高一数学必修四第二章综合能力检测
高一数学必修4第二章测试卷

高一数学必修4第二章测试卷一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若向量a =(3,2),b =(0,1)-,则向量2b a - 的坐标是( )A .(3,4)-B .(3,4)-C .(3,4)D .(3,4)--平行四边形ABCD 中,AB CD BD -+ 等于( )A .DB B .A DC .A BD .A C3. 已知平面向量(1,2)a = ,(2,)b m =- ,且//a b ,则23a b + 等于 ( )A .(2,4)--B .(3,6)--C .(5,10)--D .(4,8)--4. 对于非零向量a 、b ,下列命题正确的是 ( ) A.0 , 0a b a b ⋅=+= 若则 B.a b a b a 方向上的投影为在则若 , //C.2 , ()a b a b a b ⊥⋅=⋅ 若则 D. , a c b c a b ⋅=⋅=若则 5. 已知平面内三点的值为则若k AC BA k C B A ,, ) , 7(, )3 , 1(, )2 , 2(⊥( )A. 3B. 6C. 7D. 96.已知a b 与均为单位向量,它们的夹角为60°,|3|a b -= ( ) A .7 B .10 C .13 D .47.已知||3,||5,12a b a b ==⋅= 且,则向量a 在向量b 上的投影为( )A .512B .3C .4D .58.已知D 、E 分别是ABC ∆的边BC , AC 的中点,设 , A D a B E b == . 以a 、b 为基底,向量BC 可表示为 ( ) A. 2233a b + B. 2233a b - C. 2433a b + D. 2233a b -+ 9.已知A B =5a b + ,BC =28a b -+ ,CD =3()a b - ,则( )A. A 、B 、D 三点共线B .A 、B 、C 三点共线 C. B 、C 、D 三点共线 D. A 、C 、D 三点共线10.若平面向量b 与向量(1,2)a =- 的夹角是0180,且b = b =( )A .(3,6)-B .(3,6)-C .(6,3)-D .(6,3)-二、填空题:本大题共4小题,每小题5分,共20分。
高一数学必修4:第二章综合检测题

第二章综合检测题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列等式成立的是( ) A.MN →=NM →B .a ·0=0C .(a ·b )c =a (b ·c )D .|a +b |≤|a |+|b |[答案] D2.如果a 、b 是两个单位向量,那么下列四个结论中正确的是( )A .a =bB .a ·b =1C .a =-bD .|a |=|b | [答案] D[解析] 两个单位向量的方向不一定相同或相反,所以选项A 、C 不正确;由于两个单位向量的夹角不确定,则a ·b =1不成立,所以选项B 不正确;|a |=|b |=1,则选项D 正确.3.(山东师大附中2012-2013期中)已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =( )A .(-2,-1)B .(-1,2)C .(-2,1)D .(-1,0)[答案] B[解析] 12a -32b =12(1,1)-32(1,-1) =(12-32,12+32)=(-1,2).4.(哈尔滨三中2012-2013高一期中)已知两点A (4,1),B (7,-3),则向量AB →的模等于( )A .5 B.17 C .3 2 D.13[答案] A[解析] |AB →|=(7-4)2+(-3-1)2=5.5.(2012北京海淀区期末)如图,正方形ABCD 中,点E 、F 分别是DC 、BC 的中点,那么EF →=( )A.12AB →+12AD → B .-12AB →-12AD →C .-12AB →+12AD → D.12AB →-12AD [答案] D[解析] EF →=12DB →=12(AB →-AD →).6.(2013诸城模拟)已知a 、b 、c 是共起点的向量,a 、b 不共线,且存在m 、n ∈R 使c =m a +n b 成立,若a 、b 、c 的终点共线,则必有( )A .m +n =0B .m -n =1C .m +n =1D .m +n =-1[答案] C[解析] 设OA →=a ,OB →=b ,OC →=c , ∵a 、b 、c 的终点共线,∴设AC →=λAB →,即OC →-OA →=λ(OB →-OA →), ∴OC →=(1-λ)OA →+λOB →,即c =(1-λ)a +λb ,又c =m a +n b ,∴⎩⎪⎨⎪⎧1-λ=m ,λ=n ,∴m +n =1. 7.如图,M 、N 分别是AB 、AC 的一个三等分点,且MN →=λ(AC →-AB →)成立,则λ=( )A.12B.13C.23 D .±13 [答案] B[解析] MN →=13BC →且BC →=AC →-AB →.8.与向量a =(1,1)平行的所有单位向量为( ) A .(22,22) B .(-22,-22) C .(±22,±22)D .(22,22)或(-22,-22) [答案] D[解析] 与a 平行的单位向量为±a|a |.9.(2013·湖北文)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A.322B.3152 C .-322 D .-3152[答案] A[解析] 本题考查向量数量积的几何意义及坐标运算. 由条件知AB →=(2,1),CD →=(5,5),AB →·CD →=10+5=15. |CD →|=52+52=52,则AB →在CD →方向上的投影为 |AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322,故选A.10.若|a |=1,|b |=6,a ·(b -a )=2,则a 与b 的夹角为( ) A.π6 B.π4 C.π3 D.π2[答案] C[解析] a ·(b -a )=a ·b -a 2=1×6×cos θ-1=2. cos θ=12,θ∈[0,π],故θ=π3.11.(2012·全国高考浙江卷)设a 、b 是两个非零向量( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b | [答案] C[解析] 利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a 、b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a 、b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D ;若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立.12.已知△ABC 中,AB →=a ,AC →=b ,a ·b <0,S △ABC =154,|a |=3,|b |=5,则a 与b 的夹角为( )A .30°B .-150°C .150°D .30°或150°[答案] C[解析] 由a ·b <0可知a ,b 的夹角θ为钝角,又S △ABC =12|a |·|b |sin θ,∴12×3×5×sin θ=154,∴sin θ=12⇒θ=150°.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则A 、B 、C 、D 四点中一定共线的三点是____________.[答案] A ,B ,D[解析] BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2(a +2b )=2AB →.14.已知向量a =(1,1),b =(2,-3),若k a -2b 与a 垂直,则实数k 等于________.[答案] -1[解析] (k a -2b )·a =0,[k (1,1)-2(2,-3)]·(1,1)=0,即(k -4,k +6)·(1,1)=0,k -4+k +6=0,∴k =-1.15.(2013北京东城区模拟)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ的值为____________.[答案] 12[解析] a +λb =(1,2)+λ(1,0)=(1+λ,2), ∵(a +λb )∥c ,∴4(1+λ)-3×2=0,解得λ=12.16.(2013北京东城区模拟)正三角形ABC 边长为2,设BC →=2BD →,AC →=3AE →,则AD →·BE →=________.[答案] -2[解析] ∵AD →=AB →+BD →=AB →+12BC →,BE →=AE →-AB →=13AC →-AB →, ∴AD →·BE →=(AB →+12BC →)·(13AC →-AB →)=13AB →·AC →+16BC →·AC →-12BC →·AB →-AB →2=13×2×2×12+16×2×2×12+12×2×2×12-22=-2.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)(山东济南一中12-13期中)已知向量a =(1,2),b =(x,1)(1)若〈a ,b 〉为锐角,求x 的范围; (2)当(a +2b )⊥(2a -b )时,求x 的值.