案为300﹣10x .(2)设每本书上涨了x 元(x≤10),根据题意得:(40﹣30+x )(300﹣10x )=3750,整理,得:x 2﹣20x+75=0,解得:x 1=5,x 2=15(不合题意,舍去).答:若书店想每天获得3750元的利润,每本书应涨价5元.19、(1)二次函数的解析式为223y x x =--+,顶点坐标为(–1,4);(2)点P 横坐标为–1;(3)当3x 2=-时,四边形PABC 的面积有最大值758,点P (31524-,). 【解题分析】 试题分析: (1)已知抛物线2y ax bx c =++ ()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x =﹣1,由此列出方程组,解方程组求得a 、b 、c 的值,即可得抛物线的解析式,把解析式化为顶点式,直接写出顶点坐标即可;(2)把y=2代入解析式,解方程求得x 的值,即可得点P 的横坐标,从而求得点P 的坐标;(3)设点P(x ,y ),则2--23y x x =+ ,根据OBC OAP OPC BCPA S S S S ∆∆∆=++四边形得出四边形PABC 与x 之间的函数关系式,利用二次函数的性质求得x 的值,即可求得点P 的坐标.试题解析:(1)∵抛物线2y ax bx c =++ ()0a ≠与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,3),其对称轴l 为x =﹣1,∴0312a b c c b a⎧⎪++=⎪=⎨⎪⎪-=-⎩ , 解得:123a b c =-⎧⎪=-⎨⎪=⎩,∴二次函数的解析式为2--23y x x =+ =()214x -++,∴顶点坐标为(﹣1,4)(2)设点P (x ,2),即2--23y x x =+=2,解得1x﹣1(舍去)或2x =1,∴点P﹣1,2).(3)设点P(x ,y ),则2--23y x x =+ , OBC OAP OPC BCPA S S S S ∆∆∆=++四边形,∴ 2339332222BCPAS x x x =--+-四边形=23375228x ⎛⎫-++ ⎪⎝⎭ ∴当32x =-时,四边形PABC 的面积有最大值758. 所以点P (315,24-). 点睛:本题是二次函数综合题,主要考查学生对二次函数解决动点问题综合运用能力,动点问题为中考常考题型,注意培养数形结合思想,培养综合分析归纳能力,解决这类问题要会建立二次函数模型,利用二次函数的性质解决问题.20、(1)35元/盒;(2)20%.【解题分析】试题分析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设年增长率为m ,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m 的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x 元/盒,则2016年这种礼盒的进价为(x ﹣11)元/盒,根据题意得:3500240011x x =-,解得:x=35,经检验,x=35是原方程的解. 答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m ,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a )2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.21、(1)0.3 ,45;(2)108°;(3)16. 【解题分析】(1)首先根据A 组频数及其频率可得总人数,再利用频数、频率之间的关系求得a 、b ;(2)B 组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【题目详解】(1)本次调查的总人数为17÷0.17=100(人),则a =30100=0.3,b =100×0.45=45(人). 故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B 组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A 、B ,另外两学生记为C 、D ,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16. 【题目点拨】 本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22、2.4元/米3【解题分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m 3,进而得出等式即可.【题目详解】解:设去年用水的价格每立方米x 元,则今年用水价格为每立方米1.2x 元 由题意列方程得:301551.2x x-= 解得x 2=经检验,x 2=是原方程的解 1.2x 2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【题目点拨】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.23、(1)①)1P 、()2P 0,2;②b -≤≤(2)m 1>或,m 1<-. 【解题分析】()1①据若03PA PB <⋅≤,则点P 为C 的“特征点”,可得答案;②根据若03PA PB <⋅≤,则点P 为C 的“特征点”,可得2m ≤,根据等腰直角三角形的性质,可得答案; ()2根据垂线段最短,可得PC 最短,根据等腰直角三角形的性质,可得CM =,根据若03PA PB <⋅≤,则点P 为C 的“特征点”,可得答案.【题目详解】解:()))1PA PB 11211①⋅=⨯=-=,0PA PB 3∴<⋅≤,点)1P 是O 的“特征点”; ()()PA PB 212131⋅=-⨯+==,0PA PB 3∴<⋅≤,点()2P 0,?2是O 的“特征点”;()()PA PB 414115⋅=-⨯+=,PA PB 3∴⋅>,点()3P 4,0不是O 的“特征点”;故答案为)1P 、()2P 0,2②如图1,在y x b =+上,若存在O 的“特征点”点P ,点O 到直线y x b =+的距离m 2≤.直线1y x b =+交y 轴于点E ,过O 作OH ⊥直线1y x b =+于点H .因为OH 2=.在Rt DOE 中,可知OE 22=. 可得1b 2 2.=同理可得2b 22=-.b ∴的取值范围是:22b 2 2.-≤≤()2如图2,设C 点坐标为()m,0,直线y x 1=+,CMP 45∠∴=.PC MN ⊥,CPM 90∠∴=,MC 2PC ∴=,2PC =. MC m 1=+.()22PC MC m 122==+ ()2PA PC 1m 112=-=+-,()2PB PC 1m 112=+=++ 线段MN 上的所有点都不是C 的“特征点”,PA PB 3∴⋅>,即()()2221m 11m 11(m 1)13222⎡⎤⎡⎤+-++=+->⎢⎥⎢⎥⎣⎦⎣⎦, 解得m 221>-或m 221<--,点C 的横坐标的取值范围是m 221>-或,m 221<--.故答案为 :(1)①()1P 2,0、()2P 0,2;②22b 22-≤≤;(2)m 221>-或,m 221<--. 【题目点拨】本题考查一次函数综合题,解()1①的关键是利用若03PA PB <⋅≤,则点P 为C 的“特征点”;解()1②的关键是利用等腰直角三角形的性质得出OE 的长;解()2的关键是利用等腰直角三角形的性质得出()22122PC MC m ==+,又利用了3PA PB ⋅>. 24、 (1)2-2 (2)-2【解题分析】试题分析:(1)将原式第一项被开方数8变为4×2,利用二次根式的性质化简第二项利用特殊角的三角函数值化简,第三项利用零指数公式化简,最后一项利用负指数公式化简,把所得的结果合并即可得到最后结果;(2)先把2a ab -和a 2﹣b 2分解因式约分化简,然后将a 和b 的值代入化简后的式子中计算,即可得到原式的值. 解:(1)﹣2sin45°+(2﹣π)0﹣()﹣1 =2﹣2×+1﹣3 =2﹣+1﹣3 =﹣2;(2)•(a 2﹣b 2)=•(a+b )(a ﹣b )=a+b,当a=,b=﹣2时,原式=+(﹣2)=﹣.。
甘肃省永昌六中学2024届中考数学最后冲刺模拟试卷含解析

甘肃省永昌六中学2024届中考数学最后冲刺模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.-64的立方根是( )A.-8 B.-4 C.-2 D.不存在2.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为()A.9.5×106B.9.5×107C.9.5×108D.9.5×1093.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是( )A.DEBC=23B.DEBC=25C.AEAC=23D.AEAC=254.若a+b=3,,则ab等于()A.2 B.1 C.﹣2 D.﹣15.关于x的不等式组312(1)x mx x-<⎧⎨->-⎩无解,那么m的取值范围为( )A.m≤-1 B.m<-1 C.-1<m≤0D.-1≤m<06.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣77.下列各数中是有理数的是()A.πB.0 C2D358.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A.B.C.D.9.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是() A.8 B.9 C.10 D.1210.在平面直角坐标系中,位于第二象限的点是()A.(﹣1,0)B.(﹣2,﹣3)C.(2,﹣1)D.(﹣3,1)二、填空题(本大题共6个小题,每小题3分,共18分)11.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.12.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.13.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲度.14.如图,已知AB∥CD,F为CD上一点,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度数为整数,则∠C的度数为_____.15.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.16.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km1,该数据用科学记数法表示为__________km1.三、解答题(共8题,共72分)17.(8分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=1.求抛物线的函数表达式.当t为何值时,矩形ABCD的周长有最大值?最大值是多少?保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.18.(8分)解分式方程:33x-1=13-x19.(8分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣12x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b=,c=,点C的坐标为.如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ 的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA 的面积.20.(8分)某生姜种植基地计划种植A,B两种生姜30亩.已知A,B两种生姜的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8元/千克、7元/千克.(1)若该基地收获两种生姜的年总产量为68000千克,求A,B两种生姜各种多少亩?(2)若要求种植A种生姜的亩数不少于B种的一半,那么种植A,B两种生姜各多少亩时,全部收购该基地生姜的年总收入最多?最多是多少元?21.(8分)如图,已知矩形ABCD中,连接AC,请利用尺规作图法在对角线AC上求作一点E使得△ABC∽△CDE.(保留作图痕迹不写作法)22.(10分)填空并解答:某单位开设了一个窗口办理业务,并按顾客“先到达,先办理”的方式服务,该窗口每2分钟服务一位顾客.已知早上8:00上班窗口开始工作时,已经有6位顾客在等待,在窗口工作1分钟后,又有一位“新顾客”到达,且以后每5分钟就有一位“新顾客”到达.该单位上午8:00上班,中午11:30下班.(1)问哪一位“新顾客”是第一个不需要排队的?分析:可设原有的6为顾客分别为a1、a2、a3、a4、a5、a6,“新顾客”为c1、c2、c3、c4….窗口开始工作记为0时刻.a1a2a3a4a5a6c1c2c3c4…到达窗口时刻0 0 0 0 0 0 1 6 11 16 …服务开始时刻0 2 4 6 8 10 12 14 16 18 …每人服务时长 2 2 2 2 2 2 2 2 2 2 …服务结束时刻 2 4 6 8 10 12 14 16 18 20 …根据上述表格,则第位,“新顾客”是第一个不需要排队的.(2)若其他条件不变,若窗口每a分钟办理一个客户(a为正整数),则当a最小取什么值时,窗口排队现象不可能消失.分析:第n个“新顾客”到达窗口时刻为,第(n﹣1)个“新顾客”服务结束的时刻为.23.(12分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1 m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.73232≈1.414)24.某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x =70时,y =80;x =60时,y =1.在销售过程中,每天还要支付其他费用350元.求y 与x 的函数关系式,并写出自变量x 的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?参考答案一、选择题(共10小题,每小题3分,共30分) 1、C 【解题分析】分析:首先求出64的值,然后根据立方根的计算法则得出答案. 详解:∵648=-,()328-=-, ∴64的立方根为-2,故选C .点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键. 2、B 【解题分析】试题分析: 15000000=1.5×2.故选B . 考点:科学记数法—表示较大的数 3、D 【解题分析】根据平行线分线段成比例定理的逆定理,当AD AE DB EC =或AD AEAB AC=时,DE BD ,然后可对各选项进行判断.【题目详解】解:当AD AE DB EC =或AD AEAB AC =时,DE BD , 即23AE EC =或25AE AC =. 所以D 选项是正确的. 【题目点拨】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理. 4、B 【解题分析】 ∵a+b=3, ∴(a+b )2=9 ∴a 2+2ab+b 2=9 ∵a 2+b 2=7∴7+2ab=9,7+2ab=9 ∴ab=1. 