第五章二元一次方程组测试题

合集下载

第五章二元一次方程组单元测试2024-2025学年北师大版数学八年级上册

第五章二元一次方程组单元测试2024-2025学年北师大版数学八年级上册

北师大版八年级上册第五章二元一次方程组一、选择题1.下列方程中,属于二元一次方程的是( )A .523x -=B .31x y +=C .26x y -=D .221x y -=2.方程组的解是31x y x y +=⎧⎨-=-⎩的解是( ) A . B .32x y =-⎧⎨=-⎩ C .21.x y =⎧⎨=⎩, D .23.x y =⎧⎨=⎩, 3.在解二元一次方程组22425x y x y -=⎧⎨-=⎩①②时,下列方法中无法消元的是( ) A .-①② B .由①变形得22x y =+③,将③代入②C .4⨯+①②D .由②变形得245y x =-③,将③代入①4.《张丘建算经》中有这样一首古诗:甲乙隔溪牧羊,二人互相商量;甲得乙羊九只,多乙一倍正当;乙说得甲九只,两人羊数一样;问甲乙各几羊,让你算个半晌,如果设甲有羊x 只,乙有羊y 只,那么可列方程组( )A .B .C .D .5.如图,在天平上放若干苹果和香蕉,其中①②的天平保持平衡,现要使③中的天平也保持平衡,需要在天平右盘中放入砝码( )A .350克B .300克C .250克D .200克6.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组y ax b y kx=+⎧⎨=⎩的解是( ) 12x y =⎧⎨=⎩A.4.53xy=⎧⎨=⎩B.31xy=-⎧⎨=⎩C.13xy=⎧⎨=-⎩D.3xy=⎧⎨=⎩7.为清理积压的库存,商场决定打折销售,已知甲、乙两种服装的原单价共为440元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为342元,则甲、乙两种服装的原单价分别是A.200元,240元B.240元,200元C.280元,160元D.160元,280元8.上学年初一某班的学生都是两人一桌,其中男生与女生同桌,这些女生占全班女生的,本学年该班新转入4个男生后,男女生刚好一样多.设上学年该班有男生x人,女生y人,则列方程组为()A.B.C.D.9.某校七年级1班学生为了参加学校文化评比,买了22张彩色的卡纸制作如图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.B.C.D.10.现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是()二、填空题11.已知3x 2a +b -3-5y 3a -2b +2=1是关于x ,y 的二元一次方程,则(a +b )b = .12. 已知二元一次方程,请写出该方程的一组整数解.关于x ,y 的方程组{x +6y =42x −3y =2k −1的解也是二元一次方程的解,则k 的值为 . 13.若方程组的解是 ,则直线y =-2x +b 与直线y =x -a 的交点坐标是 .14.在方程组中,若未知数x 、y 满足x +y >0,则m 的取值范围是 . 15.我国古代数学书《四元玉鉴》中有这样﹣一个问题:“九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱”.计算可得甜果的个数是 .16.小明与爸爸的年龄和是52岁,爸爸对小明说:“当我的年龄是你现在的年龄的时候,你还要16年才出生呢.”如果设现在小明的年龄是x 岁,爸爸的年龄是y 岁,则可列二元一次方程组为: .17.如图,已知函数y ax b =+和y kx =的图象交于点P ,则二元一次方程组y ax b y kx=+⎧⎨=⎩的解是________.三、解答题18.解方程组:(1). (2).19.已知方程组与有相同的解,求m 和n 值.20.大型客车每辆能坐54人,中型客车每辆能坐36人,现有378人,问需要大、中型客车各几辆才能使每个人上车都有座位,且每辆车正好坐满?21.某校积极开展课外兴趣活动,已知701班同学中,参加球类项目的学生与参加艺术类项目的学生共32人,且参加球类项目的学生比参加艺术类项目的学生多4人.求参加球类和艺术类项目的学生各多少人. 3x y +=22.某班组织班团活动,班委会准备15元钱全部用来购买笔记本和中性笔两种奖品.已知笔记本2元/本,中性笔1元/支,且每种奖品至少买1件.(1)若设购买笔记本x本,中性笔y支,写出y与x之间的数量关系式;(2)有多少种购买方案?请列举所有可能的结果.23.某校八年级师生共368人准备参加社会实践活动,现已预备了A、B两种型号的客车,除司机外A型号客车有49个座,B型号客车有37个座,两种客车共8辆,刚好坐满,求A、B两种型号的客车各用了多少辆?24.如图,已知函数y=x+2的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,4)且与x轴及y=x+2的图象分别交于点C、D,点D的坐标为(23,n)(1)则n=,k=,b=_______.(2)若函数y=kx+b的函数值大于函数y=x+2的函数值,则x的取值范围是_______.(3)求四边形AOCD的面积.25.某商场购进甲、乙两种服装后,都加价40%标价出售,春节期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售.某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,问这两种服装的标价和进价各是多少元?26.某服装店用6000元购进A,B两种新式服装,按标价售出后可获得毛利润3800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.类型价格A型B型进价(元/件)60100标价(元/件)100160(1)求这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,B种服装按标价的7折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?27.某公司在手机网络平台推出的一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/千米计算,耗时费按y元/分钟计算.小聪、小明两人用该打车方式出行,按上述计价规则,他们打车行驶里程数、所用时间及支付车费如下表:里程数(千米)时间(分钟)车费(元)小聪3109小明61817.4(1)求x,y的值;(2)该公司现推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费,小强使用该方式从家打车到郊区,总里程为23千米,耗时30分钟,求小强需支付多少车费.28.植树造林可以减少二氧化碳排放,为实现“碳中和”做出贡献,还可以美化环境:为此某区计划由甲施工队把城区主干道某一段公路的一侧栽上若干棵小叶榕树;若施工队平均每人植5棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数少10棵;若施工队平均每人植6棵小叶榕树,则施工队可以种植的棵数比计划种植的棵数多5棵.求甲施工队有多少人?计划种植的小叶榕树有多少棵?。