[解析] (1)若〈a ,b 〉为锐角,则a ·b >0且a 、b 不同向. a ·b =x +2>0,∴x >-2 当x =12时,a 、b 同向. ∴x >-2且x ≠12(2)a +2b =(1+2x,4),(2a -b )=(2-x,3) (2x +1)(2-x )+3×4=0 即-2x 2+3x +14=0 解得:x =72或x =-2.18.(本题满分12分)(山东师大附中2012-2013期中)设e 1、e 2是正交单位向量,如果OA →=2e 1+m e 2,OB →=n e 1-e 2,OC →=5e 1-e 2,若A 、B 、C 三点在一条直线上,且m =2n ,求m 、n 的值.[解析] 以O 为原点,e 1、e 2的方向分别为x ,y 轴的正方向,建立平面直角坐标系xOy ,则OA →=(2,m ),OB →=(n ,-1),OC →=(5,-1), 所以AC →=(3,-1-m ),BC →=(5-n,0),又因为A 、B 、C 三点在一条直线上,所以AC →∥BC →, 所以3×0-(-1-m )·(5-n )=0,与m =2n 构成方程组⎩⎪⎨⎪⎧mn -5m +n -5=0m =2n ,解得⎩⎨⎧m =-1n =-12或⎩⎪⎨⎪⎧m =10,n =5.19.(本题满分12分)已知a 和b 是两个非零的已知向量,当a +t b (t ∈R )的模取最小值时.(1)求t 的值;(2)已知a 与b 成45°角,求证:b 与a +t b (t ∈R )垂直. [解析] (1)设a 与b 的夹角为θ,则|a +t b |2=|a |2+t 2|b |2+2t ·a ·b =|a |2+t 2·|b |2+2|a |·|b |·t ·cos θ=|b |2(t +|a ||b |cos θ)2+|a |2(1-cos 2θ).∴当t =-|a ||b |cosθ时,|a +t b |取最小值|a |sin θ.(2)∵a 与b 的夹角为45°,∴cos θ=22,从而t =-|a ||b |·22,b ·(a+t b )=a ·b +t ·|b |2=|a |·|b |·22-22·|a ||b |·|b |2=0,所以b 与a +t b (t ∈R )垂直,即原结论成立.20.(本题满分12分)已知向量a 、b 不共线,c =k a +b ,d =a -b , (1)若c ∥d ,求k 的值,并判断c 、d 是否同向; (2)若|a |=|b |,a 与b 夹角为60°,当k 为何值时,c ⊥d . [解析] (1)c ∥d ,故c =λd ,即k a +b =λ(a -b ).又a 、b 不共线,∴⎩⎪⎨⎪⎧ k =λ,1=-λ.得⎩⎪⎨⎪⎧λ=-1,k =-1.即c =-d ,故c 与d 反向. (2)c ·d =(k a +b )·(a -b ) =k a 2-k a ·b +a ·b -b 2 =(k -1)a 2+(1-k )|a |2·cos60° 又c ⊥d ,故(k -1)a 2+1-k 2a 2=0.即(k -1)+1-k2=0. 解得k =1.21.(本题满分12分)向量a 、b 、c 满足a +b +c =0,(a -b )⊥c ,a ⊥b ,若|a |=1,求|a |2+|b |2+|c |2的值.[解析] 由(a -b )⊥c 知(a -b )·c =0. 又c =-(a +b ),∴(a -b )·(a +b )=a 2-b 2=0.故|a |=|b |=1,又c 2=[-(a +b )]2=a 2+2a ·b +b 2=a 2+b 2=2,∴|a |2+|b |2+|c |2=4.22.(本题满分12分)已知向量a =(3,-1),b =(12,32). (1)求证:a ⊥b ;(2)是否存在不等于0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x ⊥y ?如果存在,试确定k 和t 的关系;如果不存在,请说明理由.[解析] (1)a ·b =(3,-1)·(12,32)=32-32=0,∴a ⊥b .(2)假设存在非零实数k ,t 使x ⊥y ,则[a +(t 2-3)b ]·(-k a +t b )=0,整理得-k a 2+[t -k (t 2-3)]a ·b +t (t 2-3)b 2=0.又a ·b =0,a 2=4,b 2=1.∴-4k +t (t 2-3)=0,即k =14(t 2-3t )(t ≠0), 故存在非零实数k 、t ,使x ⊥y 成立,其关系为k =14(t 3-3t )(t ≠0).。
北师大版数学必修4第二章章末检测卷(有答案)-(高一)

C. D.
解析:由向量的平行四边形法则,知当| + |=| |时,∠A=90°.又| |=1,| |= ,故∠B=60°,∠C=30°,| |=2,所以 = =- .
答案:B
10.在△ABC中,AB=4,∠ABC=30°,D是边BC上的一点,且 · = · ,则 · 的值等于()
A.-4 B.0
A. B.
C. D.
解析:因为|a+b|=1,所以|a|2+2a·b+|b|2=1,所以cosθ=- .又θ∈[0,π],所以θ= .
答案:C
3.若A(x,-1),B(1,3),C(2,5)三点共线,则x的值为()
A.-3 B.-1
C.1 D.3
解析: ∥ ,(1-x,4)∥(1,2),2(1-x)=4,x=-1,选B.
答案:2
15.已知非零向量a,b,c,满足a+b+c=0,向量a,b的夹角为120°,且|b|=2|a|,则向量a与c的夹角为________.
解析:由题意可画出图形,
在△OAB中,
因为∠OAB=60°,|b|=2|a|,
所以∠ABO=30°,OA⊥OB,
即向量a与c的夹角为90°.
答案:90°
16.给出以下命题:①若|a·b|=|a||b|,则a∥b;
答案:C
5.在△ABC中,已知D是边AB上一点,若 =2 , = +λ ,则λ=()
A. B.
C. D.
解析:由已知得 = + = + = + ( - )= + ,因此λ= ,故选B.
答案:B
6.(2016·山东)已知非零向量m,n满足4|m|=3|n|,cos〈m,n〉= ,若n⊥(tm+n),则实数t的值为()
C.4 D.8
解析:∵ · = · ,
高一数学必修四综合能力检测

本册综合能力检测一、选择题(本大题共12个小题,每小题5分,共60分) 1.在△ABC 中,sin A ·cos A =-18,则cos A -sin A 的值为( ) A .-32 B .±32 C.52 D .-52答案:D解析:由(cos A -sin A )2=1-2sin A cos A =54,而在△ABC 中,因为sin A cos A <0可知sin A >0,cos A <0,∴cos A -sin A =-52.2.若|a |=1,|b |=2,|a +b |=7,则a 与b 的夹角θ的余弦值( ) A .-12 B.12 C.13 D .-13 答案:B解析:由|a +b |=7,得:7=(a +b )2=a 2+b 2+2a ·b =1+4+2×1×2cos θ, 所以cos θ=12.3.如图,在△ABC 中,BD →=12DC →,AE →=3ED →,若AB →=a ,AC →=b ,则BE →等于( )A.13a +13b B .-12a +14b C.12a +14b D .-13a +13b答案:B解析:BE →=AE →-AB →=34AD →-a =34(AB →+BD →)-a =34a -a +34BD →=-14a +34×13BC →=-14a +14(AC →-AB →)=-14a +14b -14a =14b -12a .4.函数y =log 15sin(π3-π4x )的单调递增区间是( ) A .[-23,103) B .[-23,103) C .[-23,103]D .[8k -23,8k +43)(k ∈Z ) 答案:D解析:将原函数转化为y =log 15[-sin(π4x -π3)],由复合函数的单调性可知,整个函数的单调递增区间就是y =sin(π4x -π3)的递增区间,且sin(π4x -π3)<0.5. 已知函数y =sin x 的定义域为[a ,b ],值域为[-1,12],则b -a 的值不可能是( )A.π3B.2π3 C .π D.4π3答案:A解析:画出函数y =sin x 的草图分析知b -a 的取值范围为[2π3,4π3],故选A.6.化简式子2-sin 22+cos4的值是( ) A .sin2 B .-cos2 C.3cos2 D .-3cos2 答案:D解析:将cos4运用倍角公式变形为1-2sin 22,从而原式化为3-3sin 22,再开方即得结果.7.已知三点A (1,1)、B (-1,0)、C (0,1),若AB →和CD →是相反向量,则点D 的坐标是( )A .(-2,0)B .(2,2)C .(2,0)D .(-2,-2) 答案:B解析:设出D 点的坐标(x ,y ),写出向量AB →和CD →的坐标形式,根据它们是相反向量,可以列出关于x ,y 的方程组,从而得解.8.函数y =A sin(ωx +φ)(A >0,ω>0)的部分图像如下图所示,则f (1)+f (2)+f (3)+…+f (11)的值等于( )A .2B .2+ 2C .2+2 2D .-2-2 2答案:C解析:由图像可知,f (x )=2sin π4x ,其周期为8, ∴f (1)+f (2)+f (3)+…+f (11) =f (1)+f (2)+f (3)=2sin π4+2sin π2+2sin 3π4=2+2 2.9.