故选B .考点:完全平方公式;整体代入. 5、A 【解题分析】【分析】先求出每一个不等式的解集,然后再根据不等式组无解得到有关m 的不等式,就可以求出m 的取值范围了. 【题目详解】()03121x m x x -<⎧⎪⎨->-⎪⎩①②,解不等式①得:x<m , 解不等式②得:x>-1,由于原不等式组无解,所以m≤-1, 故选A.【题目点拨】本题考查了一元一次不等式组无解问题,熟知一元一次不等式组解集的确定方法“大大取大,小小取小,大小小大中间找,大大小小无处找”是解题的关键. 6、C 【解题分析】先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.【题目详解】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C.【题目点拨】本题主要考查函数值,解题的关键是掌握函数值的计算方法.7、B【解题分析】【分析】根据有理数是有限小数或无限循环小数,结合无理数的定义进行判断即可得答案.【题目详解】A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C是无理数,故本选项错误;D故选B.【题目点拨】本题考查了实数的分类,熟知有理数是有限小数或无限循环小数是解题的关键.8、C【解题分析】根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.【题目详解】解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.【题目点拨】考查下三视图的概念; 主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形;9、A【解题分析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8, 故选A .考点:多边形内角与外角. 10、D 【解题分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可. 【题目详解】根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C (﹣3,1)符合,故选:D . 【题目点拨】本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.二、填空题(本大题共6个小题,每小题3分,共18分) 11、214【解题分析】先由根与系数的关系得:两根和与两根积,再将m 2+n 2进行变形,化成和或积的形式,代入即可. 【题目详解】由根与系数的关系得:m+n=52,mn=12,∴m 2+n 2=(m+n )2-2mn=(52)2-2×12=214,故答案为:214. 【题目点拨】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如1211x x 、x 12+x 22等等,本题是常考题型,利用完全平方公式进行转化.12、20 【解题分析】利用频率估计概率,设原来红球个数为x 个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x 的方程,解方程即可得. 【题目详解】设原来红球个数为x个,则有1010x+=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【题目点拨】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.13、1.【解题分析】由PA、PB是圆O的切线,根据切线长定理得到PA=PB,即三角形APB为等腰三角形,由顶角的度数,利用三角形的内角和定理求出底角的度数,再由AP为圆O的切线,得到OA与AP垂直,根据垂直的定义得到∠OAP为直角,再由∠OAP-∠PAB即可求出∠BAC的度数【题目详解】∵PA,PB是⊙O是切线,∴PA=PB.又∵∠P=46°,∴∠PAB=∠PBA=000 18046=672-.又∵PA是⊙O是切线,AO为半径,∴OA⊥AP.∴∠OAP=90°.∴∠BAC=∠OAP﹣∠PAB=90°﹣67°=1°.故答案为:1【题目点拨】此题考查了切线的性质,切线长定理,等腰三角形的性质,以及三角形的内角和定理,熟练掌握定理及性质是解本题的关键.14、36°或37°.【解题分析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB ∥CD , ∴GE ∥CD ,∴∠BAE=∠AEG ,∠DFE=∠GEF , ∴∠AEF=∠BAE+∠DFE , 设∠CEF=x ,则∠AEC=2x , ∴x+2x=∠BAE+60°, ∴∠BAE=3x-60°, 又∵6°<∠BAE <15°, ∴6°<3x-60°<15°, 解得22°<x <25°,又∵∠DFE 是△CEF 的外角,∠C 的度数为整数, ∴∠C=60°-23°=37°或∠C=60°-24°=36°, 故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等. 15、4610 【解题分析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【题目详解】60000小数点向左移动4位得到6,所以60000用科学记数法表示为:6×1, 故答案为:6×1. 【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 16、1.267×102 【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于126700有6位,所以可以确定n=6﹣1=2.【题目详解】解:126 700=1.267×102. 故答案为1.267×102. 【题目点拨】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键.三、解答题(共8题,共72分)17、(1)21542y x x =-+;(2)当t=1时,矩形ABCD 的周长有最大值,最大值为412;(3)抛物线向右平移的距离是1个单位.【解题分析】(1)由点E 的坐标设抛物线的交点式,再把点D 的坐标(2,1)代入计算可得;(2)由抛物线的对称性得BE=OA=t ,据此知AB=10-2t ,再由x=t 时AD=21542t t -+,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A 、B 、C 、D 及对角线交点P 的坐标,由直线GH 平分矩形的面积知直线GH 必过点P ,根据AB ∥CD知线段OD 平移后得到的线段是GH ,由线段OD 的中点Q 平移后的对应点是P 知PQ 是△OBD 中位线,据此可得.【题目详解】(1)设抛物线解析式为()10y ax x =-,当2t =时,4AD =, ∴点D 的坐标为()2,4,∴将点D 坐标代入解析式得164a -=, 解得:14a =-, 抛物线的函数表达式为21542y x x =-+; (2)由抛物线的对称性得BE OA t ==,102AB t ∴=-,当x t =时,21542AD t t =-+, ∴矩形ABCD 的周长()2AB AD =+()215210242t t t ⎡⎤⎛⎫=-+-+ ⎪⎢⎥⎝⎭⎣⎦, 21202t t =-++, ()2141122t =--+, 102-<, ∴当1t =时,矩形ABCD 的周长有最大值,最大值为412; (3)如图,当2t =时,点A 、B 、C 、D 的坐标分别为()2,0、()8,0、()8,4、()2,4,∴矩形ABCD 对角线的交点P 的坐标为()5,2,直线GH 平分矩形的面积,∴点P 是GH 和BD 的中点,DP PB ∴=,由平移知,//PQ OBPQ ∴是ODB ∆的中位线,142PQ OB ∴==, 所以抛物线向右平移的距离是1个单位.【题目点拨】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.18、7【解题分析】根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.【题目详解】33 x--1=13x-3-(x-3)=-13-x+3=-1x=7【题目点拨】此题主要考查分式方程的求解,解题的关键是正确去掉分母.19、(3)3,2,C(﹣2,4);(2)y=﹣18m2+12m ,PQ与OQ的比值的最大值为12;(3)S△PBA=3.【解题分析】(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标.(2)分别过P、Q两点向x轴作垂线,通过PQ与OQ的比值为y以及平行线分线段成比例,找到PQ EDOQ OD=,设点P坐标为(m,-12m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用PE QDOE OD=即可求解.(3)求得P点坐标,利用图形割补法求解即可.【题目详解】(3)∵直线y=﹣x+2与x轴交于点A,与y轴交于点B.∴A(2,4),B(4,2).又∵抛物线过B(4,2)∴c=2.把A(2,4)代入y=﹣x2+bx+2得,4=﹣12×22+2b+2,解得,b=3.∴抛物线解析式为,y=﹣12x2+x+2.令﹣12x2+x+2=4,解得,x=﹣2或x=2.∴C(﹣2,4).(2)如图3,分别过P 、Q 作PE 、QD 垂直于x 轴交x 轴于点E 、D .设P (m ,﹣12m 2+m+2),Q (n ,﹣n+2), 则PE =﹣12m 2+m+2,QD =﹣n+2. 又∵PQ m n OQ n-==y . ∴n =1m y +. 又∵PE OE QD OD =,即24124m m nm n =-+++ 把n =1m y +代入上式得, 2412411m m m y m m y ++=++-+整理得,2y =﹣12m 2+2m . ∴y =﹣12m 2+12m . y max =210()121248-=⎛⎫⨯ ⎪⎝⎭. 即PQ 与OQ 的比值的最大值为12. (3)如图2,∵∠OBA=∠OBP+∠PBA=25°∠PBA+∠CBO=25°∴∠OBP=∠CBO此时PB过点(2,4).设直线PB解析式为,y=kx+2.把点(2,4)代入上式得,4=2k+2.解得,k=﹣2∴直线PB解析式为,y=﹣2x+2.令﹣2x+2=﹣12x2+x+2整理得,12x2﹣3x=4.解得,x=4(舍去)或x=5.当x=5时,﹣2x+2=﹣2×5+2=﹣7 ∴P(5,﹣7).过P作PH⊥cy轴于点H.则S四边形OHPA=12(OA+PH)•OH=12(2+5)×7=24.S△OAB=12OA•OB=12×2×2=7.S△BHP=12PH•BH=12×5×3=35.∴S△PBA=S四边形OHPA+S△OAB﹣S△BHP=24+7﹣35=3.【题目点拨】本题考查了函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力.还考查了运用图形割补法求解坐标系内图形的面积的方法.20、(1)种植A种生姜14亩,种植B种生姜16亩;(2) 种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.试题分析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据:A种生姜的产量+B种生姜的产量=总产量,列方程求解;(2)设A种生姜x亩,根据A种生姜的亩数不少于B种的一半,列不等式求x的取值范围,再根据(1)的等量关系列出函数关系式,在x的取值范围内求总产量的最大值.试题解析:(1)设该基地种植A种生姜x亩,那么种植B种生姜(30-x)亩,根据题意,2000x+2500(30-x)=68000,解得x=14,∴30-x=16,答:种植A种生姜14亩,种植B种生姜16亩;(2)由题意得,x≥(30-x),解得x≥10,设全部收购该基地生姜的年总收入为y元,则y=8×2000x+7×2500(30-x)=-1500x+525000,∵y随x的增大而减小,∴当x=10时,y有最大值,此时,30-x=20,y的最大值为510000元,答:种植A种生姜10亩,种植B种生姜20亩时,全部收购该基地生姜的年总收入最多,最多为510000元.【题目点拨】本题考查了一次函数的应用.关键是根据总产量=A种生姜的产量+B种生姜的产量,列方程或函数关系式.21、详见解析【解题分析】利用尺规过D作DE⊥AC,,交AC于E,即可使得△ABC∽△CDE.【题目详解】解:过D作DE⊥AC,如图所示,△CDE即为所求:【题目点拨】本题主要考查了尺规作图,相似三角形的判定,解决问题的关键是掌握相似三角形的判定方法.22、(1)5;(2)5n﹣4,na+6a.(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,则第n个“新顾客”到达窗口时刻为5n﹣4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a.【题目详解】(1)第5位,“新顾客”到达时间是20分钟,第11位顾客结束服务的时间是20分钟,所以第5位“新顾客”是第一个不需要排队的;故答案为:5;(2)由表格中信息可得,“新顾客”到达时间为1,6,11,16,…,∴第n个“新顾客”到达窗口时刻为5n﹣4,由表格可知,“新顾客”服务开始的时间为6a,7a,8a,…,∴第n个“新顾客”服务开始的时间为(6+n)a,∴第n﹣1个“新顾客”服务开始的时间为(6+n﹣1)a=(5+n)a,∵每a分钟办理一个客户,∴第n﹣1个“新顾客”服务结束的时间为(5+n)a+a=na+6a,故答案为:5n﹣4,na+6a.【题目点拨】本题考查了列代数式,用代数式表示数的规律,解题关键是要读懂题目的意思,根据题目给出的条件,寻找规律,列出代数式.23、(1)∠FHE=60°;(2)篮板顶端 F 到地面的距离是4.4 米.【解题分析】(1)直接利用锐角三角函数关系得出cos∠FHE=12HEHF=,进而得出答案;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【题目详解】(1 )由题意可得:cos∠FHE=12HEHF=,则∠FHE=60°;(2)延长FE 交CB 的延长线于M,过 A 作AG⊥FM 于G,在Rt△ABC 中,tan∠ACB=AB BC,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF 中,∵∠FAG=∠FHE=60°,sin∠FAG=FG AF,∴sin60°=2.5FG3∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:篮板顶端 F 到地面的距离是4.4 米.【题目点拨】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义. 24、(1) y=﹣2x+220(40≤x≤70);(2) w=﹣2x2+300x﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.【解题分析】(1)根据y与x成一次函数解析式,设为y=kx+b(k≠0),把x与y的两对值代入求出k与b的值,即可确定出y 与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量,列出w关于x的二次函数解析式即可;(3)利用二次函数的性质求出w的最大值,以及此时x的值即可.【题目详解】(1)设y=kx+b(k≠0),根据题意得7080 60100k bk b+=⎧⎨+=⎩,解得:k=﹣2,b=220,∴y=﹣2x+220(40≤x≤70);(2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;(3)w=﹣2(x﹣75)2+21,∵40≤x≤70,∴x=70时,w有最大值为w=﹣2×25+21=2050元,∴当销售单价为70元时,该公司日获利最大,为2050元.【题目点拨】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.。