北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案

北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案
北师大版八年级数学上册(第五章二元一次方程组)单元测试卷-带参考答案
一、单选题
1.如图,在平面直角坐标系中,一次函数y=kx+b和y=mx+n相交于点(2,-1)则关于x、y的方程组 的解是()
A. B. C. D.
2.某校运动员分组训练,若每组6人,余3人;若每组7人,则缺5人;设运动员人数为 人,组数为 组,则列方程组为()
参考答案:
1.B
2.D
3.C
4.A
5.C
6.B
7.C
8.B
9.D
10.A
11. (答案不唯一)
12.2
13.2或
14.
15.
16.4
17.9
18.5 2或3
19.(1)h是x的一次函数
(2)9只
20.(1)
(2)
21.(1)30;(2)①小丽步行的速度为 ,小明步行的速度为 ;②点 ,点C表示:两人出发 时,小明到达甲地,此时两人相距 .
(1)丽丽所买皮衣与毛衣的单价各是多少元?
(2)丽丽可以到线上客服处领取多少元补贴?
24.如图,在平面直角坐标系中,点A(0,b),点B(a,0),点D(2,0),其中a、b满足 ,DE⊥x轴,且∠BED=∠ABO,直线AE交x轴于点C.
(1)求A、B、E三点的坐标;
(2)若以AB为一边在第二象限内构造等腰直角三角形△ABF,请直接写出点F的坐标.
22.1
23.(1)丽丽所买皮衣的单价是 元,毛衣的单价是 元
(2) 元
24.(1)A(0,3),B(-1,0),E(2,1),(2) (-4,1)(-3,4)(-2,2)
A. B. C. D.
9.若 是二元一次方程组 的解,则 的值为()

第五章:二元一次方程(组)单元测试卷

第五章:二元一次方程(组)单元测试卷

第五章:二元一次方程(组)单元测试卷一.选择题(共10小题)1.(2014•襄阳)若方程mx+ny=6的两个解是,,则m,n的值为()2.(2014•台湾)如图为某店的宣传单,若小昱拿到后,到此店同时买了一件定价x元的衣服和一件定价y元的裤子,共省500元,则依题意可列4.(2014•泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程BD.6.(2014•工业园区一模)若关于x,y的二元一次方程组的解也是二元一次方﹣7.解方程组时,一学生把c看错得,已知方程组的正确解是,8.若方程组有无穷多组解,(x,y为未知数),则()9.若关于x,y的方程组有非负整数解,则正整数m为()10.设m为整数,若方程组的解x,y满足x+y>,则m的最大值是11.(2014•牡丹江二模)若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于_________.12.(2013•绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有_________种租车方案.13.已知关于x、y的方程组的解是一对异号的数,则k的取值范围是________.14.(2010•栖霞区一模)方程组的解为,则被遮盖的两个数分别为________.15.(2009•本溪一模)某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染,已看不清楚.若设捐款的2元的有x名同学,捐款3元的有y名同学.根据题意,可得方程组_________.16.(2009•德州)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为_________.17.(2009•河东区二模)如图,用8块相同的长方形地砖拼成一个大长方形,则每个长方形地砖的面积是______cm2.18.(2008•乌兰察布)对于X、Y定义一种新运算“*”:X*Y=aX+bY,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=_________.19.(2012•武侯区一模)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为_________.三.解答题(共8小题)20.(2014•张家口二模)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y0的取值范围.21.(2014•灌南县模拟)根据国家发改委实施“阶梯电价”的有关文件要求,江西省上饶市400千瓦时,应缴电费263.5元.求a,b的值;(2)实行“阶梯电价”收费以后,该户居民用电多少千瓦时,其当月的平均电价每千瓦时不超过0.62元?22.(2013•凉山州)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高_________cm,放入一个大球水面升高_________cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?23.(2013•嘉兴)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?24.(2006•嘉兴一模)下图是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、…方程组n.(1)将方程组1的解填入图中;(2)请依据方程组和它的解变化的规律,将方程组n和它的解直接填入集合图中;(3)若方程组的解是,求m的值,并判断该方程组是否符合(2)中的规律?25.(2003•茂名)我市某旅游景点,为了吸引更多的游客,特推出集体购票优惠票价的办2)班人数)准备在暑假期间去游该景点.若两班都以班为单位购票,一共要支付570元.(1)如果两班联合起来,作为一个团体购票,那么比以班为单位购票可以节约多少钱?(2)试问两班各有多少名学生?(3)如果初二(1)班有10人因特殊情况不能前往旅游,那么又该如何购票才能最省钱?26.(2009•随州)某工厂从外地连续两次购得A,B两种原料,购买情况如右表:现计划租用甲,乙两种货车共8辆将两次购得的原料一次性运回工厂.(1)A,B两种原料每吨的进价各是多少元?(2)已知一辆甲种货车可装4吨A种原料和1吨B种原料;一辆乙种货车可装A,B两种原料各2吨.如何安排甲,乙两种货车?写出所有可行方案.(3)若甲种货车的运费是每辆400元,乙种货车的运费是每辆350元.设安排甲种货车x 辆,总运费为W元,求W(元)与x(辆)之间的函数关系式;在(2)的前提下,x为何值时,总运费W最小,最小值是多少元?27.(2005•岳阳)某体育彩票经销商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.第五章:二元一次方程(组)单元测试卷参考答案与试题解析一.选择题(共10小题)1.(2014•襄阳)若方程mx+ny=6的两个解是,,则m,n的值为()解:将,得:2.(2014•台湾)如图为某店的宣传单,若小昱拿到后,到此店同时买了一件定价x元的衣服和一件定价y元的裤子,共省500元,则依题意可列出下列哪一个方程式?()3.(2014•齐齐哈尔)将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方方程的整数解为:,,,,4.(2014•泰安)方程5x+2y=﹣9与下列方程构成的方程组的解为的是()5.(2014•锦州)哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组BD.6.(2014•工业园区一模)若关于x,y的二元一次方程组的解也是二元一次方﹣解:.7.解方程组时,一学生把c看错得,已知方程组的正确解是,解:把代入把代入方程组,得8.若方程组有无穷多组解,(x,y为未知数),则()9.若关于x,y的方程组有非负整数解,则正整数m为()解:,代入①得,,∴10.设m为整数,若方程组的解x,y满足x+y>,则m的最大值是,根据已知得出﹣﹣解:,﹣,∴>﹣二.填空题(共9小题)11.(2014•牡丹江二模)若4x﹣3y﹣6z=0,x+2y﹣7z=0(xyz≠0),则的值等于﹣13.x=z x=y+y+z∴12.(2013•绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有2种租车方案.13.(2012•成都模拟)已知关于x、y的方程组的解是一对异号的数,则k的取值范围是﹣2<k<1.:计算题.分析:,先由①﹣②得3y=6k﹣6,求出y=2k﹣2,再把y的值代入②可得到异号得到,解:所以方程组的解为∴,14.(2010•栖霞区一模)方程组的解为,则被遮盖的两个数分别为7和3.15.(2009•本溪一模)某校初三(2)班40名同学为“希望工程”捐款,共捐款100元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染,已看不清楚.若设捐款的2元的有x名同学,捐款3元的有y名同学.根据题意,可得方程组.列方程组为16.(2009•德州)若关于x、y的二元一次方程组的解也是二元一次方程2x+3y=6的解,则k的值为.解:根据题意得,消元得17.(2009•河东区二模)如图,用8块相同的长方形地砖拼成一个大长方形,则每个长方形地砖的面积是300cm2.则可列方程组解得18.(2008•乌兰察布)对于X、Y定义一种新运算“*”:X*Y=aX+bY,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=2.19.(2012•武侯区一模)已知三个非负实数a,b,c满足:3a+2b+c=5和2a+b﹣3c=1,若m=3a+b﹣7c,则m的最小值为﹣.解:由题意可得,﹣,,﹣﹣.故本题答案为:﹣三.解答题(共8小题)20.(2014•张家口二模)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y0的取值范围.代入方程)将所以方程组的公共解为:.)因为∴解得:21.(2014•灌南县模拟)根据国家发改委实施“阶梯电价”的有关文件要求,江西省上饶市(1)若上饶市一户居民8月份用电300千瓦时,应缴电费186元,9月份用电400千瓦时,应缴电费263.5元.求a,b的值;(2)实行“阶梯电价”收费以后,该户居民用电多少千瓦时,其当月的平均电价每千瓦时不超过0.62元?解得:.22.(2013•凉山州)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?解得:,23.(2013•嘉兴)某镇水库的可用水量为12000万立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?解得:24.(2006•嘉兴一模)下图是按一定规律排列的方程组集合和它解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、…方程组n.(1)将方程组1的解填入图中;(2)请依据方程组和它的解变化的规律,将方程组n和它的解直接填入集合图中;(3)若方程组的解是,求m的值,并判断该方程组是否符合(2)中的规律?)∴,该方程组为25.(2003•茂名)我市某旅游景点,为了吸引更多的游客,特推出集体购票优惠票价的办2)班人数)准备在暑假期间去游该景点.若两班都以班为单位购票,一共要支付570元.(1)如果两班联合起来,作为一个团体购票,那么比以班为单位购票可以节约多少钱?(2)试问两班各有多少名学生?(3)如果初二(1)班有10人因特殊情况不能前往旅游,那么又该如何购票才能最省钱?26.(2009•随州)某工厂从外地连续两次购得A,B两种原料,购买情况如右表:现计划租用甲,乙两种货车共8辆将两次购得的原料一次性运回工厂.(1)A,B两种原料每吨的进价各是多少元?(2)已知一辆甲种货车可装4吨A种原料和1吨B种原料;一辆乙种货车可装A,B两种原料各2吨.如何安排甲,乙两种货车?写出所有可行方案.(3)若甲种货车的运费是每辆400元,乙种货车的运费是每辆350元.设安排甲种货车x 辆,总运费为W元,求W(元)与x(辆)之间的函数关系式;在(2)的前提下,x为何值时,总运费W最小,最小值是多少元?27.(2005•岳阳)某体育彩票经销商计划用45000元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩票,进价分别是A彩票每张1.5元,B彩票每张2元,C彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.。