将函数y =sin2x 的图像向左平移π4个单位,再向上平移1个单位,所得图像的函数解析式是( )A .y =2cos 2xB .y =2sin 2xC .y =1+sin(2x +π4) D .y =cos2x 答案:A解析:平移后所得的解析式为:y =sin2(x +π4)+1 =1+cos2x =2cos 2x .10.a =(cos2α,sin α),b =(1,2sin α-1),α∈(π2,π),若a ·b =25,则tan(α+π4)等于( )A.13B.27C.17D.23答案:C解析:由题意得cos2α+sin α(2sin α-1)=25,整理得sin α=35.又α∈(π2,π),所以cos α=-45,所以tan α=-34.所以tan(α+π4)=tan α+tan π41-tan αtan π4=17.11.如右图,向量OA →=a ,OB →=b ,且BC →⊥OA →,C 为垂足,设向量OC →=λa (λ>0),则λ的值为( )A.a ·b|a |2 B.a ·b |a ||b |C.a ·b |b |D.|a ||b |a ·b答案:A解析:OC →为OB →在OA →上的射影.故|OC →|=a ·b|a |,∴OC →=a ·b |a |·a |a |=a ·b |a |2·a .12.使f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数,且在[0,π4]上是减函数的θ的一个值是( )A .-π3 B.π3 C.2π3 D.4π3答案:C解析:f (x )=sin(2x +θ)+3cos(2x +θ)=2sin(2x +θ+π3),因为f (x )是奇函数,验证得B 、D 不成立;当θ=-π3时,f (x )=2sin2x ,当x ∈[0,π4]时,f (x )是增函数,A 不成立;当θ=2π3时,f (x )=2sin(2x +π)=-2sin2x 满足条件,故选C.二、填空题(本大共4个小题,每小题5分,共20分)13.已知向量OA →=(0,1),OB →=(k ,k ),OC →=(1,3),且AB →∥AC →,则实数k =________.答案:-1解析:∵AB →=(k ,k -1),AC →=(1,2),AB →∥AC →, ∴2k -(k -1)=0,∴k =-1.14.[2011·江苏卷]已知tan(x +π4)=2,则tan xtan2x 的值为________. 答案:49解析:由tan(x +π4)=tan x +11-tan x =2,得tan x =13,tan xtan2x =tan x ·1-tan 2x 2tan x =1-tan 2x 2=49.15.函数f (x )=cos xcos x 2-sin x 2的值域是__________.答案:(-2,2) 解析:f (x )=cos 2x2-sin 2x2cos x 2-sin x 2=cos x 2+sin x 2, 且cos x 2-sin x2≠0, 即sin x 2≠cos x 2,tan x2≠1,∴f (x )=2sin ⎝ ⎛⎭⎪⎫x 2+π4,x ≠2k π+π2,k ∈Z . ∵x 2≠k π+π4,x 2+π4≠k π+π2,∴sin ⎝ ⎛⎭⎪⎫x 2+π4≠±1,∴f (x )≠±2.∴f (x )∈(-2,2).16.已知y =sin x +cos x ,给出以下四个命题:①若x ∈[0,π],则y ∈[1,2];②直线x =π4是函数y =sin x +cos x 图像的一条对称轴;③在区间[π4,5π4]上函数y =sin x +cos x 是增函数;④函数y =sin x +cos x 的图像可由y =2cos x 的图像向右平移π4个单位长度而得到.其中正确命题的序号为________.答案:②④解析:将函数变形后逐个判断正确与否. y =sin x +cos x =2sin(x +π4).①若x ∈[0,π],则x +π4∈[π4,5π4],得sin(x +π4)∈[-22,1],即y ∈[-1,2],①不正确;②记f (x )=2sin(x +π4),∵f (π2-x )=2sin(π2-x +π4)=2sin(3π4-x )=2sin[π-(x +π4)]=2sin(x +π4)=f (x ).从而直线x =π4是函数y =sin x +cos x 图像的一条对称轴,②是正确的;③由于函数y =2sin(x +π4)是由y =2sin x 向左平移π4个单位长度得到的,而函数y =2sin x 在区间[π2,3π2]上是单调递减的,从而函数y =2sin(x +π4)在区间[π4,5π4]上也应该是单调递减的,即命题③不正确;④函数y =2cos x 的图像向右平移π4个单位长度得到函数y =2cos(x -π4)=2·cos(π4-x )=2cos[π2-(x +π4)]=2sin(x +π4),即函数y =sin x +cos x ,从而命题④正确.三、解答题(本大题共6个小题,共70分,解答应写出必要文字说明、证明过程或演算步骤)17.(本小题满分10分)已知点A (-3,-4)、B (5,-12). (1)求AB →的坐标及|AB →|;(2)若OC →=OA →+OB →,OD →=OA →-OB →,求OC →及OD →的坐标; (3)求OA →·OB →.解:(1)AB →=OB →-OA →=(8,-8), |AB →|=82+(-8)2=8 2.(2)OC →=(-3,-4)+(5,-12)=(2,-16), OD →=OA →+BO →=(-3,-4)+(-5,12)=(-8,8). (3)OA →·OB →=-3×5+(-4)×(-12)=33.18.(本小题满分12分)设函数f (x )=a ·(b +c ),其中向量a =(sin x ,-cos x ),b =(sin x ,-3cos x ),c =(-cos x ,sin x ),x ∈R .(1)求函数f (x )的最大值和最小正周期;(2)将函数y =f (x )的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .解:利用数量积的坐标运算将f (x )化简为一种角的三角函数形式后,再利用三角函数性质求解.(1)由题意得f (x )=a ·(b +c )=(sin x ,-cos x )·(sin x -cos x ,sin x -3cos x )=sin 2x -2sin x cos x +3cos 2x =2+cos2x -sin2x =2+2sin(2x +34π).故f (x )的最大值为2+2,最小正周期是2π2=π. (2)由sin(2x +34π)=0得2x +3π4=k π. 即x =k π2-3π8,k ∈Z . 于是d =(3π8-k π2,-2),|d |=(k π2-3π8)2+4(k ∈Z ).因为k 为整数,要使|d |最小,则只要k =1,此时d =(-π8,-2)即为所求.19.(本小题满分12分)[2011·广东卷]已知函数f (x )=2sin(13x -π6),x ∈R .(1)求f (5π4)的值;(2)设α、β∈[0,π2],f (3α+π2)=1013,f (3β+2π)=65,求cos(α+β)的值.解:(1)f (5π4)=2sin(13×5π4-π6) =2sin π4= 2.(2)∵α、β∈[0,π2],f (3α+π2)=1013,f (3β+2π)=65. ∴2sin α=1013,2sin(β+π2)=65, 即sin α=513,cos β=35. ∵cos α=1213,sin β=45.cos(α+β)=cos α·cos β-sin α·sin β=1213×35-513×45=1665.20.(本小题满分12分)已知函数f (x )=12sin2x sin φ+cos 2x cos φ-12sin(π2+φ)(0<φ<π),其图像过点(π6,12).(1)求φ的值;(2)将函数y =f (x )的图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图像,求函数g (x )在[0,π4]上的最大值和最小值.解:(1)因为f (x )=12sin2x sin φ+cos 2x cos φ-12sin(π2+φ)(0<φ<π).所以f (x )=12sin2x sin φ+1+cos2x 2cos φ-12cos φ=12sin2x sin φ+12cos2x cos φ=12(sin2x sin φ+cos2x cos φ)=12cos(2x -φ).又函数图像过点(π6,12),所以12=12·cos(2×π6-φ),即cos(π3-φ)=1.又0<φ<π,所以φ=π3.(2)由(1)知f (x )=12cos(2x -π3),将函数y =f (x )的图像上各点的横坐标缩短到原来的12,纵坐标不变,得到函数y =g (x )的图像,可知g (x )=f (2x )=12cos(4x -π3).因为x ∈[0,π4],所以4x ∈[0,π],因此4x -π3∈[-π3,2π3],故-12≤cos(4x -π3)≤1.所以y =g (x )在[0,π4]上的最大值和最小值分别为12和-14.21. (本小题满分12分)[2011·四川卷]已知函数f (x )=sin(x +7π4)+cos(x -3π4),x ∈R .(1)求f (x )的最小正周期和最小值;(2)已知cos(β-α)=45,cos(β+α)=-45,0<α<β≤π2,求证:[f (β)]2-2=0.解:(1)∵f (x )=sin(x +7π4-2π)+sin(x -3π4+π2)=sin(x -π4)+sin(x -π4)=2sin(x -π4).∴T =2π,f (x )的最小值为-2.(2)由已知得cos β·cos α+sin βsin α=45,cos βcos α-sin βsin α=-45,两式相加得2cos βcos α=0,0<α<β≤π2,β=π2,∴[f (β)]2-2=4sin 2π4-2=0.22. (本小题满分12分)已知a =(cos 5x 3,sin 5x 3),b =(cos x 3,-sin x 3),x∈[0,π2].(1)求a ·b 及|a +b |;(2)若f (x )=a ·b -2λ|a +b |(其中λ>0)的最小值是-32,求λ的值. 解:(1)a ·b =cos 5x 3cos x 3-sin 5x 3·sin x 3=cos2x .|a +b |=a 2+2a ·b +b 2= (cos 25x 3+sin 25x 3)+2cos2x +(sin 2x 3+cos 2x3)=2+2cos2x =4cos 2x .又x ∈[0,π2],∴cos x >0,∴|a +b |=2cos x .(2)f (x )=a ·b -2λ|a +b |=cos2x -2λ·2cos x =2cos 2x -4λcos x -1 =2(cos x -λ)2-2λ2-1.①当0<λ≤1时,f (x )的最小值为-2λ2-1, ∴-2λ2-1=-32,∴λ=12.②当λ>1时,cos x =1时f (x )取最小值1-4λ, ∴1-4λ=-32,∴λ=58,又λ>1,故应舍去.所以,所求λ的值为1 2.。