2024届甘肃省张掖市高台县中考数学押题试卷含解析

2024届甘肃省张掖市高台县中考数学押题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( ) A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣52.下列方程中,没有实数根的是( ) A .x 2﹣2x =0B .x 2﹣2x ﹣1=0C .x 2﹣2x +1 =0D .x 2﹣2x +2=03.如图,线段AB 是直线y=4x+2的一部分,点A 是直线与y 轴的交点,点B 的纵坐标为6,曲线BC 是双曲线y=kx的一部分,点C 的横坐标为6,由点C 开始不断重复“A ﹣B ﹣C”的过程,形成一组波浪线.点P (2017,m )与Q (2020,n )均在该波浪线上,分别过P 、Q 两点向x 轴作垂线段,垂足为点D 和E ,则四边形PDEQ 的面积是( )A .10B .212C .454D .154.如图,小明为了测量河宽AB ,先在BA 延长线上取一点D ,再在同岸取一点C ,测得∠CAD=60°,∠BCA=30°,AC=15 m ,那么河AB 宽为( )A .15 mB .53 mC .3mD .123m5.下列说法正确的是( )A .掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B .甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是2=0.4S 甲,2=0.6S 乙,则甲的射击成绩较稳定C .“明天降雨的概率为12”,表示明天有半天都在降雨 D .了解一批电视机的使用寿命,适合用普查的方式6.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=40°,则∠2的度数为( )A .50°B .40°C .30°D .25°7.整数a 、b 在数轴上对应点的位置如图,实数c 在数轴上且满足a c b ≤≤,如果数轴上有一实数d ,始终满足0c d +≥,则实数d 应满足( ).A .d a ≤B .a d b ≤≤C .d b ≤D .d b ≥8.下列性质中菱形不一定具有的性质是( ) A .对角线互相平分 B .对角线互相垂直C .对角线相等D .既是轴对称图形又是中心对称图形9.已知一次函数y=kx+b 的图象如图,那么正比例函数y=kx 和反比例函数y=bx在同一坐标系中的图象的形状大致是( )A .B .C .D .10.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 二、填空题(本大题共6个小题,每小题3分,共18分) 11.正十二边形每个内角的度数为 .12.如图,若点 A 的坐标为 (3 ,则 sin 1∠ =________.13.抛物线y=(x﹣3)2+1的顶点坐标是____.14.化简3m﹣2(m﹣n)的结果为_____.15.如图,在Rt△ABC中,∠ACB=90°,点D、E、F分别是AB、AC、BC的中点,若CD=5,则EF的长为________.16.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.三、解答题(共8题,共72分)17.(8分)如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.18.(8分)某初中学校举行毛笔书法大赛,对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:请将条形统计图补全;获得一等奖的同学中有14来自七年级,有14来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加市内毛笔书法大赛,请通过列表或画树状图求所选出的两人中既有七年级又有九年级同学的概率.19.(8分)已知抛物线y=ax2+bx+2过点A(5,0)和点B(﹣3,﹣4),与y轴交于点C.(1)求抛物线y=ax2+bx+2的函数表达式;(2)求直线BC的函数表达式;(3)点E是点B关于y轴的对称点,连接AE、BE,点P是折线EB﹣BC上的一个动点,①当点P在线段BC上时,连接EP,若EP⊥BC,请直接写出线段BP与线段AE的关系;②过点P作x轴的垂线与过点C作的y轴的垂线交于点M,当点M不与点C重合时,点M关于直线PC的对称点为点M′,如果点M′恰好在坐标轴上,请直接写出此时点P的坐标.20.(8分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB.求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.21.(8分)计算:(12)﹣2327+(﹣2)0+|2822.(10分)如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°画出旋转之后的△AB′C′;求线段AC旋转过程中扫过的扇形的面积.23.(12分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.24.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.(1)说明四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A . 考点:科学记数法—表示较小的数. 2、D 【解题分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可. 【题目详解】A 、△=(﹣2)2﹣4×1×0=4>0,方程有两个不相等的实数根,所以A 选项错误;B 、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不相等的实数根,所以B 选项错误;C 、△=(﹣2)2﹣4×1×1=0,方程有两个相等的实数根,所以C 选项错误;D 、△=(﹣2)2﹣4×1×2=﹣4<0,方程没有实数根,所以D 选项正确. 故选D . 3、C 【解题分析】A ,C 之间的距离为6,点Q 与点P 的水平距离为3,进而得到A ,B 之间的水平距离为1,且k=6,根据四边形PDEQ 的面积为()6 1.534524+⨯=,即可得到四边形PDEQ 的面积.【题目详解】A ,C 之间的距离为6,2017÷6=336…1,故点P 离x 轴的距离与点B 离x 轴的距离相同, 在y=4x+2中,当y=6时,x=1,即点P 离x 轴的距离为6, ∴m=6,2020﹣2017=3,故点Q 与点P 的水平距离为3, ∵6,1k=解得k=6, 双曲线6,y x= 1+3=4,63,42y == 即点Q 离x 轴的距离为32, ∴32n =,∵四边形PDEQ的面积是()6 1.534524+⨯=.故选:C.【题目点拨】考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大.4、A【解题分析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×32=1532,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=1532×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【题目点拨】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.5、B【解题分析】利用事件的分类、普查和抽样调查的特点、概率的意义以及方差的性质即可作出判断.【题目详解】解:A、掷一枚均匀的骰子,骰子停止转动后,6点朝上是可能事件,此选项错误;B、甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,此选项正确;C、“明天降雨的概率为12”,表示明天有可能降雨,此选项错误;D、解一批电视机的使用寿命,适合用抽查的方式,此选项错误;故选B.【题目点拨】本题考查方差;全面调查与抽样调查;随机事件;概率的意义,掌握基本概念是解题关键.6、A【解题分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【题目详解】如图,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故选A.【题目点拨】此题考查了平行线的性质.利用两直线平行,同位角相等是解此题的关键.7、D【解题分析】根据a≤c≤b,可得c的最小值是﹣1,根据有理数的加法,可得答案.【题目详解】由a≤c≤b,得:c最小值是﹣1,当c=﹣1时,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故选D.【题目点拨】本题考查了实数与数轴,利用a≤c≤b得出c的最小值是﹣1是解题的关键.8、C【解题分析】根据菱形的性质:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.【题目详解】解:A、菱形的对角线互相平分,此选项正确;B、菱形的对角线互相垂直,此选项正确;C、菱形的对角线不一定相等,此选项错误;D、菱形既是轴对称图形又是中心对称图形,此选项正确;故选C.考点:菱形的性质9、C【解题分析】试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=bx的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选C.考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系10、D【解题分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【题目详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【题目点拨】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.二、填空题(本大题共6个小题,每小题3分,共18分)11、150︒【解题分析】首先求得每个外角的度数,然后根据外角与相邻的内角互为邻补角即可求解.【题目详解】试题分析:正十二边形的每个外角的度数是:36012︒=30°,则每一个内角的度数是:180°﹣30°=150°.故答案为150°.12、3 2【解题分析】根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案.【题目详解】如图,由勾股定理,得:OA=22OB AB+=1.sin∠1=32ABOA=,故答案为32.13、(3,1)【解题分析】分析:已知抛物线解析式为顶点式,可直接写出顶点坐标.详解:∵y=(x﹣3)2+1为抛物线的顶点式,根据顶点式的坐标特点可知,抛物线的顶点坐标为(3,1).故答案为(3,1).点睛:主要考查了抛物线顶点式的运用.14、m+2n【解题分析】分析:先去括号,再合并同类项即可得.详解:原式=3m-2m+2n=m+2n,故答案为:m+2n.点睛:本题主要考查整式的加减,解题的关键是掌握去括号与合并同类项的法则.15、5【解题分析】已知CD是Rt△ABC斜边AB的中线,那么AB=2CD;EF是△ABC的中位线,则EF应等于AB的一半.【题目详解】∵△ABC是直角三角形,CD是斜边的中线,∴CD=12AB,又∵EF是△ABC的中位线,∴AB=2CD=2×5=10,∴EF=12×10=5.故答案为5.【题目点拨】本题主要考查三角形中位线定理,直角三角形斜边上的中线,熟悉掌握是关键.16、2.1【解题分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【题目详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:=10(cm),∴DO=1cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=2.1cm,故答案为2.1.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.三、解答题(共8题,共72分)17、(1)ab﹣4x1(1【解题分析】(1)边长为x 的正方形面积为x 1,矩形面积减去4个小正方形的面积即可.(1)依据剪去部分的面积等于剩余部分的面积,列方程求出x 的值即可.【题目详解】解:(1)ab ﹣4x 1.(1)依题意有:22ab 4x 4x -=,将a=6,b=4,代入上式,得x 1=2.解得x 1=3,x 1=3-(舍去). ∴正方形的边长为3.18、(1)答案见解析;(2)13. 【解题分析】【分析】(1)根据参与奖有10人,占比25%可求得获奖的总人数,用总人数减去二等奖、三等奖、鼓励奖、参与奖的人数可求得一等奖的人数,据此补全条形图即可;(2)根据题意分别求出七年级、八年级、九年级获得一等奖的人数,然后通过列表或画树状图法进行求解即可得.【题目详解】(1)10÷25%=40(人),获一等奖人数:40-8-6-12-10=4(人),补全条形图如图所示:(2)七年级获一等奖人数:4×14=1(人),八年级获一等奖人数:4×14=1(人),∴ 九年级获一等奖人数:4-1-1=2(人),七年级获一等奖的同学用M 表示,八年级获一等奖的同学用N 表示,九年级获一等奖的同学用P 1 、P 2表示,树状图如下:共有12种等可能结果,其中获得一等奖的既有七年级又有九年级人数的结果有4种,则所选出的两人中既有七年级又有九年级同学的概率P=41 123.【点评】此题考查了统计与概率综合,理解扇形统计图与条形统计图的意义及列表法或树状图法是解题关键.19、(1)y=﹣x2+x+2;(2)y=2x+2;(3)①线段BP与线段AE的关系是相互垂直;②点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).【解题分析】(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,即可求解;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b即可求解;(3)①AE直线的斜率k AE=2,而直线BC斜率的k AE=2即可求解;②考虑当P点在线段BC上时和在线段BE上时两种情况,利用PM′=PM即可求解.