第五章二元一次方程组测试题.docx

第五章二元一次方程组测试题.docx

第五章二元一次方程组5.1认识二元一次方程组基础导练1、在方程(T)5x-3y 4,②7x-∣y = 5, @4.0' + x-6y 0, (Sβχ-(y-2) -1,⑤x2+3,τ = 2,⑥5x」= 9,⑦四-XZl = IO中,是二元一次方程的有 __________ 、F 3 22、已知方程2√"γ产=3是关于*,y的二元一次方程,则/Ii=,n =、3、在(1) (2)仁:,(3) {:/中,是方程2x + y = 5 的解;是方程3κ-2y = 4的解:姥方程组广一广5的I3.v-2y≡4解、4、若[;:]是方程3χ+.=5的一个解,则a=、5、若A.1是方程组的解,则Qa= 、6、关于x、y的二元一次方程4x+3y=2()的所有非负整数解是、7、若一个二元一次方程的一个解为I"?则这个方程可以LV=T是、(只要求写出一个)8、把方程5Λ-37=6变形,用X表示y应为,用j,表示*应为、9、下列方程组属于二元一次方程组的是()10、若方程a*-3y=4x+5处二元一次方程,则a的取值范围处()A、aNo B > «≠ 3 C¼ a≠4D¼ a≠5IK以下各组中,是方程组F = 3'的解的是()A、尸:B、尸:C、D、12、小丽只带了2元和5元两种人民币,买了一件物品只付了27元,则付款的方法有()A、一种B、两种C、三种【)、四种能力提升13、已知2x÷5y-3=0,则代数式9—4χ-IOy=、14、若∣α-3∣与+ 互为相反数,则α + 3⅛ 、15、现有1角、5角、1元硬币各10枚,从中取出15枚,共值7元、1 角、5角、1元硬币分别取____________ 枚,枚,枚、16、若是方程5*+9y=0的解,且吁0,则()A、见〃同号B、见〃异号C、儡〃可能同号也可能异号D、无法确定17、方程x+2p=7在自然数范围内的解有()A、一个Bs二个C、三个D、四个18、某校初二(3)班40名同学为“希望工程”捐款,共捐款IOO元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2 元的有X名,捐款3元的有y名同学,根据题意,可得方程组()A j∙r + 2∙v = 27 B !*+「= 27 C 卜+ y = 27 D y + )∙ = 27■ ' [2x + 3y = 66 、∣2.r + 3y=IOO 八∣3κ + 22 = 66'13.T + 2y = IOO 19、已知方程S+3)ΛM Js-2)/"+竺=6是关于*, y的二元一次方程,求a, b, c的值、20.甲、乙两人共同解方程组]:::;::,;由于甲同学看错了方程①中X =-4的&得到方程组的解为 3 ,乙看错Γ方程②中的仇得到方程组的解),=—为{::9、请计算代数式叫产•的值、参考答案1、5Λ-3y=4, 7x-→∙=53x-(y-2)=l, —-2Ξ!=∣O2、m=-1, n=23、⑴ ⑶;⑵ ⑶:⑶4、15、-76、{;::;7、*-y=3(答案不唯一〉8、,-短刀9 9、B 10、Iy = O 3 5 5C 11、A 12、C 13.3 14、—3 15.5,7,3 16、B 17、D 18、A 19、a=3, b≈~2, C=O 20、-1、。