2021年高中数学 第2章 平面向量综合能力检测 北师大版必修4

2021年高中数学第2章平面向量综合能力检测北师大版必修4一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(xx·陕西文,2)已知向量a=(1,m),b=(m,2),若a∥b,则实数m等于( )A.- 2 B.2C.-2或 2 D.0[答案] C[解析] 本题考查了向量的坐标运算,向量平行的坐标表示等.由a∥b知1×2=m2,即m=2或m=- 2.2.若向量BA→=(2,3),CA→=(4,7),则BC→=( )A.(-2,-4) B.(2,4)C.(6,10) D.(-6,-10)[答案] A[解析] 本题考查向量的线性运算.BC→=BA→+AC→=BA→-CA→=(2,3)-(4,7)=(-2,-4).平面向量的坐标运算即对应坐标相加减.3.已知|a|=63,|b|=13,且a·b=-3,则a与b的夹角为( )A.2π3B.5π6C.π3D.π6[答案] B[解析] 设θ为向量a与b的夹角,则由cosθ=a·b|a||b|可得,cosθ=-363×13=-32,又θ∈[0,π],所以θ=5π6.选B.4.设a,b是两个非零向量( )A.若|a+b|=|a|-|b|,则a⊥bB.若a⊥b,则|a+b|=|a|-|b|C.若|a+b|=|a|-|b|,则存在实数λ,使得b=λaD.若存在实数λ,使得b=λa,则|a+b|=|a|-|b|[答案] C[解析] 本题考查向量共线的条件.若|a+b|=|a|-|b|,则a与b方向相反.则存在b=λa.反之则不然.5.(xx·重庆理,4)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=( )A.-92B.0C.3 D.15 2[答案] C[解析] 本题考查了平面向量的坐标运算与向量的垂直,因为2a-3b=(2k-3,-6),又因为(2a-3b)⊥c,所以,(2a-3b)·c=0,即(2k-3,-6)·(2,1)=0,解得k=3,本题根据条件也可以转化为2a·c-3b·c=0化简求解.6.直线(3-2)x+y=3和直线x+(2-3)y=2的位置关系是( )A.相交但不垂直B.垂直C.平行D.重合[答案] B[解析] 直线(3-2)x+y=3的方向向量为(1,2-3),直线x+(2-3)y=2的方向向量为(1,2+3),则(1,2-3)·(1,2+3)=1+(2-3)(2+3)=1+(-1)=0,所以两直线垂直.选B.7.已知作用在A点的三个力F1=(3,4),F2=(2,-5),F3=(3,1),且A(1,1),则合力F=F1+F2+F3终点的坐标为( )A.(1,9) B.(9,1)C.(8,0) D.(0,8)[答案] B[解析] F =(8,0),设终点坐标为(x ,y ),则⎩⎪⎨⎪⎧x -1=8,y -1=0,解得⎩⎪⎨⎪⎧x =9,y =1.8.在Rt △ABC 中,CD 是斜边AB 上的高,则下列等式不成立的是( ) A .|AC →|2=AC →·AB →B .|BC →|2=BA →·BC → C .|AB →|2=AC →·CD →D .|CD →|2=AC →·AB→·BA →·BC →|AB →|2[答案] C[解析] ∵AC →·AB →=AC →·(AC →+CB →) =AC →2+AC →·CB →=AC →2,∴|AC |→2=AC →·AB →成立;同理|BC →|2=BA →·BC →成立; 而AC →·AB →|AB →|·BA →·BC →|BA →|=|AD →|·|BD →|=|CD |2=|CD →|2.故选C.9.如图,在△ABC 中,AD ⊥AB ,BC →= 3 BD →,|AD →|=1,则AC →·AD →=( )A .2 3B .32C .33D . 3[答案] D[解析] 本题考查了向量的运算. ∵AC →=AB →+BC →=AB →+ 3 BD →,∴AC →·AD →=(AB →+ 3 BD →)·AD →=AB →·AD →+ 3 BD →·AD →, 又∵AB ⊥AD ,∴AB →·AD →=0,∴AC →·AD →= 3 BD →·AD →=3|BD →|·|AD →|·cos∠ADB =3|BD →|·cos∠ADB =3·|AD →|= 3.10.对向量a =(x 1,y 1),b =(x 2,y 2),定义一种新的运算“*”的意义为a *b =(x 1y 2,x 2y 1),它仍是一个向量;则对任意的向量a ,b ,c 和任意实数λ,μ,下面命题中:①a *b =b *a ;②(a *b )*b =a *(b *b );③(λa )*(μb )=(λμ)(a *b ); ④(a +b )*c =a *c +b *c 正确命题的个数为( ) A .3 B .2 C .1 D .0[答案] B[解析] 代入验证知①②不成立,③④成立,故选B.第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把答案填在题中横线上) 11.如图,已知O 为平行四边形ABCD 内一点,OA →=a ,OB →=b ,OC →=c ,则OD →=________.(用a ,b ,c 表示)[答案] a +c -b[解析] OD →=OA →+AD →=OA →+BC →=OA →+OC →-OB →=a +c -b .12.(xx·江苏,10)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE→=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.[答案]12[解析] 本题考查平面向量基本定理应用. 由已知DE →=BE →-BD →=23BC →-12BA →=23(AC →-AB →)+12AB →=-16AB →+23AC →, ∴λ1=-16,λ2=23,从而λ1+λ2=12.13.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE →·CB →的值为________,DE →·DC →的最大值为________.[答案] 1 1[解析] 本题考查平面向量的数量积. 建立平面直角坐标系如图:则CB →=(0,-1),设E (x 0,0), 则DE →=(x 0,-1),∴DE →·CB →=(x 0,-1)·(0,-1)=1, 又DC →=(1,0),∴DE →·DC →=x 0,而0≤x 0≤1, ∴DE →·DC →最大值为1.14.在直角坐标系中,已知PA →=(3,1),PB →=(5,10),若点A 关于向量PB →所在直线的对称点是A ′,则向量PA ′→=________.[答案] (-1,3)[解析] 设AA ′与向量PB →所在直线相交于点M ,则|PM →|=|PA →|cos 〈PA →,PB →〉=PA →·PB →|PB →|=5,所以PM →=15PB →=(1,2),从而AM →=PM →-PA →=(-2,1),PA ′→=PM →+MA ′→=PM →+AM →=(-1,3).15.已知直角梯形ABCD 中,AD ∥BC ,∠ADC =90°,AD =2,BC =1,P 是腰DC 上的动点,则|PA →+3PB →|的最小值为________.[答案] 5[解析] 本题主要考查向量的坐标知识在解析几何中应用,如图,建立平面直角坐标系,根据题意设CD =a ,则A (2,0),B (1,a ),P (0,y ),则PA →=(2,-y ),PB →=(1,a -y ), PA →+3PB →=(2,-y )+(3,3a -3y )=(5,3a -4y ),故|PA →+3PB →|=25+3a -4y2的最小值即当3a =4y 时,|PA →+3PB →|min =5.