【题目详解】(1)将A(5,0)和点B(﹣3,﹣4)代入y=ax2+bx+2,解得:a=﹣,b=,故函数的表达式为y=﹣x2+x+2;(2)C点坐标为(0,2),把点B、C的坐标代入直线方程y=kx+b,解得:k=2,b=2,故:直线BC的函数表达式为y=2x+2,(3)①E是点B关于y轴的对称点,E坐标为(3,﹣4),则AE直线的斜率k AE=2,而直线BC斜率的k AE=2,∴AE∥BC,而EP⊥BC,∴BP⊥AE而BP=AE,∴线段BP与线段AE的关系是相互垂直;②设点P的横坐标为m,当P点在线段BC上时,P坐标为(m,2m+2),M坐标为(m,2),则PM=2m,直线MM′⊥BC,∴k MM′=﹣,直线MM′的方程为:y=﹣x+(2+m),则M′坐标为(0,2+m)或(4+m,0),由题意得:PM′=PM=2m,PM′2=42+m2=(2m)2,此式不成立,或PM′2=m2+(2m+2)2=(2m)2,解得:m=﹣4±2,故点P的坐标为(﹣4±2,﹣8±4);当P点在线段BE上时,点P坐标为(m,﹣4),点M坐标为(m,2),则PM=6,直线MM′的方程不变,为y=﹣x+(2+m),则M′坐标为(0,2+m)或(4+m,0),PM′2=m2+(6+m)2=(2m)2,解得:m=0,或﹣;或PM′2=42+42=(6)2,无解;故点P的坐标为(0,﹣4)或(﹣,﹣4);综上所述:点P的坐标为:(﹣4+2,﹣8+4)或(﹣4﹣2,﹣8﹣4)或(0,﹣4)或(﹣,﹣4).【题目点拨】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.20、(1)证明见解析;(2)证明见解析.【解题分析】(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.【题目详解】证明:(1)∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB.∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB.∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.∴AB=AD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.21、【解题分析】直接利用零指数幂的性质以及负指数幂的性质、绝对值的性质、二次根式以及立方根的运算法则分别化简得出答案.【题目详解】解:原式=4﹣﹣2=.【题目点拨】本题考查实数的运算,难点也在于对原式中零指数幂、负指数幂、绝对值、二次根式以及立方根的运算化简,关键要掌握这些知识点.22、.(1)见解析(2)【解题分析】(1)根据网格结构找出点B、C旋转后的对应点B′、C′的位置,然后顺次连接即可.(2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.【题目详解】解:(1)△AB′C′如图所示:(2)由图可知,AC=2,∴线段AC 旋转过程中扫过的扇形的面积2902360ππ⋅⋅==. 23、(1)AE=DF ,AE ⊥DF ,理由见解析;(2)成立,2或2;(3)51【解题分析】试题分析:(1)根据正方形的性质,由SAS 先证得△ADE ≌△DCF .由全等三角形的性质得AE=DF ,∠DAE=∠CDF ,再由等角的余角相等可得AE ⊥DF ;(2)有两种情况:①当AC=CE 时,设正方形ABCD 的边长为a ,由勾股定理求出2a 即可;②当AE=AC 时,设正方形的边长为a ,由勾股定理求出2a ,根据正方形的性质知∠ADC=90°,然后根据等腰三角形的性质得出DE=CD=a 即可;(3)由(1)(2)知:点P 的路径是一段以AD 为直径的圆,设AD 的中点为Q ,连接QC 交弧于点P ,此时CP 的长度最大,再由勾股定理可得QC 的长,再求CP 即可.试题解析:(1)AE=DF ,AE ⊥DF ,理由是:∵四边形ABCD 是正方形,∴AD=DC ,∠ADE=∠DCF=90°,∵动点E ,F 分别从D ,C 两点同时出发,以相同的速度在直线DC ,CB 上移动,∴DE=CF ,在△ADE 和△DCF 中 AD DC ADE DCF DE CF =⎧⎪∠=∠⎨⎪=⎩,∴ADE DCF ∆≅∆,∴AE=DF ,∠DAE=∠FDC ,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的结论还成立,有两种情况:①如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得,222==+=,AC CE a a a则:2:2==;CE CD a a②如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:222=+=,AC AE a a a∵四边形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=2或2;(3)∵点P 在运动中保持∠APD=90°,∴点P 的路径是以AD 为直径的圆,如图3,设AD 的中点为Q ,连接CQ 并延长交圆弧于点P ,此时CP 的长度最大,∵在Rt △QDC 中,2222215QC CD QD =+=+= ∴51CP QC QP =+=+,即线段CP 的最大值是51+.点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.24、(1)说明见解析;(2)当∠B=30°时,四边形ACEF 是菱形.理由见解析.【解题分析】试题分析:(1)证明△AEC ≌△EAF ,即可得到EF=CA ,根据两组对边分别相等的四边形是平行四边形即可判断; (2)当∠B=30°时,四边形ACEF 是菱形.根据直角三角形的性质,即可证得AC=EC ,根据菱形的定义即可判断. (1)证明:由题意知∠FDC=∠DCA=90°,∴EF ∥CA ,∴∠FEA=∠CAE ,∵AF=CE=AE ,∴∠F=∠FEA=∠CAE=∠ECA .在△AEC 和△EAF 中,∵∴△EAF ≌△AEC (AAS ),∴EF=CA ,∴四边形ACEF是平行四边形.(2)解:当∠B=30°时,四边形ACEF是菱形.理由如下:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE垂直平分BC,∴∠BDE=90°∴∠BDE=∠ACB∴ED∥AC又∵BD=DC∴DE是△ABC的中位线,∴E是AB的中点,∴BE=CE=AE,又∵AE=CE,∴AE=CE=AB,又∵AC=AB,∴AC=CE,∴四边形ACEF是菱形.考点:菱形的判定;全等三角形的判定与性质;线段垂直平分线的性质;平行四边形的判定.。
甘肃省平凉市铁路中学2024届中考猜题数学试卷含解析

甘肃省平凉市铁路中学2024年中考猜题数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y (单位:元)与一次性购买该书的数量x (单位:本)之间的函数关系如图所示,则下列结论错误的是( )A .一次性购买数量不超过10本时,销售价格为20元/本B .a =520C .一次性购买10本以上时,超过10本的那部分书的价格打八折D .一次性购买20本比分两次购买且每次购买10本少花80元2.对于数据:6,3,4,7,6,0,1.下列判断中正确的是( )A .这组数据的平均数是6,中位数是6B .这组数据的平均数是6,中位数是7C .这组数据的平均数是5,中位数是6D .这组数据的平均数是5,中位数是7 3.下列事件中为必然事件的是( )A .打开电视机,正在播放茂名新闻B .早晨的太阳从东方升起C .随机掷一枚硬币,落地后正面朝上D .下雨后,天空出现彩虹 4.关于x 的分式方程230x x a +=-解为4x =,则常数a 的值为( ) A .1a = B .2a = C .4a = D .10a =5.如图,直线m ∥n ,∠1=70°,∠2=30°,则∠A 等于( )6.如图,O 为坐标原点,四边彤OACB 是菱形,OB 在x 轴的正半轴上,sin ∠AOB=,反比例函数在第一象限内的图象经过点A ,与BC 交于点F ,删△AOF 的面积等于( )A .10B .9C .8D .67.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧专列.行程最长,途经城市和国家最多的一趟专列全程长13000 km ,将13000用科学记数法表示应为( )A .0.13×105B .1.3×104C .1.3×105D .13×1038.如图,在ABC 中,30B ∠=︒,BC 的垂直平分线交AB 于点E ,垂足为D .如果8CE =,则ED 的长为( )A .2B .3C .4D .69.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是( )A .图2B .图1与图2C .图1与图3D .图2与图310.如图,某厂生产一种扇形折扇,OB=10cm ,AB=20cm ,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为10003π cm 2,则扇形圆心角的度数为( )11.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,∠ABC=90°,CA ⊥x 轴,点C 在函数y=k x (x >0)的图象上,若AB=2,则k 的值为( )A .4B .22C .2D .212.如图的平面图形绕直线l 旋转一周,可以得到的立体图形是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果点A (-1,4)、B (m ,4)在抛物线y =a (x -1)2+h 上,那么m 的值为_____.14.对于函数6y x=,若x >2,则y ______3(填“>”或“<”). 15.如图,在Rt ABC 中,CM 平分ACB ∠交AB 于点M ,过点M 作MN //BC 交AC 于点N ,且MN 平分AMC ∠,若AN 1=,则BC 的长为______.16.已知一组数据3,4,6,x ,9的平均数是6,那么这组数据的方差等于________.17.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .18.在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在菱形ABCD 中,BAD ∠=α,点E 在对角线BD 上. 将线段CE 绕点C 顺时针旋转α,得到CF ,连接DF.(1)求证:BE=DF;(2)连接AC,若EB=EC ,求证:AC CF.20.(6分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.21.(6分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率. 22.(8分)旋转变换是解决数学问题中一种重要的思想方法,通过旋转变换可以将分散的条件集中到一起,从而方便解决问题.已知,△ABC中,AB=AC,∠BAC=α,点D、E在边BC上,且∠DAE=12α.(1)如图1,当α=60°时,将△AEC绕点A顺时针旋转60°到△AFB的位置,连接DF,①求∠DAF的度数;②求证:△ADE≌△ADF;(2)如图2,当α=90°时,猜想BD、DE、CE的数量关系,并说明理由;(3)如图3,当α=120°,BD=4,CE=5时,请直接写出DE的长为.23.(8分)如图,已知点C是∠AOB的边OB上的一点,求作⊙P,使它经过O、C两点,且圆心在∠AOB的平分线上.24.(10分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?25.(10分)在数学课上,老师提出如下问题:小楠同学的作法如下:老师说:“小楠的作法正确.”请回答:小楠的作图依据是______________________________________________.26.(12分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.27.(12分)赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】A、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A选项正确;C、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C正确;B、根据总价=200+超过10本的那部分书的数量×16即可求出a值,B正确;D,求出一次性购买20本书的总价,将其与400相减即可得出D错误.此题得解.【题目详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【题目点拨】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.2、C【解题分析】根据题目中的数据可以按照从小到大的顺序排列,从而可以求得这组数据的平均数和中位数.【题目详解】对于数据:6,3,4,7,6,0,1,这组数据按照从小到大排列是:0,3,4,6,6,7,1, 这组数据的平均数是:034667957++++++=, 中位数是6, 故选C.【题目点拨】本题考查了平均数、中位数的求法,解决本题的关键是明确它们的意义才会计算,求平均数是用一组数据的和除以这组数据的个数;中位数的求法分两种情况:把一组数据从小到大排成一列, 正中间如果是一个数,这个数就是中位数,如果正中间是两个数,那中位数是这两个数的平均数.3、B【解题分析】分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件:A 、打开电视机,正在播放茂名新闻,可能发生,也可能不发生,是随机事件,故本选项错误;B 、早晨的太阳从东方升起,是必然事件,故本选项正确;C 、随机掷一枚硬币,落地后可能正面朝上,也可能背面朝上,故本选项错误;D 、下雨后,天空出现彩虹,可能发生,也可能不发生,故本选项错误.故选B .4、D【解题分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可.【题目详解】解:把x=4代入方程230x x a+=-,得 23044a+=-, 解得a=1.经检验,a=1是原方程的解故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为2.5、C【解题分析】试题分析:已知m ∥n ,根据平行线的性质可得∠3=∠1=70°.又因∠3是△ABD 的一个外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案选C.考点:平行线的性质.6、A【解题分析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.解:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,BF=b,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•si n∠AOB=a,OM==a,∴点A的坐标为(a,a).∵点A在反比例函数y=的图象上,∴a×a=a2=12,解得:a=5,或a=﹣5(舍去).∴AM=8,OM=1.∵四边形OACB是菱形,∴OA=OB=10,BC∥OA,∴∠FBN=∠AOB.在Rt△BNF中,BF=b,sin∠FBN=,∠BNF=90°,∴FN=BF•sin∠FBN=b,BN==b,∴点F 的坐标为(10+b ,b ).