(完整)八年级上册第五章二元一次方程组测试题

(完整)八年级上册第五章二元一次方程组测试题

第五章解二元一次方程组测试卷一、填空:1.x=2,y=﹣1适合方程2x+3ay=1,则a=.2.方程x m+1+y2n+m=5是二元一次方程,则m=,n=.3.二元一次方程2x﹣y=1有以下解:、、.4.在二元一次方程3x+2y=4中,用含x的代数式表示y可得到,再用含y的代数式表示x可得到.5.当a2x﹣y=a,方程x﹣2y=﹣1的解是.(其中a≠0)6.如果2a y+5b3x与﹣4a2x b2﹣4y是同类项,则x=,y=.7.在方程组中,如果是它的一个解,那么a=,b=.8.已知,都是方程ax﹣y=b的解,则a=,b=.9.若方程组的解x与y的和等于1,则k=.10.如果方程组与方程组有相同的解,则m﹣n=.二、选择题(共3小题,每小题3分,满分9分)11.已知长江比黄河长836km,黄河长度的6倍比长江长度的5倍多1284km,设长江,黄河的长度分别为xkm和ykm,则下列方程组中正确的是()A.B.C.D.12.已知x2m﹣1+3y4﹣2n=﹣7是关于x,y的二元一次方程,则m、n的值是()A.B.C.D.13.分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“”的个数为()A.2 B. 3 C. 4 D. 5三、解方程组:14.15.16.18.19.20..21.22.23.五、简答题:24.若单项式123x234﹣3n y456+m与678x7n﹣456y123﹣2m的差仍是单项式,求m﹣2n的值.25.在平面直角坐标系中,已知点A(2a﹣b,﹣8)与点B(﹣2,a+3b)关于原点对称,求a、b的值.26.求使方程组有正整数解的自然数m的值.27.把质量分数分别为90%和60%的甲、乙两种酒精溶液配制成质量分数为75%的消毒酒精溶液500g,求从甲、乙两种酒精中各取多少克.28.某商场以一定的进价购进一批服装,并以一定的单价售出,平均每天卖出10件,30天共获利15000元,现在为了尽快回笼资金,商场决定将每件衣服降价20%出售,结果平均每天比降价前多卖10件,这样30天可获利12000元,问这批服装每件的进价及降价前出售的单价各是多少?29.将一摞笔记本分给若干个同学,每个同学5本,则剩下8本;每个同学8本,又差了7本,共有多少笔记本,多少同学?30.某厂第二车间的人数比第一车间的人数的少30人.如果从第一车间调10人到第二车间,那么第二车间就是第一车间的.问这两个车间各有多少人?31.某液化气公司计划向A、B两城市输送天然气,A城市需144万m3,B城市需90万m3,现已两次送气,往A城市送气3天,B城市送气2天,共送气84万m3,往A城市送气2天,B城市送气3天,共送气81万m3,问完成往A、B两城市送气任务还各需多少天?32.列方程或方程组解应用题:某山区有23名中、小学生因贫困失学需要捐助.资助一名中学生的学习费用需要a元,一名小学生的学习费用需要b元.某校学生积极捐助,初中各年级学生捐款数额与用其恰好捐助贫困中学生和小学生人数的部分情况如下表:(1)求a、b的值;(2)初三年级学生的捐款解决了其余贫困中小学生的学习费用,请将初三年级学生可捐助的贫困中、小学生人数直接填入表中.(不需写出计算过程)33.某体育文化用品商店购进篮球和排球共30个,进价和售价如下表,全部销售完后共获利润660元.篮球排球进价(元/个)150 120售价(元/个)175 140(1)请利用二元一次方程组求购进篮球和排球各多少个?(2)销售8个篮球的利润与销售几个排球的利润相等?34.为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.35.甲、乙两人在A地,丙在B地,他们三人同时出发,甲与乙同向而行,丙与甲、乙相向而行,甲每分钟走100米,乙每分钟走110米,丙每分钟走125米,若丙遇到乙后10分钟又遇到甲,求A、B两地之间的距离.。

第五章二元一次方程组单元测试卷(原卷版)

第五章二元一次方程组单元测试卷(原卷版)