三、解答题(本大题共6个小题,满分75分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)如图所示,M ,N ,P 分别是△ABC 三边上的点,且BM →=14BC →,CN→=14CA →,AP →=14AB →,设AB →=a ,AC →=b ,试将MN →,MP →,PN →用a ,b 表示,并计算MP →+PN →-MN →. [解析] 由题设得AP →=14AB →=14a ,CN →=14CA →=-14AC →=-14b ,BC →=AC →-AB →=b -a ,BM →=14BC →=14(b -a ),所以MN →=MC →+CN →=34BC →+14CA →=34(b -a )-14b =-34a +12b .同理可得MP →=-12a -14b ,PN →=-14a +34b .将它们代入得MP →+PN →-MN →=0. 17.(本小题满分12分)已知a ,b 是两个非零向量,若a +3b 与7a -5b 垂直,a -4b 与7a -2b 垂直,试求a 与b 的夹角θ.[解析] 由条件知⎩⎪⎨⎪⎧a +3b ·7a -5b =0,a -4b ·7a -2b =0,∴⎩⎪⎨⎪⎧7a 2+16a ·b -15b 2=0,7a 2-30a ·b +8b 2=0.①②由①-②得46a ·b -23b 2=0, 即2a ·b -b 2=0,即2a ·b =b 2, 代入①式得a 2=b 2,∴|a |=|b |.∴cos θ=a ·b |a ||b |=12b 2b 2=12.∴a 与b 的夹角为θ=60°.18.(本小题满分12分)已知向量m =(1,1),向量n 与向量m 的夹角为3π4,且m ·n =-1.(1)求向量n ;(2)设向量a =(1,0),向量b =(cos x ,sin x ),其中x ∈R ,若n ·a =0,试求|n +b |的取值范围.[解析] (1)设n =(x ,y ),则⎩⎪⎨⎪⎧x +y =-1,x +y 2·x 2+y2=cos 3π4=-22,解得⎩⎪⎨⎪⎧x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.∴n =(-1,0)或n =(0,-1). (2)∵a =(1,0),n ·a =0, ∴n =(0,-1).∴n +b =(cos x ,sin x -1). ∴|n +b |=cos x2+sin x -12=2-2sin x =2·1-sin x . ∵-1≤sin x ≤1, ∴0≤1-sin x ≤ 2. ∴0≤|n +b |≤2,即|n +b |的取值范围是[0,2].19.(本小题满分12分)在直角坐标系中,已知OA →=(4,-4),OB →=(5,1),OB →在OA →方向上的射影数量为|OM →|,求MB →的坐标.[解析] 设点M 的坐标为M (x ,y ). ∵OB →在OA →方向上的射影数量为|OM →|, ∴OM →⊥MB →,∴OM →·MB →=0.又OM →=(x ,y ),MB →=(5-x,1-y ), ∴x (5-x )+y (1-y )=0. 又点O 、M 、A 三点共线,∴OM →=λOA →,∴x 4=y -4.∴⎩⎪⎨⎪⎧x 5-x +y 1-y =0,x 4=y-4.解得⎩⎪⎨⎪⎧x =2,y =-2.∴MB →=OB →-OM →=(5-2,1+2)=(3,3).20.(本小题满分13分)设0<|a |≤2,f (x )=cos 2x -|a |sin x -|b |的最大值为0,最小值为-4,且a 与b 的夹角为45°,求|a +b |.[解析] f (x )=1-sin 2x -|a |sin x -|b | =-(sin x +|a |2)2+|a |24-|b |+1.∵0<|a |≤2,∴当sin x =-|a |2时,|a |24-|b |+1=0.当sin x =1时,-|a |-|b |=-4.由⎩⎪⎨⎪⎧|a |24-|b |+1=0,-|a |-|b |=4,得⎩⎪⎨⎪⎧|a |=2,|b |=2.∴|a +b |2=(a +b )2=a 2+2a ·b +b 2=22+2×2×2·cos45°+22=8+42, ∴|a +b |=22+ 2.21.(本小题满分14分)如图所示,在Rt △ABC 中,已知BC =a ,若长为2a 的线段PQ 以点A 为中点,问PQ →与BC →的夹角θ取何值时,BP →·CQ →的值最大?并求出这个最大值.[解析] 解法一:∵AB →⊥AC →,∴AB →·AC →=0.∵AP →=-AQ →,BP →=AP →-AB →,CQ →=AQ →-AC →, ∴BP →·CQ →=(AP →-AB →)·(AQ →-AC →) =AP →·AQ →-AP →·AC →-AB →·AQ →+AB →·AC → =-a 2-AP →·AC →+AB →·AP → =-a 2+AP →·(AB →-AC →)=-a 2+12PQ →·BC →=-a 2+a 2cos θ.当θ=0°时,BP →·CQ →最大,其最大值为0.解法二:以直角顶点A 为坐标原点,两直角边所在直线为坐标轴建立如图所示的平面直角坐标系.设|AB →|=c ,|AC →|=b ,则A (0,0),B (c,0),C (0,b ), 且|PQ →|=2a ,|BC →|=a ,设P 点的坐标为(x ,y ), 则Q (-x ,-y ).∴BP →=(x -c ,y ),CQ →=(-x ,-y -b ),BC →=(-c ,b ),PQ →=(-2x ,-2y ).∴BP →·CQ →=-x (x -c )-y (y +b ) =-x 2-y 2+cx -by ,cos θ=BC →·PQ→|BC →||PQ →|=2cx -2by 2a 2=cx -bya 2, 即cx -by =a 2cos θ. ∴BP →·CQ →=-a 2+a 2cos θ.故当cos θ=1时,即θ=0°(PQ →与BC →同向)时,BP →·CQ →最大,其最大值为0.40384 9DC0 鷀27436 6B2C 欬25203 6273 扳20461 4FED 俭31985 7CF1 糱U24479 5F9F 徟31901 7C9D 粝23586 5C22尢(29306 727A 牺:20738 5102 儂22078 563E 嘾34133 8555 蕕。
北师大版必修四第二章平面向量综合检测题及答案解析

综合检测(二)(时间120分钟,满分150分)、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四 个选项中,只有一项是符合题目要求的)a ,b ,c 满足 a / b ,且 a 丄c ,贝U c (a + 2b )=( )C. 2•.a 丄c ,-'a c = 0.又•••a//b ,二可设b = a 则 c (a + 2b ) = c(1 + 2 ?)a2.已知向量a = (1,0)与向量b = (—1,^/3),则向量a 与b 的夹角是( )nA -6C.2n【答案】A. 2C-6'•'1= (1 + x,3), u= (1 — x,1), 1/u•••(1+ X)x 1-3X (1 — X) — 0,.・.x=2第二章平面向量1.若向量【解析】【答案】 D x k B1 . c o mn B.3【解析】cos〈a ,b 〉=器=T^•••0,b 〉 2n=3 .3.已知 a = (1,2), b —(X ,1),11= a + b, u= a — b,且1/ u 则x 的值为()【解析】【答案】A4.已知|a| = 2|b|, |b|M 0,且关于x的方程x2+ |a|x + ab= 0有实根,则a与b的夹角的取值范围是()n A. [0,6】n , B. [3, n> 0. C. [5,劭n ,D. [6, n【解析】|a|2— 4a b=a f — 4|a||b|cos〈a, b〉= 4|b|2— 8|b|2 cos〈a,b〉-cos a, b〉1W2,〈a, b〉€ [0, n .a,b〉【答案】5.已知|a| = 1, |b| = 6, a (b—a) = 2,则向量a与b的夹角是( )nA.6nB.4nC.nnD-22 2【解析】--a (b—a) = a b— a = 2,.・.|a||b|cos B—|a| = 2,1 n•••1x 6x cos — 1 = 2,.・.cos = 2,又0W 0W n 二=3,故选 C.【答案】 C6.已知OA= (2,2), 5B= (4,1),在x轴上一点P使A P B P有最小值,则P点的坐标是( )A. (—3,0)B. (3,0)C. (2,0)D. (4,0)【解析】设P(x,0),.・.AP= (x—2,—2), BP= (x —4,— 1),A AP BP= (x—2)(x —4)+ 22 2=x —6x+ 10= (x—3) +1,当x= 3时,AP BP取最小值,此时P(3,0).【答案】 B7•若a,b是非零向量,且a丄b,|a|M |b|,则函数f(x)= (x a+ b) (x b—a)是( )A .一次函数且是奇函数B.一次函数但不是奇函数C•二次函数且是偶函数D.二次函数但不是偶函数【解析】..a丄b,.・.a b= 0,•••f(x) = (x a + b) (x b—a) = x2(a b)+ (|b|2—|a|2)x—a b= (|bf—a|2)x,又|a|M|b|.•••f(x )是一次函数且为奇函数,故选A.【答案】 A> —> AB AC —> AB AC 18 已知非零向量AB与AC满足(=+=) BC = 0且===2则^ ABC |AB| AC| |AB| |AC|A .等边三角形B.直角三角形C.等腰非等边三角形D.三边均不相等的三角形【解析】AB和钥分别是与AB, AC同向的两个单位向量.|AB| AC|AB AC AB AC f兰+号是/BAC角平分线上的一个向量,由+弋)BC = 0知该向|AB| |AC| |AB| |AC|AB AC 1量与边BC垂直,.