∵点F 在反比例函数y=的图象上,∴(10+b )×b=12,S △AOF =S △AOM +S 梯形AMNF ﹣S △OFN =S 梯形AMNF =10故选A .“点睛”本题主要考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S △AOF =S 菱形OBCA .7、B【解题分析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.将13000用科学记数法表示为:1.3×1.故选B .考点:科学记数法—表示较大的数8、C【解题分析】先利用垂直平分线的性质证明BE=CE=8,再在Rt △BED 中利用30°角的性质即可求解ED .【题目详解】解:因为DE 垂直平分BC ,所以8BE CE ==,在Rt BDE 中,30B ∠=︒, 则118422ED BE ==⨯=; 故选:C .【题目点拨】本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.9、C【解题分析】【分析】根据角平分线的作图方法可判断图1,根据图2的作图痕迹可知D 为BC 中点,不是角平分线,图3中根据作图痕迹可通过判断三角形全等推导得出AD是角平分线.【题目详解】图1中,根据作图痕迹可知AD是角平分线;图2中,根据作图痕迹可知作的是BC的垂直平分线,则D为BC边的中点,因此AD不是角平分线;图3:由作图方法可知AM=AE,AN=AF,∠BAC为公共角,∴△AMN≌△AEF,∴∠3=∠4,∵AM=AE,AN=AF,∴MF=EN,又∵∠MDF=∠EDN,∴△FDM≌△NDE,∴DM=DE,又∵AD是公共边,∴△ADM≌△ADE,∴∠1=∠2,即AD平分∠BAC,故选C.【题目点拨】本题考查了尺规作图,三角形全等的判定与性质等,熟知角平分的尺规作图方法、全等三角形的判定与性质是解题的关键.10、C【解题分析】根据扇形的面积公式列方程即可得到结论.【题目详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为10003π cm2,∴22301010003603603a aπππ⋅⨯⋅⨯-=,∴α=150°,故选:C.【题目点拨】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=2 360n R.11、A【解题分析】【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=2AB=22,BD=AD=CD=2,再利用AC⊥x轴得到C(2,22),然后根据反比例函数图象上点的坐标特征计算k的值.【题目详解】作BD⊥AC于D,如图,∵△ABC为等腰直角三角形,∴AC=2AB=22,∴BD=AD=CD=2,∵AC⊥x轴,∴C(2,22),把C(2,22)代入y=kx得k=2×22=4,故选A.【题目点拨】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=kx(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.12、B【解题分析】根据面动成体以及长方形绕一边所在直线旋转一周得圆柱即可得答案.【题目详解】由图可知所给的平面图形是一个长方形,长方形绕一边所在直线旋转一周得圆柱,故选B.【题目点拨】本题考查了点、线、面、体,熟记各种常见平面图形旋转得到的立体图形是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】根据函数值相等两点关于对称轴对称,可得答案.【题目详解】由点A(﹣1,4)、B(m,4)在抛物线y=a(x﹣1)2+h上,得:(﹣1,4)与(m,4)关于对称轴x=1对称,m﹣1=1﹣(﹣1),解得:m=1.故答案为:1.【题目点拨】本题考查了二次函数图象上点的坐标特征,利用函数值相等两点关于对称轴对称得出m﹣1=1﹣(﹣1)是解题的关键.14、<【解题分析】根据反比例函数的性质即可解答.【题目详解】当x=2时,632y==,∵k=6时,∴y随x的增大而减小∴x>2时,y<3故答案为:<【题目点拨】此题主要考查了反比例函数的性质,解题的关键在于利用反比例函数图象上点的坐标特点判断函数值的取值范围.15、1【解题分析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【题目详解】∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°, ∵AN=1, ∴MN=2, ∴AC=AN+NC=3, ∴BC=1, 故答案为1. 【题目点拨】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 16、5.2 【解题分析】分析:首先根据平均数求出x 的值,然后根据方差的计算法则进行计算即可得出答案. 详解:∵平均数为6, ∴(3+4+6+x+9)÷5=6, 解得:x=8, ∴方差为:()()()()()22222136******** 5.25⎡⎤-+-+-+-+-=⎣⎦. 点睛:本题主要考查的是平均数和方差的计算法则,属于基础题型.明确计算公式是解决这个问题的关键. 17、1 【解题分析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长. 【题目详解】试题解析:①当腰是4cm ,底边是9cm 时:不满足三角形的三边关系,因此舍去. ②当底边是4cm ,腰长是9cm 时,能构成三角形,则其周长=4+9+9=1cm . 故填1. 【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答. 18、3.05×105 【解题分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【题目详解】故答案为:.【题目点拨】本题考查的知识点是科学记数法—表示较大的数,解题关键是熟记科学计数法的表示方法.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19、证明见解析 【解题分析】【分析】(1)根据菱形的性质可得BC=DC ,BAD BCD α∠∠==,再根据ECF α∠=,从而可得 BCD ECF ∠∠=,继而得BCE ∠=DCF ∠,由旋转的性质可得CE =CF ,证明BEC ≌DFC ,即可证得BE =DF ;(2)根据菱形的对角线的性质可得ACB ACD ∠∠=,AC BD ⊥,从而得ACB+EBC 90∠∠=︒,由EB=EC ,可得EBC=BCE ∠∠,由(1)可知,可推得DCF+ACD EBC ACB 90∠∠∠∠=+=︒,即可得ACF 90∠=︒,问题得证.【题目详解】(1)∵四边形ABCD 是菱形,∴BC=DC ,BAD BCD α∠∠==, ∵ECF α∠=, ∴BCD ECF ∠∠=,∴BCE=DCF ∠∠,∵线段CF 由线段CE 绕点C 顺时针旋转得到, ∴CE=CF ,在BEC 和DFC 中,BC DC BCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,,, ∴BEC ≌()DFC SAS , ∴BE=DF ;(2)∵四边形ABCD 是菱形, ∴ACB ACD ∠∠=,AC BD ⊥, ∴ACB+EBC 90∠∠=︒, ∵EB=EC , ∴EBC=BCE ∠∠,由(1)可知,EBC=DCF ∠∠,∴DCF+ACD EBC ACB 90∠∠∠∠=+=︒, ∴ACF 90∠=︒, ∴AC CF ⊥.【题目点拨】本题考查了旋转的性质、菱形的性质、全等三角形的判定与性质等,熟练掌握和应用相关的性质与定理是解题的关键. 20、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:.【解题分析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案. 试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况, ∴两次摸出的球上的数字和为偶数的概率为:. 考点:列表法与树状图法. 21、 (1)14;(2)13. 【解题分析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为14; (2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可.【题目详解】(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,∴任取一个球,摸出球上的汉字刚好是“美”的概率P=1 4(2)列表如下:根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故取出的两个球上的汉字恰能组成“美丽”或“光明”的概率13 P .【题目点拨】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.22、(1)①30°②见解析(2)BD2+CE2=DE2(3【解题分析】(1)①利用旋转的性质得出∠FAB=∠CAE,再用角的和即可得出结论;②利用SAS判断出△ADE≌△ADF,即可得出结论;(2)先判断出BF=CE,∠ABF=∠ACB,再判断出∠DBF=90°,即可得出结论;(3)同(2)的方法判断出∠DBF=60°,再用含30度角的直角三角形求出BM,FM,最后用勾股定理即可得出结论.【题目详解】解:(1)①由旋转得,∠FAB=∠CAE,∵∠BAD+∠CAE=∠BAC﹣∠DAE=60°﹣30°=30°,∴∠DAF=∠BAD+∠BAF=∠BAD+∠CAE=30°;②由旋转知,AF=AE,∠BAF=∠CAE,∴∠BAF+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=∠DAE,在△ADE和△ADF中,AF AEDAF DAE AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ADF(SAS);(2)BD2+CE2=DE2,理由:如图2,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=90°,根据勾股定理得,BD2+BF 2=DF2,即:BD2+CE2=DE2;(3)如图3,将△AEC绕点A顺时针旋转90°到△AFB的位置,连接DF,∴BF=CE,∠ABF=∠ACB,由(1)知,△ADE≌△ADF,∴DE=DF,BF=CE=5,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=30°,∴∠DBF=∠ABC+∠ABF=∠ABC+∠ACB=60°,过点F作FM⊥BC于M,在Rt△BMF中,∠BFM=90°﹣∠DBF=30°,BF=5,∴55 BM,FM322==∵BD=4,∴DM=BD﹣BM=32,根据勾股定理得,22DF FM DM21=+=∴DE=DF2121【题目点拨】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,勾股定理,构造全等三角形和直角三角形是解本题的关键.23、答案见解析【解题分析】首先作出∠AOB的角平分线,再作出OC的垂直平分线,两线的交点就是圆心P,再以P为圆心,PC长为半径画圆即可.【题目详解】解:如图所示:.【题目点拨】本题考查基本作图,掌握垂直平分线及角平分线的做法是本题的解题关键..24、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案.【解题分析】(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.【题目详解】解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,x=15,经检验x=15是原方程的解.∴40﹣x=1.甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,,解得20≤y<2.因为y是整数,甲种玩具的件数少于乙种玩具的件数,∴y取20,21,22,23,共有4种方案.考点:分式方程的应用;一元一次不等式组的应用.25、两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.【解题分析】根据对角线互相平分的四边形是平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,由此可得到小楠的作图依据.【题目详解】解:由作图的步骤可知平行四边形可判断四边形ABCP为平行四边形,再根据平行四边形的性质:对角线互相平分即可得到BD=CD,所以小楠的作图依据是:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.故答案为:两组对边分别相等的四边形是平行四边形;平行四边形的对角线互相平分;两点确定一条直线.【题目点拨】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行四边形的判定和性质.26、见解析 【解题分析】根据CE ∥DF ,可得∠ECA=∠FDB ,再利用SAS 证明△ACE ≌△FDB ,得出对应边相等即可. 【题目详解】 解:∵CE ∥DF ∴∠ECA=∠FDB , 在△ECA 和△FDB 中EC BD ECA F AC FD ⎧⎪∠∠⎨⎪⎩===∴△ECA ≌△FDB , ∴AE=FB . 【题目点拨】本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键. 27、10 【解题分析】试题分析:根据相似的性质可得:1:1.2=x :9.6,则x=8,则旗杆的高度为8+2=10米. 考点:相似的应用。
最新甘肃省中考数学押题预测密卷含答案 最新题必考题必考题型

(3)在(2)中的抛物线上是否存在点 ,使以 为顶点的三角形是等腰直角三角形?若存在,求出所有点 的坐标;若不存在,请说明理由.
[参考答案]
一、选择题(每小题3分,共36分)
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
D
A
C
A
B
B
C
D
D
A
B
二、填空题(本大题共7小题,每小题3分,共21分)
二、填空题(本大题共8小题,每小题4分,共32分)
11.分解因式:2x2﹣4xy+2y2=
12.若关于 的不等式组 有解,则实数 的取值范围是.
13、如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则cos∠AED=________.
14.如图,⊙M与 轴相交于点 , ,与 轴相切于点 ,则圆心 的坐标是.
25.(本小题10分)如图,点 是以 为直径的圆 上一点,直线 与过 点的切线相交于 点 ,点 是 的中点,直线 交直线 于点 .
(1)求证: 是⊙O的切线;
(2)若 , ,求⊙O的半径.
26.(本小题12分)如图,在 中, , , ,将 绕点 按逆时针方向旋转至 , 点的坐标为(0,4).
(1)求 点的坐标;
8.半径分别为13和15的两圆相交,且公共弦长为24,则两圆的圆心距为( )
A. 或 B. 或 C. D. 或
9.若 , 是方程 的两个不相等的实数根,则代数式 的值是( )