第五章 二元一次方程组单元测试本试卷满分120分,试题共26题.答卷前,请认真读题!一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列方程中,是二元一次方程的是( ) A .y =3x ﹣1B .xy =1C .x +1y =2D .x+y+z =12.已知3x −y2=1,用含x 的式子表示y 下列正确的是( ) A .y =6x ﹣2 B .y =2﹣6xC .y =﹣1+3xD .y =−12−32x3.解方程组{2x +y =7①x −y =2②的最佳方法是( )A .代入法消去y ,由①得y =7﹣2xB .代入法消去x ,由②得x =y+2C .加减法消去y ,①+②得3x =9D .加减法消去x ,①﹣②×2得3y =34.若{x =2y =−1是二元一次方程mx+2y =4的解,则m 的值是( )A .3B .﹣3C .2D .﹣25.一次函数y =x+1和一次函数y =2x ﹣2的图象的交点坐标是(3,4),据此可知方程组{x −y =−12x −y =2的解为( ) A .{x =3y =4B .{x =4y =3C .{x =−3y =−4D .{x =−4y =−36.对于实数x ,y :规定一种运算:x △y =ax+by (a ,b 是常数).已知2△3=11,5△(﹣3)=10.则a ,b 的值为( ) A .a =3,b =35B .a =2,b =3C .a =3,b =53D .a =3,b =27.已知实数a ,b 满足:(a ﹣b+3)2+√a +b −1=0,则a 2022+b 6等于( ) A .65B .64C .63D .628.若二元一次方程组51cx ay x y -=⎧⎨+=⎩和23151x y ax by -=⎧⎨+=⎩解相同,则可通过解方程组( )求得这个解.A .151cx ay x y -=⎧⎨+=⎩B .51cx ay ax by -=⎧⎨+=⎩C .23151x y x y -=⎧⎨+=⎩D .23151x y ax by -=⎧⎨+=⎩9.在解方程组2574x y x y -=⎧⎨-=⎩●★时,小明由于粗心把系数●抄错了,得到的解是13103x y ⎧=-⎪⎪⎨⎪=-⎪⎩.小亮把常数★抄错了,得到的解是916x y =-⎧⎨=-⎩,则原方程组的正确解是( )A .11x y =⎧⎨=⎩B .11x y =-⎧⎨=⎩C .11x y =⎧⎨=-⎩D .12x y =⎧⎨=⎩10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.由方程组{x +m =−4y −3=m 可得x 与y 之间的关系式是 (用含x 的代数式表示y ).12.已知{x =ay =b 是二元一次方程4x ﹣7y =8的一个解,则代数式17﹣8a+14b 的值是 . 13.如果4a 2x ﹣3y b 4与−23a 3b x+y 是同类项,则xy = .14.已知直线y =x+b 和y =ax ﹣3交于点P (2,1),则关于x 的方程x+b =ax ﹣3的解为 . 15.二元一次方程组{x +y =52x −y =1的解为{x =2y =3,则一次函数y =5﹣x 与y =2x ﹣1的交点坐标为 .16.在关于m ,n 的方程()()284370m n m n λ+-++-=中,能使λ无论取何值时,方程恒成立的m ,n 的和为 .17.一次函数y =kx+b (k 、b 是常数)当自变量x 的取值为1≤x ≤5时,对应的函数值的范围为﹣2≤y ≤2,则此一次函数的解析式为 .18.如图,两个形状、大小完全相同的大长方形内放入五个如图③的小长方形后分别得到图①、图②,已知大长方形的长为a ,则图①中阴影部分的周长与图②中阴影部分的周长的差是______.(用含a 的式子表示)三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤) 19.(6分)解方程组:(1){2x −3y =54x −5y =7; (2){x+3y 2=355(x −2y)=−4.20.(6分)《九章算术》中有记载:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而亦钱五十,问甲、乙持钱各几何?大意是:今有甲、乙两人持钱不知有多少.若甲得到乙所有钱的12,则有50钱;若乙得到甲所有钱的23,则也有50钱,问甲、乙各持钱多少?请解答此问题.21.(6分)直线l 1:y =2x+1与直线l 2:y =mx+4相交于点P (1,b ). (1)求b 、m 的值,并结合图象求关于x 、y 的方程组{2x −y =−1mx −y =−4的解.(2)垂直于x 轴的直x =a 与直线l 1,l 2分别交于点C 、D ,若线段CD 的长为2,求a 的值.22.(6分)已知关于x ,y 的二元一次方程组 32129x y k x y +=+⎧⎨-=⎩的解互为相反数,求k 的值.23.(8分)如图,直线l 1:y =x+1与直线l 2:y =mx+n 相交于点P (1,b ). (1)求b 的值;(2)不解关于x 、y 的方程组{y =x +1y =mx +n ,请你直接写出它的解;(3)直线l 3:y =nx+m 是否也经过点P ?请说明理由.24.(10分)阅读材料:善于思考的小强同学在解方程组{2x +5y =3①4x +11y =5②时,采用了一种“整体代换”解法:解:将方程②变形:4x+10y+y =5,即2(2x+5y )+y =5…③,把方程①代入③得:2×3+y =5即y =﹣1,把y =﹣1代入方程①,得x =4,所以方程组的解为{x =4y =−1.请你解决以下问题(1)模仿小强同学的“整体代换”法解方程组{3x +4y =166x +9y =25;(2)已知x ,y 满足方程组{x 2+xy +3y 2=113x 2−5xy +9y 2=49;(i )求xy 的值;(ii )求出这个方程组的所有整数解.25.(12分)某商场计划用50000元从厂家购进60台新型电子产品,已知该厂家生产三种不同型号的电子产品,设甲、乙型设备应各买入x ,y 台,其中每台的价格、销售获利如下表:甲型 乙型 丙型 价格(元/台) 900 700 400 销售获利(元/台)20016090(1)购买丙型设备 60﹣x ﹣y 台(用含x ,y 的代数式表示);(2)若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了50000元,则商场有哪几种购进方案?(3)在第(2)题的基础上,则应选择哪种购进方案,为使销售时获利最大?并求出这个最大值.26.(12分)已知点A (0,4)、C (﹣2,0)在直线l :y =kx+b 上,l 和函数y =﹣4x+a 的图象交于点B (1)求直线l 的表达式;(2)若点B 的横坐标是1,求关于x 、y 的方程组{y =kx +by =−4x +a 的解及a 的值.(3)若点A 关于x 轴的对称点为P ,求△PBC 的面积.。

初中数学北师大版(2024)八年级上册 第五章 二元一次方程组(含简单答案)

初中数学北师大版(2024)八年级上册 第五章 二元一次方程组(含简单答案)