・.ZABC是等腰三角形.由 f f = 2知/BAC= 60 : •••ZABC是|AB|| AC|等边三角形.【答案】 A9. (2013 湖北高考)已知点 A(— 1,1), B(1,2), C(-2,— 1), D(3,4),则向量 AB 在CD 方向上的投影为()A鉅C .-寥【解析】 由已知得AB = (2,1), CD = (5,5),因此AB 在CD 方向上的投影为AB CD _ _鉅|CD| 5©2【答案】 A10•在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点'则-()D. 10【解析】--PA ^ CA — CP ,7 2 7 2 7 7 7 2 IPAl = CA — 2CP CA+CP .—7 —7 —7 —7 少 7 少 —7 —7 —7 Q •.•PB _ CB — CP ,・.|PB| _ CB — 2CP CB +CP .—7 2 —7 2 —7 2 —7 2 —7 —7 —7 —7 2 —7 2 —7 —7 —7 •••|PAr + |PBr_ (CA + CB ) — 2CP (CA + CB) + 2CP _ AB — 2CP 2CD + 2CP又AB 2= 16CP 2, CD = 2CP ,代入上式整理得 |FA|2+ |PB|2= 10|CPf ,故所求 值为10.【答案】 D二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横 线上)C. 5 ,211.已知向量a= (2,1), ab= 10, l a + b| = 5 迄,则|b| 等于【解析】••l a+ b|a5 72,A(a + b)2a50,即a2+ b2+ 2a b a50, 又a|=V5, a b= 10,••5+|bf+ 2X 10a 50.解得|b| = 5.【答案】 5」「4si n a— 2cos a12•已知a a g), b a(sin a, cos a,且a// b•则5^5 + 3前 a【解析】••a//b,.・.3cos aa sin a,4sin a— 2cos a 4tan a— 2 4 X 3— 2 55cos a+ 3sin a 5+ 3tan a 5+ 3X 3 75【答案】513.(2013课标全国卷n )已知正方形ABCD的边长为2, E为CD的中点,贝UAE BDa【解析】如图,以A为坐标原点,AB所在的直线为x轴,AD所在的直线为y 轴,建立平面直角坐标系,则A(0,0), B(2,0), D(0,2), E(1,2),••AE= (1,2), BDa (-2,2),••AE BD a 1X (-2) + 2X 2a2.【答案】 22 n14.已知e1, e2是夹角为~的两个单位向量,a a& —2e2, b a k e1 + e2,若a b a 0,则实数k的值为【解析】 由题意a b = 0,即有(81 — 2e 2) (*01 + e 2)= 0•••k e 1+ (1 — 2k) 81 82— 2e 2= 0.又•••|e i |= |e 2|= 1,〈e i ,e 2>2 n•'•k— 2+ (1 — 2k) cos -3 = 0, 1 — 2k 5 • k — 2= ~2~,•-k =4.【答案】515. (2012 安徽高考)设向量 a = (1,2m), b = (m + 1,1), c = (2, m).若(a + c ) 丄 b,则 a i = .【解析】 a + c = (1,2m) + (2, m) = (3,3m).••(a + c)丄 b,•••(a + c ) b = (3,3m) (m + 1,1)= 6m + 3= 0,••a = (1,— 1), la , 12 + (-1丫【答案】迈三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或 演算步骤)16.(本小题满分12分)(2013江苏高考)已知a = (cos a, sin a, b = (cos B, sin 9, 0< 3<a<n.(1)若 |a — b | = 72,求证:a 丄 b ;⑵设c = (0,1),若a + b = c ,求a 9的值. 【解】(1)证明由题意得a — b l 2 = 2, 即(a — b )2= a 2 — 2a b + b 2 = 2. 又因为 a 2= b 2= laj |b |2 = 1,2n ~3所以 2-2a b = 2, 即卩 a b = 0,故 a 丄b.⑵因为 a + b = (cos a+ cos B, sin 计 sin f) = (0,1),Icos a+ cos 3= 0, 所以1 Isin a+ sin 3= 1,由此得,cos a= cos( — 3),由 0v 3< n 得 0v n — 3^ n. a= n — 3代入 sin a+ sin 3= 1, 得 sin a= sin十“ 5 n n 所以 a=E, 3=6.【解】AC = OC — OA = (7,— 1 — m),BC = OC - 0B = (5- n ,— 2). ••A 、B 、C 三点共线,••• AC//BC ,•••—14+ (m + 1)(5 — n) = 0. 又OA 丄OB.--—■2n + m = 0.3由①②解得 m = 6, n = 3或m = 3, n =q.18.(本小题满分12分)已知a , b 是两个非零向量,当a +t b (t € R )的模取最 小值时.(1)求t 的值; ⑵求证:b 丄(a + t b ).【解】 (1)(a + t b )2= a + kb |2+ 2a t b,|a + t b |最小,即 |a |2+ |t b |2+ 2a t b 最小,又0V a< n 故 17.(本小题满分 12分)平面内三点A 、B 、C 在一条直线上,0A =(— 2, m),0B = (n,1), 0C = (5, —1),且OA 丄OB ,求实数m 、n 的值.即 t 2|b |2 + [af + 2t|a ||b |cos 〈a , b 〉最小.|a |cos 〈 a , b 〉故当t =— 石 时, |b||a +t b | 最小.2|a |cos 〈 a , b 〉 2(2)证明:b (a +1b ) = ab + t|b | ------------------ = ------ |a ||b |cos 〈 a,b 〉— |b|b | = |a ||b |cos |b|a ,b 〉一 |a ||b |cos 〈a , b 〉= 0,故 b 丄(a +1b ).19.(本小题满分13分)△ ABC 内接于以O 为圆心,1为半径的圆,且3OA +4OB + 5OC = 0. (1)求数量积 O A O B , O B OC , OC OA ; (2)求^ ABC 的面积.xKb 1. Com【解】 (1)V3OA + 4OB + 5OC = 0,••3OA + 4OB = 0-5OC , -— -—2 -— 2 即(3OA + 4OB) = (0- 5OC).—7 2 —7 —z —z 2 —7 2可得 9OA + 24OA OB + 16OB = 25OC . 又•••|OA|=|OB|=|OC| = 1,•••OA OB = 0.同理 OB OC =-5,OCOA =- 5.1 —— —— 1 —— —— (2)S Z ABC = S A OAB + Sz oBc + S ZOAC = 2|OA| | OB|sin ZAOB + 2|OB| |OC|sin /BOC + 2|OC| |OA|sin HOC. 又 |O A|= |OB|= |OC|=1.•'S^ABC^ 2(sin ZAOB+sin /BOC + sin ZAOC).由(1)OAOB= |0A| |OB|cos /AOB= cos ZAOB= 0得sin ZAOB= 1.T T T T 4OB OC= |OB| |OC| cos /BOC = cos /BOC=- 5,./ 3-sin /BOC=5,同理sin /AOC=5.5-S/yxBC = 5.20.(本小题满分13分)在平面直角坐标系xOy中,已知点A(- 1,-2),B(2,3), C( - 2,- 1).(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足(AB-tOC) 0C= 0,求t的值.【解】(1 )由题设知AB= (3,5), AC= (—1,1),则AB + AC= (2,6), AB- AC= (4,4).所以AB+ AC| = 2^10, AB-AC匸4寸2.故所求的两条对角线长分别为4迈,2>/10.X K b心m⑵由题设知OC= (-2,- 1), AB-tOC = (3+ 2t,5 +1).由(AB-tOC) OC= 0,得(3 + 2t,5 +1) (—2,- 1)= 0,从而5t=—11,所以t115.图121.(本小题满分13分)如图1,平面内有三个向量OA, OB, OC,其中O A与OB的夹角为120°, OA与OC的夹角为30°且|5A|=|OB匸1,|oC| = 2 羽若oC = QA+ QB(入空R),求H卩的值.【解】法一:作CD //OB交直线OA于点D,作CE //OA交直线OB于点E,贝U OC = OD+ OE,由已知/OCD = /COE= 120 —30 = 90 ° 在Rt△)CD 中,OD = ^3。
2020-2021学年人教A版高中数学必修4练习手册:2单元综合测试 Word版含答案

时间:
第
一、选择题(每小题5分,共60分)
1.如图所示的方格纸中有定点O,P,Q,E,F,G,H,则 + =()