A. B. C. D.
10.如图,四边形 是边长为 的正方形,动点 在 的边上沿 的路径以 的速度运动(点 不与 重合).在这个运动过程中, 的面积 随时间 的变化关系用图象表示,正确的为( )
2024年中考数学考前押题密卷+全解全析(甘肃卷)

2024年中考数学考前押题密卷(甘肃卷)全解全析第Ⅰ卷一、选择题(本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.|﹣2|等于()A.﹣2 B.﹣C.2 D.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选:C.【点评】本题考查绝对值,解题的关键是明确绝对值的定义.2.如图,直线l1∥l2,被直线l3、l4所截,并且l3⊥l4,∠1=46°,则∠2等于()A.56° B.34° C.44° D.46°【分析】依据l1∥l2,即可得到∠3=∠1=46°,再根据l3⊥l4,可得∠2=90°﹣46°=44°.【解答】解:如图:∵l1∥l2,∠1=46°,∴∠3=∠1=46°,又∵l3⊥l4,∴∠2=90°﹣46°=44°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.3.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是()A.B.C.D.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A,B,C选项中的图案都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项中的图案能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.计算:(x+2y)(x﹣2y)=()A.x2﹣2y2B.x2+2y2C.x2+4y2D.x2﹣4y2【分析】根据平方差公式进行计算,然后逐一判断即可.【解答】解:原式=x2﹣4y2.故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.5.如图,△ABC内接于⊙O,连接OA、OB,∠C+∠O=60°,则∠O的度数是()A.30° B.40° C.50° D.60°【分析】先利用圆周角定理得到∠C=∠O,再利用∠C+∠O=60°得到∠O+∠O=60°,然后解方程即可.【解答】解:∵∠C=∠O,而∠C+∠O=60°,∴∠O+∠O=60°,解得∠O=40°.故选:B.【点评】本题考查了三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆.也考查了圆周角定理.6.若点A(1,a)和点B(4,b)在直线y=﹣2x+m上,则a与b的大小关系是()A.a>b B.a<bC.a=b D.与m的值有关【分析】把点的坐标分别代入函数解析式,可用m分别表示出a和b,比较其大小即可.【解答】解:∵点A(1,a)和点B(4,b)在直线y=﹣2x+m上,∴a=﹣2+m,b=﹣8+m,∵﹣2+m>﹣8+m,∴a>b,故选:A.【点评】本题主要考查一次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.7.若关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,则实数m的值为()A.4 B.﹣4 C.±4 D.2【分析】若一元二次方程有两个相等的实数根,则根的判别式Δ=b2﹣4ac=0,建立关于m的方程,即可求解.【解答】解:∵关于x的一元二次方程x2﹣4x+m=0有两个相等的实数根,∴Δ=b2﹣4ac=(﹣4)2﹣4m=0,解得m=4.故选:A.【点评】此题考查了根的判别式.一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:(1)Δ>0⇔方程有两个不相等的实数根;(2)Δ=0⇔方程有两个相等的实数根;(3)Δ<0⇔方程没有实数根.8.已知△ABC∽△DEF,相似比为3:1,且△ABC的周长为15,则△DEF的周长为()A.1 B.3 C.5 D.45【分析】因为△ABC∽△DEF,相似比为3:1,根据相似三角形周长比等于相似比,即可求出周长.【解答】解:∵△ABC∽△DEF,相似比为3:1,∴△ABC的周长:△DEF的周长=3:1,∵△ABC的周长为15,∴△DEF的周长为5.故选:C.【点评】本题考查对相似三角形性质的理解,正确记忆相似三角形周长的比等于相似比是解题关键.9.春节期间,小星从三部热门电影《飞驰人生2》《热辣滚烫》《熊出没•逆转时空》中随机选取一部观看,则恰好选中《热辣滚烫》的概率是()A.B.C.D.【解答】解:随机选取一部观看,则恰好选中《热辣滚烫》的概率=.故选:B.【点评】本题考查了概率公式:某事件的概率=这个事件所占有的结果数与总的结果数之比.10.如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于点H,连接OH,∠CAD=25°,则∠DHO的度数是()A.25° B.30° C.35° D.40°【分析】由菱形的性质可得BO=OD,∠DAO=∠BAO=25°,AC⊥BD,再由直角三角形的性质得∠ABD =65°,则∠BDH=25°,然后由直角三角形斜边上的中线性质可求解.【解答】解:∵四边形ABCD是菱形,∴BO=OD,∠DAO=∠BAO=25°,AC⊥BD,∴∠ABD=90°﹣∠BAO=65°,∵DH⊥AB,BO=DO,∴∠BDH=90°﹣∠ABD=25°,HO=BD=DO,∴∠DHO=∠BDH=25°,故选:A.【点评】本题考查了菱形的性质、直角三角形斜边中线性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.二次函数y=x2﹣2x﹣3,若y>5,则自变量x的取值范围是()A.x<﹣2或x>4 B.x<﹣1或x>3 C.﹣2<x<4 D.﹣1<x<3【分析】由y=5求得对应的函数y=x2﹣2x﹣3的自变量x的值,然后根据二次函数y=x2﹣2x﹣3的性质即可得到结论.【解答】解:∵二次函数y=x2﹣2x﹣3,x=﹣=1,∴当x<1时,y随x的增大而减小;当x>1时,y随x的增大而增大,当y=5时,则x2﹣2x﹣3=5,即x2﹣2x﹣8=0,解得:x=4或x=﹣2,∴当y>5时,自变量x的取值范围是x>4或x<﹣2,故选:A.【点评】本题考查了二次函数的性质,明确二次函数y=x2﹣2x﹣3的性质是解题的关键.12.中国美食讲究色香味美,优雅的摆盘造型能让美食锦上添花.图1中的摆盘,其形状是扇形的一部分,图2是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=10cm,C,D两点之间的距离是3cm,∠AOB=60°,则摆盘的面积是()A.B.C.D.【分析】首先证明△OCD是等边三角形,求出OC=OD=CD=2cm,再根据S阴=S扇形OAB﹣S扇形OCD,求解即可.【解答】解:如图,连接CD.∵OC=OD,∠O=60°,∴△OCD是等边三角形,∴OC=OD=CD=3cm,∴S阴=S扇形OAB﹣S扇形OCD=,故选:B.【点评】本题考查扇形面积的计算、等边三角形的判定与性质,解答本题的关键是明确题意,利用数形结合的思想解答.第Ⅱ卷二、填空题(本大题共4个小题,每小题3分,共12分)13.因式分解:4m2+4m+1=.【分析】利用完全平方公式分解即可.【解答】解:4m2+4m+1=(2m+1)2.故答案为:(2m+1)2.【点评】此题考查了因式分解﹣运用公式法,掌握因式分解的完全平方公式是解决本题的关键.14.若点A(a,b)在第三象限,则点C(﹣a,b﹣5)在第象限.【分析】根据第三象限内点的横坐标与纵坐标都是负数确定出a、b的正负情况,然后进行判断即可.【解答】解:∵点A(a,b)在第三象限,∴a<0,b<0,∴﹣a>0,b﹣5<0,∴点C(﹣a,b﹣5)在第四象限.故答案为:四.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).15.如图,在矩形ABCD中,AD=2.将∠A向内翻折,点A落在BC上,记为A',折痕为DE.若将∠B 沿EA'向内翻折,点B恰好落在DE上,记为B',则∠AED=,AB=.【分析】根据将∠A向内翻折,点A落在BC上,记为A',将∠B沿EA'向内翻折,点B恰好落在DE上,记为B',可得∠AED=∠A'ED=∠A'EB,即知∠AED=60°,在Rt△ADE中,tan60°=,可得AE==A'E,在Rt△A'BE中,BE=A'E=,故AB=AE+BE=.【解答】解:如图:∵将∠A向内翻折,点A落在BC上,记为A',将∠B沿EA'向内翻折,点B恰好落在DE上,记为B',∴∠AED=∠A'ED=∠A'EB,∵∠AED+∠A'ED+∠A'EB=180°,∴∠AED=60°,在Rt△ADE中,tan∠AED=,∴tan60°=,∴AE=,∴A'E=,在Rt△A'BE中,∠A'EB=∠AED=60°,∴∠EA'B=30°,∴BE=A'E=,∴AB=AE+BE=+=,故答案为:60°,.【点评】本题考查矩形中的折叠问题,解题的关键是掌握折叠的性质,熟练应用含30°角的直角三角形三边关系.16.2023年3月12日是我国第45个植树节,某林业部门为了考察某种幼树在一定条件下的移植成活率,据:估计该种幼树在此条件下移植成活率是.(结果精确到1%)【分析】根据调查收集数据的过程和方法、近似数的定义解决此题.【解答】解:根据题意,成活率精确到1%,根据表格中的数据,可以估计移植的成活率为90%.故答案为:90%.【点评】本题主要考查统计数据、有效数字,熟练掌握调查统计数据的过程与方法、近似数以及有效数字的定义是解决本题的关键.三、解答题(本大题共2个小题,共72分.解答应写出文字说明,证明过程或演算步骤)17.(4分)解不等式:2x﹣1<3(1+x).【分析】不等式去括号,移项合并,将x系数化为1,即可求出解集.【解答】解:去括号得:2x﹣1<3+3x,移项得:2x﹣3x<3+1,合并得:﹣x<4,解得:x>﹣4.【点评】此题考查了一元一次不等式,解本题的关键:熟练掌握解不等式的步骤.18.(4分)计算:(2﹣).【分析】先算括号内的减法,把除法变成乘法,最后算乘法即可.【解答】解:原式=•=•=.【点评】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键.19.(4分)已知:如图,点C是线段AE的中点,AB∥CD,BC∥DE.求证:AB=CD.【分析】根据线段中点定义可得AC=CE,再利用平行线的性质和ASA定理判定△ABC≌△CDE,再根据全等三角形的性质即可求解.【解答】证明:∵点C是线段AE的中点,∴AC=CE,∵AB∥CD,BC∥DE,∴∠A=∠DCE,∠ACB=∠CED,在△ABC与△CDE中,,∴△ABC≌△CDE(ASA),∴AB=CD.【点评】本题考查了平行线的性质,三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、直角三角形还有HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.(6分)如图,一座古塔座落在小山上(塔顶记作点A,其正下方水平面上的点记作点B),小李站在附近的水平地面上,他想知道自己到古塔的水平距离,便利用无人机进行测量,但由于某些原因,无人机无法直接飞到塔顶进行测量,因此他先控制无人机从脚底(记为点C)出发向右上方(与地面成45°,点A,B,C,O在同一平面)的方向匀速飞行4秒到达空中O点处,再调整飞行方向,继续匀速飞行8秒到达塔顶,已知无人机的速度为5米/秒,∠AOC=75°,(求小李到古塔的水平距离即BC的长.(结果精确到1m,参考数据:,【分析】过点O作OD⊥BC,交BC的延长线于点D,过点O作OE⊥AB,垂足为E,根据题意可得:AO =40米,OC=20米,OE=BD,∥BD,从而可得∠EOC=∠OCD=45°,进而可得∠AOE=30°,然后在Rt△OCD中,利用锐角三角函数的定义求出CD的长,再在Rt△AOE中,利用锐角三角函数的定义求出OE的长,从而求出BD的长,最后利用线段的和差关系进行计算,即可解答.【解答】解:过点O作OD⊥BC,交BC的延长线于点D,过点O作OE⊥AB,垂足为E,由题意得:AO=8×5=40(米),OC=4×5=20(米),OE=BD,OE∥BD,∴∠EOC=∠OCD=45°,∵∠AOC =75°,∴∠AOE =∠AOC ﹣∠EOC =30°,在Rt △OCD 中,CD =OC•cos45°=20×=10(米),在Rt △AOE 中,OE =AO•cos30°=40×=20(米),∴OE =BD =20(米),∴BC =BD ﹣CD =20﹣10≈21(米),∴小李到古塔的水平距离即BC 的长约为21米.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.21.