第五章 二元一次方程组一、单选题1.下列方程组是二元一次方程组的是( )A .{x +y =1z +x =6B .{x +y =3xy =12C .{x +y =61x+y =4D .{x =y +13−2x =y +132.二元一次方程2x−3y =1有无数个解,下列选项中是该方程的一个解的是( )A .{x =12y =0B .{x =1y =1 C .{x =1y =0D .{x =32y =433.已知方程组{x +2y =m +22x +y =3m,未知数x 、y 的和等于2,则m 的值是( )A .1B .2C .3D .44.已知直线y=﹣x+4与y=x+2的图象如图,则方程组{x +y =4−2=x−y的解为( )A .B .C .D .5.买苹果和梨共100千克,其中苹果的质量比梨的质量的2倍少8千克,求苹果和梨各买了多少.若设买苹果x 千克,则列出的方程组应是( )A .{x +y =100y =2x +8B .{x +y =100y =2x−8C .{x +y =100x =2y +8D .{x +y =100x =2y−8 6.已知m 为正整数,且二元一次方程组{mx +2y =103x−2y =0 有整数解,则m 的值为( )A .1B .2C .3D .77.把5m 长的彩绳截成2m 或1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A .1种B .2种C .3 种D .4种8.已知一次函数y =3x 与y =−32x +92图象的交点坐标是(1,3),则方程组{y =3xy =−32x +92的解是()A .{x =2y =6B .{x =−1y =3C .{x =0y =0D .{x =1y =39.如图,在长为18m ,宽为15m 的长方形空地上,沿平行于长方形各边的方向分别割出三个大小完全一样的小长方形花圃,则其中一个小长方形花圃的面积为( )A .15m 2B .18m 2C .28m 2D .35m 210.我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶和1个小桶可以盛酒3斛,1个大桶和5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为( )A .{5x +y =3x +5y =2B .{5x−y =3x +5y =2C .{5x +y =2x +5y =3D .{x−5y =25x +y =3二、填空题11.由方程组{x +m =2y−3=−m,可得x —y 的值是 .12.已知2y−x =4,用含y 的代数式表示x =.13.若方程组{x +y =2,2x +2y =3没有解,则直线y =2−x 与直线y =32−x 的位置关系是 .14.五一小长假,小亮和家人到公园游玩.湖边有大小两种游船,小亮发现2艘大船与3艘小船一次共可以满载游客58人,3艘大船与2艘小船一次共可以满载游客72人.则1艘大船与1艘小船一次共可以满载游客的人数为.15.如图,在长方形ABCD 中,放入6个形状大小相同的长方形,所标尺寸如图所示,则图中阴影部分面积为 cm 2.16.已知关于x ,y 的二元一次方程a 1x +b 1y =c 1的部分解如表:x…−125811…y …−19−12−529…关于x ,y 的二元一次方程a 2x +b 2y =c 2的部分解如表:x …−125811…y…−70−46−22226…则关于x ,y 的二元一次方程组{a 1x +b 1y =c1a 2x +b 2y =c 2的解是.17.有甲、乙、丙三种货物,若购甲3件、乙7件、丙1件共需315元;若购甲4件,乙10件,丙1件,共需420元,问购甲、乙、丙各5件共需元.18.“鸡兔同笼”是我国古代数学名著《孙子算经》上的一道题:今有鸡兔同笼,上有四十三头,下有一百零二足,问鸡兔各几何?若设笼中有鸡x 只,兔y 只,则可列出的二元一次方程组为 .三、解答题19.解方程组:(1){3x +y =155x−2y =14;(2){3x−2y =7x−2y 3+2y−12=1.20.在平面直角坐标系中有A (−1,4),B (−3,2),C (0,5)三点.(1)求过A ,B 两点的直线的函数解析式;(2)判断A ,B ,C 三点是否在同一条直线上?并说明理由.21.已知关于x ,y 的二元一次方程组{2x +3y =kx +2y =−1的解互为相反数,求k 的值.22.阅读:某同学在解方程组{3x +2y =72x−1y=14时,运用了换元法,方法如下:设1x =m ,1y =n ,则原方程组可变形为关于m ,n 的方程组{3m +2n =72m−n =14,解这个方程组得到它的解为{m =5n =−4 .由1x=5,1y =−4,求得原方程组的解为{x =15y =−14.请利用换元法解方程组:{5x−1+12y =113x−1−12y=13.23.在平面直角坐标系内,已知点A (a,0),B (b,2),C (0,2).a ,b 是方程组{2a +b =13a +2b =11的解.(1)求a ,b 的值;(2)过点E (6,0)作PE ∥y 轴,Q (6,m )是直线PE 上一动点,连接QA ,QB .试用含有m 的式子表示三角形ABQ 的面积.24.某商场销售甲、乙两种商品,其中甲种商品进价为20元/件,售价为30元/件;乙种商品进价为50元/件,售价为80元/件.现商场用13000元购进这两种商品并全部售出,两种商品的总利润为7500元,问该商场购进甲、乙两种商品各多少件?25.某市绿道免费公共自行车租赁系统正式启用.市政府投资了200万元,建成40个公共自行车站点、配置800辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2019年将投资432万元,新建80个公共自行车站点、配置1760辆公共自行车.请问每个站点的造价和每辆公共自行车的配置费分别是多少万元?26.某商店分两次购进A,B型两种台灯进行销售,两次购进的数量及费用如下表所示,由于物价上涨,第二次购进A,B型两种台灯时,两种台灯每台进价分别上涨30%,20%.购进的台数购进所需要的费用(元)A型B型第一次10203000第二次15104500(1)求第一次购进A,B型两种台灯每台进价分别是多少元?(2)A,B型两种台灯销售单价不变,第一次购进的台灯全部售出后,获得的利润为2800元,第二次购进的台灯全部售出后,获得的利润为1800元.求A,B型两种台灯每台售价分别是多少元?27.如图,已知一次函数y=3x+3与y轴交于点A,与x轴交于点B,直线AC与x正半轴交于点C,且AC=BC.(1)求直线AC的解析式;(2)点D为线段AC上一点,点E为线段CD的中点,过点E作x轴的平行线交直线AB 于点F,连接DF交x轴于点G,求证:AD=BG;(3)在(2)的条件下,线段EF、DG分别与y轴交于点M、N,若∠AFD=2∠BAO,求线段MN的长.参考答案1.D2.A3.A4.B5.D6.B7.C8.D9.C10.A11.-112.2y−413.平行14.2615.2716.{x=8y=217.52518.{x+y=432x+4y=10219.(1){x=4y=3(2){x=165y=131020.(1)y=x+5(2)A,B,C三点在同一条直线上21.−122.{x=43y=−18.23.(1)a=5,b=3(2)m+1或−m−124.该商场购进甲种商品150件,乙种商品200件25.每个站点的造价为1万元,每辆公共自行车的配置费为0.2万元.26.(1)第一次购进A 型台灯每台进价为200元,B 型台灯每台进价为50元;(2)A 型台灯每台售价为340元,B 型台灯每台售价为120元27.(1)y =﹣34x +3;(3)45104.。