A. B.
C. D.
解析:利用平行四边形法则作出向量 + ,平移即可发现 + = .
答案:C
2.若向量a=(2,0),b=(1,1),则下列结论正确的是()
A.a·b=1B.|a|=|b|
解析: = - ,由于 ⊥ ,所以 · =0,
即(λ + )·( - )=-λ + +(λ-1) · =-9λ+4+(λ-1)×3×2×(- )=0,解得λ= .
= + + = ,(1)正确;
当|a|=|b|=1且a与b反向时,a·b=-1<0,但a与b的夹角为180°,因而(2)不正确;
由于e1=4e2,所以e1∥e2,所以向量e1,e2不能作为基底,(3)不正确;
若a∥b,则a与b的夹角为0°或180°,所以a在b上的投影为|a|cosθ=±|a|,(4)不正确.
C.(a-b)⊥bD.a∥b
解析:a·b=2,所以A不正确;|a|=2,|b|= ,则|a|≠|b|,所以B不正确;a-b=(1,-1),(a-b)·b=(1,-1)·(1,1)=0,所以(a-b)⊥b,所以C正确;由于2×1-0×1=2≠0,所以a,b不平行,所以D不正确.故选C.
答案:C
3.设P是△ABC所在平面内的一点, + =2 ,则()
答案:A
9.已知a=(1,2),b=(2,-3),若向量c满足(c+a)∥b,c⊥(a+b),则c=()
A.( , )B.(- ,- )
C.( , )D.(- ,- )
解析:不妨设c=(m,n),则a+c=(1+m,2+n),a+b=(3,-1),对于(c+a)∥b,则有-3(1+m)=2(2+n),又c⊥(a+b),则有3m-n=0,联立解得m=- ,n=- .故c=(- ,- ).
高中数学必修4第二章测试题

必修4第二章测试题(二)一、选择题:本大题共12小题:每小题5分:共60分。
在每小题给出的四个选项中:只有一项是符合题目要求的。
1.在平行四边形ABCD 中:+-等于 ( )A .B .C .D .AC2.若向量a =(3:2):b =(0:-1):则向量2b -a 的坐标是 ( ) (A )(3:-4)(B )(-3:4) (C )(3:4) (D )(-3:- 4)3.已知与均为单位向量:它们的夹角为60°:|3|b a -= ( )A .7B .10C .13D .44.若|a |=2:|b |=5:|a +b |=4:则|a -b |的值为 ( )A .13B .3C .42D .75.已知平面向量)2,1(= :),2(m -= :且b a //:则b a 32+等于 ( )A .)4,2(--B .)6,3(--C .)10,5(--D .)8,4(--6.若向量a 与b 的夹角为60:||4,(2).(3)72b a b a b =+-=-:则向量a 的模为( ) A .2B .4C .6D .127.已知12,5||,3||=⋅==且:则向量在向量上的投影为( )A .512B .3C .4D .58.已知AB =a +5b :BC =-2a +8b :CD =3(a -b ):则( )A. A 、B 、D 三点共线 B .A 、B 、C 三点共线 C. B 、C 、D 三点共线D. A 、C 、D 三点共线9.已知向量)2,3(-=: )0,1(-=:向量+λ与2-垂直:则实数λ的值为( ) A.71-B. 71C. 61D. 61- 10.若0||2=+⋅:则ABC ∆为( )11.若平面向量与向量)2,1(-=a 的夹角是o180:且53||=b :则=( )A .)6,3(-B .)6,3(-C .)3,6(-D .)3,6(-12.已知a =(1:2):)3,2(-=.若向量c 满足)(+∥b :c ⊥)(+:则=c(A )(37,97) (B ))97,37(--(C ))97,37((D )(37,97--)二、填空题:本大题共4小题:每小题5分:共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章综合能力检测一、选择题(本大题共12个小题,每小题5分,共60分) 1.下列命题中正确的是( ) A .若a ·b =0,则a =0或b =0 B .若a ·b =0,则a ∥bC .若a ∥b ,则a 在b 上的投影为|a |D .若a ⊥b ,则a ·b =(a ·b )2 答案:D解析:若a ∥b ,则a 在b 上的投影为|a |或-|a |,平行时分夹角为0°和180°两种情况;a ⊥b ⇒a ·b =0,(a ·b )2=0.2.已知AB →=a +5b ,BC →=-2a +8b ,CD →=3(a -b ),则( ) A .A 、B 、C 三点共线 B .A 、B 、D 三点共线 C .B 、C 、D 三点共线 D .A 、C 、D 三点共线答案:B解析:由题意,知AB →=BC →+CD →=BD →,所以A 、B 、D 三点共线. 3.在平行四边形ABCD 中,AC 为一条对角线.若AB →=(2,4),AC →=(1,3),则BD →=( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)答案:B解析:在平行四边形ABCD 中, AC →=AB →+AD →,BD →=AD →-AB →,∴BD →=(AC →-AB →)-AB → =(1,3)-2(2,4)=(1,3)-(4,8)=(-3,-5).4.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=( )A. 3 B .2 3 C .4 D .12答案:B解析:a =(2,0),∴|a |=2. |a +2b |2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4×1=12, ∴|a +2b |=2 3.5.[2011·广东卷]若向量a 、b 、c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( )A. 4B. 3C. 2D. 0 答案:D解析:由a ∥b 且a ⊥c , 得b ⊥c ,所以a ·c =0,b ·c =0. 所以,c ·(a +2b )=a ·c +2b ·c =0.6.已知向量OB →=(2,0),OC →=(2,2),CA →=(-1,-3),则OA →和OB →的夹角为( )A.π4B.5π12C.π3D.π12答案:A解析:由题意,得OA →=OC →+CA →=(1,-1), 则|OA →|=2,|OB →|=2,OA →·OB →=2, ∴cos 〈OA →,OB →〉=OA →·OB →|OA →||OB →|=22.又0≤〈OA →,OB →〉≤π,∴〈OA →,OB →〉=π4.故选A.7.已知平面向量a 、b 、c 满足|a |=1,|b |=2,|c |=3,且a 、b 、c 两两所成的角相等,则|a +b +c |等于( )A. 3 B .6或 2 C .6 D .6或 3答案:D解析:由题意,得a 、b 、c 两两所成的角均为120°或0°,当夹角为120°时,a ·b =-1,b ·c =-3,a ·c =-32,则|a +b +c |2=|a |2+|b |2+|c |2+2(a ·b +b ·c +a ·c )=3;当夹角为0°时,|a +b +c |=|a |+|b |+|c |=6.故选D.8.已知命题:“若k 1a +k 2b =0,则k 1=k 2=0”是真命题,则下面对a 、b 的判断正确的是( )A .a 与b 一定共线B .a 与b 一定不共线C .a 与b 一定垂直D .a 与b 中至少有一个为0 答案:B解析:根据平行四边形法则及向量共线的条件可知,a 与b 一定不共线.9.在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP =2PM ,则P A →·(PB →+PC →)等于( )A .-49 B .-43 C.43 D.49答案:A解析:由题意可知,P 是△ABC 的重心, ∴P A →+PB →+PC →=0, ∴P A →·(PB →+PC →)=-P A →2 =-(23MA →)2=-49.10.与向量a =(1,3)的夹角为30°的单位向量是( ) A .(12,32)或(1,3) B .(32,12) C .(0,1) D .(0,1)或(32,12) 答案:D解析:设单位向量为e =(x ,y ),则cos30°=x +3y 2=32,x 2+y 2=1,验证即得D.11.对向量a =(x 1,y 1),b =(x 2,y 2)定义一种新的运算“*”的意义为a *b =(x 1y 2,x 2y 1),仍是一个向量;则对任意的向量a ,b ,c 和任意实数λ,μ,下面命题中:①a *b =b *a②(a *b )*b =a *(b *b ) ③(λa )*(μb )=(λμ)(a *b ) ④(a +b )*c =a *c +b *c 其中正确命题的个数为( ) A .3 B .2 C .1 D .0答案:B解析:可结合向量的运算性质加以验证知③④正确.12.