(6分)在“双减”政策实施两个月后,某市“双减办”面向本市城区学生,就“‘双减’前后参加校外学科补习班的情况”进行了一次随机问卷调查(以下将“参加校外学科补习班”简称“报班”),根据问卷提交时间的不同,把收集到的数据分两组进行整理,分别得到统计表1和统计图1: 整理描述表1:“双减”前后报班情况统计表(第一组)(1)根据表1,m的值为,的值为;分析处理(2)请你汇总表1和图1中的数据,求出“双减”后报班数为3的学生人数所占的百分比;(3)“双减办”汇总数据后,制作了“双减”前后报班情况的折线统计图(如图2).请依据图表中的信息回答以下问题:①本次调查中,“双减”前学生报班个数的中位数为,“双减”后学生报班个数的众数为;②请对该市城区学生“双减”前后报班个数变化情况作出对比分析(用一句话来概括).【分析】(1)将表1中“双减前”各个数据求和确定m的值,然后再计算求得n值,从而求解;(2)通过汇总表1和图1求得“双减后”报班数为3的学生人数,从而求解百分比;(3)①根据中位数和众数的概念分析求解;②根据“双减”政策对学生报班个数的影响结果角度进行分析说明.【解答】解:(1)m=102+48+75+51+24=300,n=m﹣(255+15+24)=6,∴==0.02,故答案为:300;0.02;(2)汇总表1和图1可得:×100%=2.4%,答:“双减”后报班数为3的学生人数所占的百分比为2.4%;(3)①“双减”前共调查500个数据,从小到大排列后,第250个和第251个数据均为1,∴“双减”前学生报班个数的中位数为1,“双减”后学生报班个数出现次数最多的是0,∴“双减”后学生报班个数的众数为0,故答案为:1;0;②从“双减”前后学生报班个数的变化情况说明:“双减”政策宣传落实到位,参加校外培训机构的学生大幅度减少,“双减”取得了显著效果.【点评】本题考查统计的应用,理解题意,对数据进行采集和整理,掌握中位数和众数的概念是解题关键.22.(6分)如图,△ABC中,AB=AC,D,E在边BC上,延长AD,AE与△ABC的外接圆分别交于P,Q两点.(1)求证:D,E,Q,P四点共圆;(2)若AD=BD=3,AE=4,DC=5,求弦AQ的长度.【分析】(1)连接BQ,根据同弧所对圆周角相等可得∠C=∠AQB,∠BAP=∠BQP,由∠ADB+∠ABC+∠BAD=180°结合等腰三角形性质可证∠PDE+∠EQP=180°,最后得证∠P+∠DEQ=180°即可;(2)先证明△ABC∽△DAB,根据相似三角形的性质求得,再证明△ABE∽△AQB,最后根据相似三角形的性质即可求解.【解答】(1)证明:如图,连接BQ,∴∠C=∠AQB,∠BAP=∠BQP,∵AB=AC,∴∠ABC=∠C,∴∠ABC=∠AQB,∵∠ADB+∠ABC+∠BAD=180°,∴∠PDE+∠AQB+∠BQP=180°,∴∠PDE+∠EQP=180°,∵∠PDE+∠DEQ+∠EQP+∠P=360°,∴∠P+∠DEQ=180°,∴D,E,Q,P四点共圆;(2)解:∵AD=BD=3,DC=5∴∠ABD=∠BAD,BC=8,由(1)知∠ABC=∠C,∴∠ABD=∠BAD=∠C,∴△ABC∽△DAB,∴,即,∴,由(1)可知∠ABE=∠AQB,∵∠BAE=∠QAB,∴△ABE∽△AQB,∴,即,解得AQ=6.【点评】本题考查同弧所对圆周角相等,四点共圆,等腰三角形的性质,相似三角形的判定与性质,掌握相关定理并理解且能综合运用是关键.23.(6分)如图1,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点P从B点出发,沿射线AB的方向运动,已知C(1,0),点P的横坐标为x,连接OP,PC,记△COP的面积为y1.(1)求y1关于x的函数关系式及x的取值范围;(2)在图2所示的平面直角坐标系中画出(1)中所得函数的图象,记其与y轴的交点为D,将该图象绕点D逆时针旋转90°,画出旋转后的图象;(3)结合函数图象,直接写出旋转前后的图象与直线y2=﹣x+3的交点坐标.【分析】(1)根据直线y=x+2与x轴,y轴分别交于A,B两点,求得点A、B的坐标,点P从B点出发,沿射线AB的方向运动,得点P(x,x+2),进而求得y1关于x的函数关系式及x的取值范围;(2)根据(1)所得函数解析式即可在平面直角坐标系中画出函数的图象,及旋转后的图象;(3)联立方程组即可求出旋转前后的图象与直线y2=﹣x+3的交点坐标.【解答】解:(1)∵直线y=x+2与x轴,y轴分别交于A,B两点,∴当x=0时,y=2,B(0,2),当y=0时,x=﹣2,A(2,0).∵点P从B点出发,沿射线AB的方向运动,∴P(x,x+2),∵C(1,0),∴△COP的面积为y1=×1×(x+2)=x+1.∴y1关于x的函数关系式为:y=x+1,x的取值范围为:x≥0;(2)如图所示,(1)中所得函数的图象为y1=0.5x+1,旋转后的图象为y3=﹣2x+1.(3)旋转前后的图象与直线y2=﹣x+3的交点坐标为点E、F,,解得所以E(,).,解得所以F(﹣2,5).答:旋转前后的图象与直线y2=﹣x+3的交点坐标为(,),(﹣2,5).【点评】本题考查了动点问题的函数图象,解决本题的关键是根据题意理解动点的运动过程.24.(6分)小聪在瑞阳湖湿地公园看到一处喷水景观,喷出的水柱呈抛物线形状,他对此展开探究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求此抛物线的解析式;(2)若喷水头P喷出的水柱下方有一安全的长廊,小聪的同学小明站在水柱正下方,且距喷水头P的水平距离为3m,身高1.6m水平距离.【分析】(1)由抛物线顶点(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,用待定系数法可得抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,即得他与小明的水平距离为2m或6m.【解答】解:(1)由题意知,抛物线顶点为(5,3.2),设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:0.7=25a+3.2,解得a=﹣,∴y=﹣(x﹣5)2+3.2=﹣x2+x+,答:抛物线的表达式为y=﹣x2+x+;(2)当y=1.6时,﹣x2+x+=1.6,解得x=1或x=9,∴他与小明的水平距离为3﹣1=2(m)或9﹣3=6(m),答:当他的头顶恰好接触到水柱时,与小明的水平距离是2m或6m.【点评】本题考查二次函数的应用,解题的关键是读懂题意,把实际问题转化为数学问题.25.(6分)如图,一次函数y=ax+b与反比例函数y=的图象交于A(2,2),B(4,1)两点.(1)求这两个函数的表达式;(2)在反比例函数y=第三象限的图象上有一点P,且点P到直线AB的距离最短,求点P的坐标.【分析】(1(2)作直线AB的平行线,当其与反比例函数的图象只有一个交点P时,点P到直线AB的距离最短,据此设直线PM的解析式为,则,整理得到x2﹣2nx+8=0,由题意得,Δ=4n2﹣32=0,解此方程即可求得P的坐标.【解答】解:(1)将点A(2,2)代入中,得k=4,∴反比例函数的表达式为,将点A(2,2),B(4,1)代入y=ax+b中,得,解得,∴一次函数的表达式为;(2)如图,作直线AB的平行线,当其与反比例函数的图象只有一个交点P时,此时点P到直线AB的距离最短,设直线PM的解析式为,则,去分母,得x2﹣2nx+8=0,由题意得,Δ=0,∴4n2﹣32=0,解得,(不合题意,舍去),∴,解得,∴在中,当时,,∴点P的坐标为.【点评】本题考查了一次函数与反比例函数的交点问题,点到直线的距离,待定系数法求函数的解析式,数形结合是解题的关键.26.(7分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E.点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=3,sin∠CBF=,求BF的长.【分析】(1)根据圆周角定理,等腰三角形的性质以及圆的切线的判定方法进行解答即可;(2)根据直角三角形的边角关系,圆周角定理求出BE、AE、BC,进而求出CG、BG,再根据相似三角形的判定和性质求出FG即可.【解答】(1)证明:如图,连接AE,∵AB是⊙O的直径,∴∠AEB=90°,即AE⊥BC,∴∠BAE+∠ABE=90°,∵AB=AC,∴∠BAE=∠CAE=∠BAC,∵∠CBF=∠CAB,∴∠CBF=∠BAE,∴∠ABE+∠CBF=90°,即AB⊥BF,∵AB是⊙O的直径,∴BF是⊙O的切线;(2)解:过点C作CG⊥BF于点G,在Rt△ABE中,AB=3,sin∠BAE=sin∠CBF=,∴BE=AB=,AE==,∵AB=AC,AE⊥BC,∴BC=2BE=,在Rt△BCG中,BC=,sin∠CFB=,∴CG=BC=,BG==,∵AB∥CG,∴△ABF∽△CGF,∴=,即=,解得FG=,经检验FG=是原方程的解,∴BF=BG+FG=+=4.【点评】本题考查切线的判定和性质,圆周角定理,勾股定理以及直角三角形的边角关系,掌握切线的性质和判定方法,圆周角定理,勾股定理以及直角三角形的边角关系是正确解答的关键.27.(8分)在平面直角坐标系xOy中,已知A(t﹣2,0),B(t+2,0).对于点P给出如下定义:若∠APB=45°,则称P为线段AB的“等直点”.(1)当t=0时,①在点,P2(﹣4,0),,P4(2,5)中,线段AB的“等直点”是;②点Q在直线y=x上,若点Q为线段AB的“等直点”,直接写出点Q的横坐标.(2)当直线y=x+t上存在线段AB的两个“等直点”时,直接写出t的取值范围.【分析】(1)①根据“等直点”得的定义,确定出符合条件的点的特征,画出图形进行判断即可;②设Q(m,m),利用“等直点”的定义列出方程,解方程即可得出结论;(2)利用分类讨论的思想方法,依据“等直点”的定义,通过画出符合条件的图形求得临界值的方法求得结论即可.【解答】解:(1)①当t=0时,A(﹣2,0),B(2,0),根据“等直点”得的定义,线段AB的“等直点”在以点C(0,2)为圆心,为半径的圆中的优弧上,或在以点D(0,﹣2)为圆心,为半径的圆中的优弧上,如图,则即“等直点”到圆心C的距离均为,∵,P2(﹣4,0),,P4(2,5),∴,,,,DP3=2,∴点P1,P3是线段AB的“”,故答案为:点P1,P3;②由点Q在直线y=x上,设Q(m,m),∵点Q为线段AB的“等直点”,∴CQ=,∴,解得,(不合题意舍去),利用对称性可求第三象限也存在符合题意的点Q,它们关于原点对称,∴此时的点Q的横坐标为﹣1﹣.∴点Q的横坐标为1+或﹣1﹣.(2)∵A(t﹣2,0),B(t+2,0),∴AB=4,AB的中点的横坐标为t,由(1)知:线段AB的“等直点”在以AB为弦的优弧上,即圆心在直线y=2或y=﹣2上,2为半径的圆的优弧上.①当t>0时,设直线y=x+t与x轴交于点N,与y轴交于点F,如图,则F(0,t),N(﹣t,0),∴OF=ON=t,∴∠NFO=∠FNO=45°.⊙C y=x+t与⊙C相切于点E,交直线y=2于点G,直线y=2与y轴交于点H,连接CE,则CE⊥EF,过点C作CM⊥AB于点M,则M为AB的中点,∴OM=t,∵CM⊥AB,HO⊥AB,CH⊥OH,∴四边形OMCH为矩形,∴CH=OM=t.由题意:OH=2,OF=t,CE=2,∴HF=OF﹣OH=t﹣2,∴GH=HF﹣OH=t﹣2,∴CG=GH+CH=t﹣2+t=2t﹣2.∵CG∥ON,∴∠EGC=∠FNO=45°,∴CG=CE,∴2t﹣2=,∴t=3.∴当直线y=x+t上存在线段AB的两个“等直点”时,t<3,由于当t=1时,y=x+1经过点A,符合条件的点只有一个,∴t≠1.②当t<0时,设直线y=x+t与x轴交于点N,与y轴交于点F,如图,则F(0,t),N(﹣t,0),∴OF=ON=﹣t,∴∠NFO=∠FNO=45°.⊙D为一个符合条件的圆,设直线y=x+t与⊙D相切于点E,直线y=﹣2交直线y=x+t于点G,直线y =﹣2与y轴交于点H,连接DE,则DE⊥EF,过点D作DM⊥AB于点M,则M为AB的中点,∴OM=﹣t,∵DM⊥AB,HO⊥AB,DH⊥OH,∴四边形OMDH为矩形,∴DH=OM=﹣t.由题意:OH=2,OF=﹣t,DE=2,∴HF=OF﹣OH=﹣t﹣2,∴GH=HF﹣OH=﹣t﹣2,∴DG=GH+DH=﹣t﹣2﹣t=﹣2t﹣2.∵CG∥ON,∴∠EGC=∠FNO=45°,∴CG=CE,∴﹣2t﹣2=,∴t=﹣3.∴当直线y=x+t上存在线段AB的两个“等直点”时,t>﹣3,由于当t=﹣1时,y=x+1经过点B,符合条件的点只有一个,∴t≠﹣1.综上,当直线y=x+t上存在线段AB的两个“等直点”时,t的取值范围为﹣3<t<3且t≠±1.【点评】本题主要考查了一次函数的图象与性质,一次函数图象上点的坐标的特征,圆的有关性质,点的轨迹,等腰直角三角形的判定与性质,圆的切线的性质,等腰三角形的性质,本题是新定义型,正确理解新定义的规定并熟练应用是解题的关键.28.(9分)【观察猜想】(1)我们知道,正方形的四条边都相等,四个角都为直角.如图1,在正方形ABCD中,点E,F分别在边BC,CD上,连接AE,AF,EF,并延长CB到点G,使BG=DF,连接AG.若∠EAF=45°,则BE,EF,DF之间的数量关系为;【类比探究】(2)如图2,当点E在线段BC的延长线上,且∠EAF=45°时,试探究BE,EF,DF之间的数量关系,并说明理由;【拓展应用】(3)如图3,在Rt ABC中,AB=AC,D,E在BC上,∠DAE=45°,若△ABC的面积为12,BD•CE=4,请直接写出△ADE的面积.