八年级数学上册第五章《二元一次方程组》单元测试题-北师大版(含答案)

八年级数学上册第五章《二元一次方程组》单元测试题-北师大版(含答案)

八年级数学上册第五章《二元一次方程组》单元测试题-北师大版(含答案)班级: 姓名: 座号: 成绩: 一、选择题(每小题3分,共30分) 1.下列方程组中,是二元一次方程组的是( )A. B. C. D. 2.二元一次方程组⎩⎨⎧==+x y y x 2,102的解是( )A.2,4x y =⎧⎨=⎩ B.3,6x y =⎧⎨=⎩ C.4,3x y =⎧⎨=⎩ D.4,2x y =⎧⎨=⎩3.已知x=3,y=5,且kx +2y =﹣5,则k 的值为( ) A .3B .4C .5D .﹣54. 用代入法解方程组时,代入正确的是( ) A .x ﹣2﹣x =4B .x ﹣2﹣2x =4C .x ﹣2+2x =4D .x ﹣2+x =45. 二元一次方程2x-y=1有无数个解,下列各组值中,不是该方程解的是( )A.⎩⎨⎧==11y x B.⎩⎨⎧==10y x C.⎩⎨⎧-=-=31y x D.⎩⎨⎧-=-=52y x6. 如图1所示的计算程序计算的值,若输入, 则输出的值是( ).A.0B.C.2D.4 7. 已知单项式nm n m y x y x +-6331与是同类项,那么( ) A .B .C .D .8. 学校计划用80元钱购买A 、B 两种奖品(两种都要买),A 种每个6元,B 种每个10元,在钱全部用完的情况下,有多少种购买方案( ) A .2种B .3种C .4种D .5种9. 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x 人, 组数为y 组,则列方程组为( )2311089x y x y ⎧+=⎨-=-⎩24795x y x y +=⎧⎨-=⎩21734x y y x-=⎧⎪⎨-=-⎪⎩426xy x y =⎧⎨+=⎩y 2=x y 2-A .⎩⎨⎧=+=-x y x y 5837 B .⎩⎨⎧=-=-x y x y 5837 C .⎩⎨⎧=+=+x y x y 5837 D .⎩⎨⎧=-=+xy xy 583710. 《九章算术》中记载了一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( ) A .B .C .D .二、填空题(每小题4分,共28分)11. 已知x -3y =3,则7+2x —6y = .12. 已知方程2x ﹣y =5,用含有x 的式子表示y 为 .13. 一个两位数的十位数字与个位数字的和为8,若把这个两位数加上18,正好等于将这个两位数的十位数字与个位数字对调后所组成的新两位数,则原来的两位数为 . 14. 如果0)4(223=--+-+y x y x ,则y x -= .15. 一棵树上有乌鸦和老鹰共18只,其中乌鸦比老鹰的3倍还多2只,这棵树上有乌鸦 只, 有老鹰 只.16. 若关于x ,y 的二元一次方程组231,22x y k x y +=-⎧⎨+=-⎩的解满足2=x ,则k 的值是 .17. 图中的两条直线,21,l l 的交点坐标可以看作方程组 的解.二、解答题17. 解方程(每小题5分,共20分)(1)(2)⎩⎨⎧=+=-1432823y x y x⎩⎨⎧-==+73825x y y x(3) ⎩⎨⎧=-=-73452y x y x (4)⎪⎩⎪⎨⎧-=-+=+1322132y x y x18. (8分)一张桌子由桌面和四条桌腿组成,1立方米木材可制作桌面50张或制作桌腿条300.现有5立方米的要木材,问应如何分配木材,可以使桌面与桌腿配套,共能配成多少张桌子?解:设分配x 立方米制作桌面,y 立方米制作桌腿,可列方程组:⎩⎨⎧解得:⎩⎨⎧所以:答:共能配成 张桌子.19. (8分)某中学某班买了35张电影票,共用250元,其中甲种票每张8元,乙种票每张6元,甲、乙两种票各买多少张?解:设甲、乙分别买了x 张、y 张,填写下表,并求出x 、y 的值. 由表格可列方程组:⎩⎨⎧解得:⎩⎨⎧答:甲、乙两种票各买 , 张20. (8分)某商店从某公司批发部购100件A 种商品,80件B 种商品,共花去3000元.在商店零售时,每件A 种商品加价20%,每件B 种商品加价10%,这样全部卖出后共收入3400元,问A 、B 两种商品买入时的单价各为多少元?解:设A 、B 两种商品买入时的单价各为x 元、y 元.列方程组:⎩⎨⎧解得:⎩⎨⎧答:A 、B 两种商品买入时的单价各为 元 , 元 .21. (8分)甲、乙两工程队共同修建150km 的公路,原计划30个月完工.实际施工时,甲队通过技术创新,施工效率提高了50%,乙队施工效率不变,结果提前5个月完工.甲、乙两工程队原计划平均每月分别修建多长?22. (10分)如图,1l ,2l •分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (h)的函数图像,假设两种灯的使用寿命都是2000h ,照明效果一样. (1)根据图像分别求出1l ,2l 的函数关系式. (2)当照明时间为多少时,两种灯的费用相等?参考答案1 2 3 4 5 6 7 8 9 10 B ADCBDCACA12. 52-=x y 13. 35 14. 4 15. 14, 4 16. 1 17. ⎩⎨⎧+-=+=412x y x y(1)⎩⎨⎧-==12y x (2)⎩⎨⎧==24y x (3)⎩⎨⎧==34y x (4)⎩⎨⎧==34y x18. ⎩⎨⎧÷==+4300505y x y x 解得⎩⎨⎧==23y x 3×50=150(张) 19. ⎩⎨⎧=+++=+3400%)101(80%)201(100300080100y x y x解得⎩⎨⎧==2510y x 20. ⎩⎨⎧=+=+2506835y x y x 解得:⎩⎨⎧==1520y x21. 解:设甲、乙两工程队原计划平均每月分别修建x 千米,y 千米[]⎩⎨⎧=++-=+150%)501()530(150)(30y x y x 解得:⎩⎨⎧==32y x 答:·········· 22. (1)210031+=x y 2025032+=x y (2)20250321003+=+x x 解得x=1000。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章单元检测
姓名_______ 班级_______
一、选择题(每题2分,共20分)
1.下列方程中,是二元一次方程的是( )
A.xy=2
B.x+y 1
=21 C.y=3x -10 D.x 2+x -3=0
2.表示二元一次方程组的是( )
A ⎩⎨⎧=+=+;5,3x z y x
B ⎩⎨⎧==+;4,52y y x
C ⎩⎨⎧==+;2,3xy y x
D ⎩⎨⎧+=-+=222,11x
y x x y x 3.以方程组21y x y x =-+⎧⎨=-⎩
的解为坐标的点(,)x y 在平面直角坐标系中的位置 是( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
4.二元一次方程3x+2y=15的正整数解的个数是( )
A.5
B.3
C.2
D.无数个
5.设⎩⎨⎧=+=.
04,3z y y x ()0≠y 则=z x ( ) A .12 B. 12
1- C .12- D. .121 6.如果2315a b 与114
x x y a b ++-是同类项,则x ,y 的值是( ) A.⎩⎨⎧==31y x B.⎩⎨⎧==22y x C.⎩⎨⎧==21y x D.⎩
⎨⎧==32y x 7.4x+1=m(x -2)+n(x -5),则m 、n 的值是( )
A.⎩⎨⎧-=-=14n m
B.⎩⎨⎧==14n m
C.⎩⎨⎧-==37n n
D.⎩
⎨⎧=-=37n m 8.已知12x y =⎧⎨=⎩
是方程组错误!未找到引用源。