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 点为坐标原点,若BP →=2P A →,且OQ →·AB →=1,则P 点的轨迹方程是( )A .3x 2+32y 2=1(x >0,y >0)B .3x 2-32y 2=1(x >0,y >0)C.32x 2-3y 2=1(x >0,y >0) D.32x 2+3y 2=1(x >0,y >0) 答案:D解析:设P (x ,y ),则Q (-x ,y ).设A (x A,0),x A >0,B (0,y B ),y B >0,BP →=(x ,y -y B ),P A →=(x A -x ,-y ).∵BP →=2P A →,∴x =2(x A -x ),y -y B =-2y , ∴x A =32x ,y B =3y (x >0,y >0).又∵OQ →·AB →=1,(-x ,y )·(-x A ,y B )=1, ∴(-x ,y )·(-32x,3y )=1, 即32x 2+3y 2=1(x >0,y >0).二、填空题(本大题共4个小题,每小题5分,共20分) 13.已知向量a =(4,-3),b =(x,2),且a ∥b ,则x =________. 答案:-83解析:由题意,得4×2+3x =0,得x =-83.14.[2011·重庆卷]已知单位向量e 1,e 2的夹角为60°,则|2e 1-e 2|=________.答案: 3解析:|2e 1-e 2|=(2e 1-e 2)2=4e 21+e 22-4e 1e 2=4+1-4×1×1 cos 60° = 3.15.设向量OA →=(3,1),OB →=(-1,2),向量OC →⊥OB →,且向量BC →∥OA →,当OD →+OA →=OC →时,OD →的坐标是______.答案:(11,6)解析:设OD →=(x ,y ),则由OD →+OA →=OC →,可得OC →=(3+x ,y +1),所以BC →=OC →-OB →=(4+x ,y -1),因为OC →⊥OB →及BC →∥OA →,可得⎩⎪⎨⎪⎧(3+x )·(-1)+(y +1)·2=0(4+x )-3(y -1)=0, 解之得⎩⎪⎨⎪⎧x =11,y =6.16.已知向量a =(6,2),b =(-4,12),直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的方程为____.答案:2x -3y -9=0解析:设B (x ,y )为直线l 上的任意一点,则l 的方向向量为AB →=(x -3,y +1).又a +2b =(-2,3),直线l 与向量a +2b 垂直,所以(x -3,y +1)·(-2,3)=0,展开化简得2x -3y -9=0.三、解答题(本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知|a |=3,|b |=4,且(2a -b )·(a +2b )≤4,求a 与b 的夹角θ的范围.解:由条件(2a -b )·(a +2b )≤4,可以得含cos θ的不等关系式. ∵(2a -b )·(a +2b )≤4,即2×32-2×42+3a·b ≤4, ∴a ·b ≤6,即|a ||b |cos θ=3×4cos θ≤6. ∴-1≤cos θ≤12,∴π3≤θ≤π.18.(本小题满分12分)等腰△ABC 中,BD 和CE 是两腰上的中线,且BD ⊥CE ,求顶角A 的余弦值.解:建立如图所示的直角坐标系,设A (0,a ),C (c,0),则B (-c,0),OA →=(0,a ),BA →=(c ,a ),OC →=(c,0),BC →=(2c,0).因为BD 和CE 分别为AC ,AB 的中线,所以BD →=12(BC →+BA →)=(3c 2,a2),同理CE →=(-3c 2,a 2),又BD →⊥CE →,故BD →·CE →=0,即-94c 2+a 24=0,故a 2=9c 2.所以cos ∠BAC =AB →·AC →|AB →||AC →|=a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45.19.(本小题满分12分)已知|a |=3,|b |=2,a 与b 的夹角为60°,c =3a +5b ,d =m a -b ,c ⊥d ,求m 的值及a 与c 夹角的余弦值.解:由c =3a +5b ,d =m a -b ,可得c ·d =(3a +5b )·(m a -b )=3m a 2-3a ·b +5m a ·b -5b 2.因为|a |=3,|b |=2,a 与b 的夹角为60°,所以a ·b =|a |·|b |·cos60°=3×2×cos60°=3,所以c ·d =27m -3×3+15m -20=0,即42m =29,所以m =2942.因为a ·c =a ·(3a +5b )=3a 2+5a ·b =3×9+5×3=42.|a |=|3a +5b |=(3a +5b )2=9a 2+30a ·b +b 2×25=9×9+30×3+4×25=271,设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=423×271=14271271. 20.(本小题满分12分)(1)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,求a 与b 的夹角;(2)设OA →=(2,5),OB →=(3,1),OC →=(6,3),在OC →上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标,若不存在,请说明理由.解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a ·b -3b 2=61. 又|a |=4,|b |=3,∴a ·b =-6. ∴cos θ=a ·b |a ||b |=-12,∴θ=120°.(2)设存在点M ,且OM →=λOC →=(6λ,3λ)(0<λ≤1),∴MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,∴45λ2-48λ+11=0,解得:λ=13或λ=1115,∴OM →=(2,1)或OM →=(225,115).∴存在M (2,1)或M (225,115)满足题意.21.(本小题满分12分)已知向量OA →=(1,5),OB →=(7,1),OM →=(1,2),P 是直线OM 上的一个动点,当P A →·PB →取最小值时,求OP →的坐标,并求出cos ∠APB 的值.解:设OP →=t ·OM →=(t,2t )(t ≠0),所以P A →=OA →-OP →=(1-t,5-2t ),PB →=OB →-OP →=(7-t,1-2t ),所以P A →·PB →=(1-t,5-2t )·(7-t,1-2t )=(1-t )·(7-t )+(5-2t )·(1-2t )=5t 2-20t +12.令f (t )=5t 2-20t +12,则f (t )=5(t -2)2-8,所以当t =2时,f (t )的最小值为-8,此时OP →=(2,4),P A →·PB →=-8,|P A →|=2,|PB →|=34, 所以cos ∠APB =P A →·PB →|P A →|·|PB →|=-82·34=-41717.22.(本小题满分12分)用两条同样长的绳子拉一物体,物体受到的重力为G ,两绳受到的拉力分别为F 1,F 2,夹角为θ,如图.(1)求其中一根绳受的拉力|F 1|与|G |的关系式,用数学观点分析|F 1|的大小与夹角θ的关系;(2)求|F 1|的最小值;(3)如果每根绳的最大承受拉力为|G |,求θ的取值范围. 解:(1)由力的平衡得F 1+F 2+G =0, 设F 1,F 2的合力为F ,则F =-G , ∴F 1+F 2=F 且|F 1|=|F 2|,|F |=|G |,解直角三角形得cos θ2=12|F ||F 1|=|G |2|F 1|, ∴|F 1|=|G |2cos θ2,θ∈[0°,180°]. 由于函数y =cos x 在x ∈[0°,180°]上为减函数,∴θ逐渐增大时,cos θ2逐渐减小,|G |2cos θ2逐渐增大,∴θ增大时,|F 1|也增大.(2)由上述可知,当θ=0°时,|F 1|有最小值为|G |2.(3)依题意,|G |2≤|F 1|<|G |,∴12≤12cos θ2<1,即12<cos θ2≤1.∵y =cos x 在[0°,180°]上为减函数,∴0°≤θ2<60°,∴θ∈[0°,120°).。