【分析】【观察猜想】(1)证明△ADF≌△ABG(SAS),可得AF=AG,∠DAF=∠BAG,根据正方形的性质求出∠BAG+∠BAE=45°=∠EAF,再证△AGE≌△AFE(SAS),可得GE=EF,则GE=GB+BE=BE+DF,即可得出答案;【类比探究】(2)在BC上截取BG=DF,连接AG.证明△ADF≌△ABG(SAS),可得AF=AG,∠DAF =∠BAG,根据正方形的性质求出∠BAG+∠DAE=45°=∠EAF,再证△AGE≌△AFE(SAS),可得GE=EF,则GE=BE﹣BG=BE﹣DF,即可得出答案;【拓展应用】(3)如图3,将△ABD绕点A逆时针旋转90°得到△ACG,连接EG,此时AB与AC重合,AD=AG,BD=CG,证明△ADE≌△AGE(SAS),则S△ADE=S△AGE,由∠ACB=∠ACG=45°,可得△ECG是直角三角形,由BD•CE=4可得S△ECG=2,根据△ABC的面积为12即可求解.【解答】解:【观察猜想】(1)∵四边形ABCD为正方形,∴AD=AB,∠ABG=∠ADF=90°,∵BG=DF,∴△ADF≌△ABG(SAS),∴AF=AG,∠DAF=∠BAG,∵四边形ABCD为正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°=∠EAF,∴∠GAE=∠EAF=45°,在△AGE和△AFE中,,∴△AGE≌△AFE(SAS),∴GE=EF,∵GE=GB+BE=BE+DF,∴EF=BE+DF.故答案为:EF=BE+DF;【类比探究】(2)EF=BE﹣DF,理由如下:如图2,在BC上截取BG=DF,连接AG.∵四边形ABCD为正方形,∴AD=AB,∠ABG=∠ADF=90°,∵BG=DF,∴△ADF≌△ABG(SAS),∴AF=AG,∠DAF=∠BAG,∵四边形ABCD为正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠DAE+∠DAF=45°,∴∠BAG+∠DAF=45°,∴∠GAE=∠EAF=45°,在△AGE和△AFE中,,∴△AGE≌△AFE(SAS),∴GE=EF,∵GE=BE﹣BG=BE﹣DF,∴EF=BE﹣DF;【拓展应用】(3)如图3,将△ABD绕点A逆时针旋转90°得到△ACG,连接EG,此时AB与AC重合,∴AD=AG,BD=CG,∠DAG=90°,∵∠DAE=45°,∴∠GAE=∠DAE=45°,∵AE=AE,∴△ADE≌△AGE(SAS),∴S△ADE=S△AGE,在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,由旋转得∴∠B=∠ACG=45°,∴∠ECG=∠ACB+∠ACG=90°,∴△ECG是直角三角形,∴S△ECG=BD•CE,∵BD•CE=4,∴S△ECG=2,∵△ABC的面积为12,∴S△ADE=S△AGE=×(12﹣2)=5.【点评】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,直角三角形的判定和性质,三角形的面积,解此题的关键是能正确作出辅助线得出全等三角形,综合性比较强,有一定的难度.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新甘肃省中考数学押题预测密卷一、选择题(本大题共10小题,每小题4分,共40分,)1.如果零上6℃记作+6℃,哪么零下6℃记作 ( ) A.6℃ B.-6℃ C.6 D.-62.如果x 2-3x +a 可分解为(x +2)(x -5),那么a 的值为 ( ) A. -3 B. -5 C. 10 D. -103.如图,已知︒=∠701,要使AB//CD ,则须具备的另一个条件是 ( ) A.︒=∠702 B.︒=∠1002 C.︒=∠1102 D.︒=∠11034.在反比例函数y=的图象的每一条曲线上,y 都随x 的增大而增大,则k 的1-x A.x ≥0 B.x >0且x ≠1 C.x >0 D.x ≥0且x ≠1 6.如图所示,在△ABC 中,AB=AC ,∠BAC =36°,∠ABC 与∠ACB 的角平分线相交于点p ,则∠BPC 的度数为 ( )A. 72°B. 108°C. 144°D. 126°7.下列命题中,正确的是 ( ) A. 有两边和一角对应相等的两个三角形全等B. 有一边和两角对应相等的两个三角形全等C. 有三个角对应相等的两个三角形全等D. 以上答案都不对8.为了解某校计算机等级考试的情况,抽取60名学生的计算机考试成绩进行了统计,统计结果如表所示,则这60名学生计算机考试成绩的众数..、中位数...分别是 ( )A.20,16 B.16,20 C.20,12 D.16,129.抛物线的图形如图,则下列结论:①>0;②;③>21;④<1.其中正确的结论是 ( )A.①②B.②③C.②④D.③④ 10.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 作0°~90°的旋转,那么旋转时露出的△ABC 的面积(S)随着旋转角度(n)的变化而变化,下面表示S 与n 的关系的图象大致是 ( )8小题,每小题4分,共32分,只要求填写最后结果)11.如图,数轴上A B ,两点表示的数分别为1-点B 关于点A 的对称点为C ,则点C 所表示的数为__________。
12.同时投掷两枚硬币,出现反面都向上的概率为__________。
13.方程2512x x =-的解是 14. 如图,一架长2.5m 的梯子,斜靠在一竖直的墙上,这时,梯子的底端距离墙底端0.7m ,如果梯子的顶端沿墙下滑0.4m ,那么梯子的低端将滑出______m 15. 直线y kx b =+经过A (-2,-1)和B (-3,0)两点,则不等式组12x kx b <+<的解集为_________.16.在正方形ABCD 的边BC 的延长线上取一点E ,使EC =AC ,连结AE 交CD 于F ,那么∠AFC 等于_______;若AB =2,那么△ACE 的面积为_______. 17.如下图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,△BCD 为正三角形,BC =8,则梯形ABCD 的面积等于_______.18.如上图,AB 为半圆O 的直径,C 为AO 的中点,CD AB ⊥交半圆于点D ,以C 为圆心,CD 为半径画弧DE 交AB 于E 点,若8cm AB =,则图中阴影部分的面积 为 2cm (取准确值)三、解答题。
(共三小题,28分.解答时写出必要的文字说明及演算步骤) 19.计算:(共两小题,每小题5分,共10分)(1)(5分)已知1=x 是不等式组⎪⎩⎪⎨⎧-+<--≤-5)2(4)(32253x a x a x x 的解,求a 的取值范围(2)(5分)计算:1sin 30π+32-0°+()20.(共两小题,每小题5分,共10分) (!)(5分)解方程: 3x 32--52x -=1(2)(5分)用配方法解方程: x 2+2x -1=021.(本题8分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动. 下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:报名人数分布直方图 报名人数扇形分布图(1) (2分)该年级报名参加丙组的人数为 ;(2) (4分)该年级报名参加本次活动的总人数为 ,并补全频数分布直方图; (3) (2分)根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽多少人到丙组。
B 卷(50分)四、解答题(本大题共5小题,共50分。
解答时写出必要的文字说明及演算步骤) 22.(本题8分)已知a .b .c 是△ABC 的三边,且满足224224c a b c b a +=+,试判断△ABC 的形状。
阅读下面解题过程:解:由224224c a b c b a +=+得:222244c b c a b a -=- ① ()()()2222222b a c b a b a -=-+ ② 即222c b a =+ ③ ∴△ABC 为Rt △。
④试问:以上解题过程是否正确: ; (2分) 若不正确,请指出错在哪一步?(填代号) ; (2分) 错误原因是 ; (2分) 本题的结论应为 。
(2分) 23.(本题10分) 已知:△ABC 的两边AB 、BC 的长是关于x 的一元二次方程22(22)20x k x k k -+++=的两个实数根,第三边长为10。
问当k 为何值时,△ABC 是等腰三角形。
24.(本题10分)如图;四边形ABCD 内接于以BC 为直径的圆O ,且AB =AD ,延长CB 、DA 交于点P ,当PB =BO ,CD =18时,求:(1) (5分) ⊙O 的半径长; (2) (5分) P A 的长25.(本题10分)计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元. (1) (5分)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案;(2) (5分)已知商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元. 在(1)的方案中,为使销售时获利最多,你选择哪种进货方案?C26.(本题12分)如图:一次函数m x y +-=的图象与二次函数42-+=bx ax y 的图象交于x 轴 上一点A ,且交y 轴于点B ,点A 的坐标为)0,2(-. (1)(3分)求一次函数的解析式; (2)(4分)设二次函数42-+=bx ax y 的对称轴为直线n x =(0<n ),n 是方程02322=--x x 的一个根,求二次函数的解析式;(3)(5分)在(2)条件下,设二次函数交y 轴于点D ,在x 轴上有一点C ,使以点A 、B 、C 组成的三角形与∆ADB 相似.试求出C 点的坐标.参考答案一.选择题(本大题共10小题,每小题4分,共40分,每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来) BDCAD BDBAB二、填空题(本大题共8小题,每小题4分,共32分,只要求填写最后结果)11. -212. 0.25; 13,x=5; 14,0.8; 15, -3<x <-2;16,112. 5°;17,24 18, 73π三、解答题。
(共三小题,28分.解答时写出必要的文字说明及演算步骤)19题、解:(1)解:134≤<-a (5分)(2)解原式=113122+-+=4. (5分)20题、(1)解:2(2-3x )-3(x -5)=6 (2) 解:x =-1±5分) 4-6x -3x +15 =6 -6x -3x =6-4-15 -9x =-13 x=139 x=139是原方程的(5分) 21题、解;(1) 25 ; (2分)(2) 50;(画条形统计图) (4分) (3)5人; (2分) B 卷(50分)四、解答题(本大题共5小题,共50分。
解答时写出必要的文字说明及演算步骤)22题。
解:不正确,(2分)③,(2分)等式两边除以了可能为零的数,(2分)等腰或直角三角形(2分)23题。
解:由已知方程得:(2)()0,x k x k ---=122,,x k x k ∴=+= (2分) 不妨设AB=2k +,BC=k ,显然AB ≠BC 。
而△ABC 的第三边长AC 为10。
(2分) (1)若AB=AC ,则2k +=10,得k =8,即k =8时,△ABC 为等腰三角形; (3分)(2)若BC=AC ,则k =10,即k =10时。
△ABC 为等腰三角形 (3分)24.题..解:(1)12 (提示:连接OA,OD,证明OA//OD )(5分)(2) (5分) 25.题。
解:(1)同时购进甲、乙两种电视机各25台;同时购进甲种电视机35台、丙种电视机15台;(6分)(2) 购进甲、乙两种电视机各25台;同时购进甲种电视机35台共获利8750元,(5分)同时购进甲种电视机35台、丙种电视机15台,共获利10500元,故选择进甲种35台,丙种15台电视机的购货方案使销售时获利最多.(5分)26题。
y 解:(1)∵ m x y +-=经过点A )0,2(- ∴ m +=20 ∴2-=m∴ 一次函数的解析式为:2--=x y (3(2)方程02322=--x x 的两个根分别为211-=x ,2=x ∵0<n ∴21-=n∵函数42-+=bx ax y 的对称轴为:直线ab x 2-= ∴212-=-a b ∴b a = ,又函数42-+=bx ax y 经过A )0,2(- ∴4240--=b a ∴2==b a二次函数的解析式为:4222-+=x x y (4分)(3)若点C 在点A 的右边,由(1)得:OA=OB ,∠CAB=450而ADB ∆没有一个角等于450,所以这种情况不存在; 若点C 在点A 的左边, 由(1)(2)可知:点B 、D 的坐标分别为)2.0(-、)4,0(- ∴AB=22 BD=2 OA=2 ∠ABD=∠CAB=1350 ∴1)当AB AB BD CA =时,2==BD CA ∴OC=4 点C 的坐标为)0,4(-2)当BD AB AB CA =时,4=CA ∴OC=6 点C 的坐标为)0,6(- (5分)。