的解,则a +b = ( ). (A )2 (B )-2 (C )4 (D )-4
9.甲、乙两地相距360千米,一轮船往返于甲、乙两地之间,顺流用18小时, 逆流用24小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,在下列方程组中正确的是 ( )
A.⎩
⎨⎧=-=+360)(24360)(18y x y x B.⎩⎨⎧=+=+360)(24360)(18y x y x C.⎩⎨⎧=-=-360)(24360)(18y x y x D.⎩⎨⎧=+=-360
)(24360)(18y x y x
10.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:
表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( ). A.272366x y x y +=⎧⎨+=⎩ B.2723100x y x y +=⎧⎨+=⎩ C.273266x y x y +=⎧⎨+=⎩ D.2732100
x y x y +=⎧⎨+=⎩ 二、填空题(每题3分,共24分)
11.如果⎩
⎨⎧=-=+.232,12y x y x 那么=-+-+3962242y x y x _______. 12.若方程组4311 3.x y ax a y +=⎧⎨+
-=⎩,()的解x 与y 相等,则a =________. 13.如果方程组⎩
⎨⎧=-=+1293y x y ax 无解,则a 为________. 14.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和,商是5,余数是1,则这样的两位数________.
15.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k
y x k y x 95的解也是二元一次方程632=+y x 的解,则k 的值为 ________.
16.若直线7+=ax y 经过一次函数1234-=-=x y x y 和的交点,则a 的值是 ________.
17.对于方程组
,则原方程组变形为以m ,n 为未
m=1 知数的方程组,解得 n=6
1,由此可求出原方程组的解为________,这种解方程组的方法称之为换元法.
18.如图4,点A 的坐标可以看成是方程组
的解.
三、解答题(本大题含 个小题,共56分)
19.解方程组(每小题4分,共16分).
捐款(元) 1 2 3 4 人数 6 7
(1)⎩⎨
⎧=+=-5
24y x y x (2)⎩⎨⎧+=-+=-1)1(514)1(3x y y x
(3)⎩⎨⎧=-=+-6430524m n n m (4)⎪⎩⎪⎨⎧-=--+=-++.1106
,3106y x y x y x y x
20.(本小题6分)
已知方程(k 2-1)x 2+(k+1)x+(k-7)y=k+2,当k 为何值时,方程为一元一次方程;当 k 何值时,方程为二元一次方程?
21.(本小题8分)
孔明同学在解方程组2y kx b y x =+⎧⎨=-⎩
的过程中,错把b 看成了6,他其余的解题过程 没有出错,解得此方程组的解为12
=-⎧⎨=⎩x y ,又已知直线=+y kx b 过点(3,1),
则b的正确值应该是多少?
22.(本小题8分)
以绳测井。

若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺。

绳长、井深各几何?题目大意:用绳子测水井深度,如果将绳子折成三等份,一份绳长比井深多5米;如果将绳子折成四等份,一份绳长比井深多1尺。

问绳长、井深各是多少尺?
23.(本小题8分)
一张方桌由1张桌面,4条桌腿组成,如果1立方米木料可以做方桌的桌面50•张或做桌腿300条,现有10立方米木料,那么用多少立方米的木料做桌面,多少立方米的木料做桌腿,做出的桌面与桌腿,恰好能配成方桌?能配成多少张方桌.
24.(本小题10分)
有一个两位数和一个一位数,如果在这个一位数后面多写一个0,则它与这个两位数的和是146,如果用这个两位数除以这个一位数,则商6余2,求这两个数.。

相关文档
最新文档