计量经济学多重共线性分析
计量经济学实验五 多重共线性的检验与修正 完成版

习题1.下表给出了中国商品进口额Y 、国内生产总值GDP 、消费者价格指数CPI 。
年份 商品进口额 (亿元)国内生产总值(亿元)居民消费价格指数(1985=100)1985 1257.8 8964.4 1001986 1498.3 10202.2 106.5 1987 1614.2 11962.5 114.3 1988 2055.1 14928.3 135.8 1989 2199.9 16909.2 160.2 1990 2574.3 18547.9 165.2 1991 3398.7 21617.8 170.8 1992 4443.3 26638.1 181.7 1993 5986.2 34634.4 208.4 1994 9960.1 46759.4 258.6 1995 11048.1 58478.1 302.8 1996 11557.4 67884.6 327.9 1997 11806.5 74462.6 337.1 1998 11626.1 78345.2 334.4 1999 13736.4 82067.5 329.7 2000 18638.8 89468.1 331.0 2001 20159.2 97314.8 333.3 2002 24430.3 105172.3 330.6 200334195.6117251.9334.6资料来源:《中国统计年鉴》,中国统计出版社2000年、2004年。
请考虑下列模型:i t t t u CPI GDP Y ++=ln ln ln 321βββ+ (1)利用表中数据估计此模型的参数。
解:ln 3.6489 1.796ln 1.2075ln t t t Y GDP CPI =--+t= (-11.32) (9.93) (-3.415)20.988770.6.0.1124R F S E ===(2)你认为数据中有多重共线性吗?多重共线性的检验 1)综合统计检验法若 在OLS 法下:R 2与F 值较大,但t 检验值较小,则可能存在多重共线性。
计量经济学:多重共线性

计量经济学:多重共线性多重共线性52=.53085123 第四章专门讨论古典假定中⽆多重共线性假定被违反的情况,主要内容包括多重共线性的实质和产⽣的原因、多重共线性产⽣的后果、多重共线性的检测⽅法及⽆多重共线性假定违反后的处置⽅法。
第⼀节什么是多重共线性⼀、多重共线性的含义第三章讨论多元线性回归模型的估计时,强调了假定⽆多重共线性,即假定各解释变量之间不存在线性关系,或者说各解释变量的观测值之间线性⽆关。
在计量经济学中所谓的多重共线性(Multi-Collinearity),不仅包括解释变量之间精确的线性关系,还包括解释变量之间近似的线性关系。
从数学意义上去说明多重共线性,就是对于解释变量k X 、、X X 32,如果存在不全为0的数k λλλ,2,1 ,能使得n ,2, ,1i 033221 ==++++ki k i i X X X λλλλ ( 4.1 )则称解释变量k X X X ,,,32 之间存在着完全的多重共线性。
⽤矩阵表⽰,解释变量的数据矩阵为X=213112232223111k k nnkn X X X X X X X X X ??(4.2)当Rank(X )在实际经济问题中,完全的多重共线性并不多见。
常见的情形是解释变量k X X X ,,,32 之间存在不完全的多重共线性。
所谓不完全的多重共线性,是指对于解释变量k X 、、X X 32,存在不全为0的数k λλλ,2,1 ,使得n ,2, ,1i 033221 ==+++++i ki k i i u X X X λλλλ(4.3)其中,i u 为随机变量。
这表明解释变量k X 、、X X 32只是⼀种近似的线性关系。
如果k 个解释变量之间不存在完全或不完全的线性关系,则称⽆多重共线性。
若⽤矩阵4表⽰,这时X 为满秩矩阵,即Rank(X )=k 。
需要强调,解释变量之间不存在线性关系,并⾮不存在⾮线性关系,当解释变量存在⾮线性关系时,并不违反⽆多重共线性假定。
计量经济学第四章多重共线性

R-squared
0.989654
Adjusted R-squared 0.986955 S.E. of regression 1437.448 Sum squared resid 47523916 Log likelihood -256.7013 Durbin-Watson stat 1.654140
4
(二)不完全的多重共线性
实际中,常见的情形是解释变量之间存在不 完全的多重共线性。
对于解释变量 X 2 , X 3, X k,存在不全为0的数
1
,
2
,
,使得
k
1 2X2 3X3 ...k Xk u 0
5
(三)解释变量的关系小节
可能表现为三种情形: r为相关系数 (1) rxixj 0 ,解释变量间毫无线性关系。这时多元
Var(ˆ2 )
9
二、不完全多重共线性产生的后果
1、参数估计值的方差增大
Var( βˆ 2 ) = σ 2
1 x22i (1-
r223 )
=
σ2
1
x22i (1 - r223 )
当 r23增大时,
^
Var( 2)
也增大
10
方差膨胀因子 (Variance Inflation Factor)
17 17
2、交叉相关系数(Cross correlation)
相关系数计算的是两组样本的同期相关程 度,交叉相关则可以表示不同期之间的相关 程度。
Eviews操作: Group窗口的view/cross correlation/输入 滞后期设定/ 输出结果阅读:看是否超出2倍标准差线
18
2倍 标准 差线
1、参数估计值有很大的偶然性。 2、参数显著性检验未通过。 3、经济意义检验未通过。 4、相关系数大。
计量经济学实验报告四---多重共线性

计量经济学实验报告四
[实验名称] 多重共线性
[实验目的] 用Eviews 软件检验模型的多重共线性.
[实验内容] (1)根据表列出的家庭消费支出Y与可支配收入X1和个人财富X2的统计数据,在Eviews软件下,OLS的估计结果为
所以模型为Yˆ=245.52+0.57X1-0.0058X2
(3.53)(0.79)(-0.08)
R2=0.962 F=88.845 D.W.=2.708
由拟合优度知,收入和财富一起解释了消费支出的96%.然而两者的t检验都在5%的显著性水平下是不显著的.不仅如此,财富变量的符号也与经济理论不相符合.但从F的检验值看,对收入与财富的参数同时为零的假设显然是拒绝的.因此,显著的F检验值与不显著t检验值,说明了收入与财富存在较高的相关性,使得无法分辨二者各自对消费的影响.只作消费支出关于收入的一元回归模型.如下
所以模型为Yˆ=244.55+0.509X1
(3.813)(14.24)
R2=0.962 F=202.87 D.W.=2.68
我们将上面模型与之相比,新引入的变量并没有带来拟合优度的显著变化,所以该引入的变量不是一个独立的解释变量.因此应该只作消费支出关于收入或财富的一元回归模型来对二元模型进行修正.。
计量经济学07计量多重共线性

Y/C1 △ Y
0.6072 0.6028 0.5996 0.5613 0.5339 0.5697
588 587 1088 1628 1441
0.5552 1651 0.5067 2920
0.5684 1762 0.5762 1854 0.5339 2960 0.5083 4584 0.4624 8637 0.4284 12610 0.4581 12294 0.5041 9093
横截面数据:生产函数中,资本投入与劳动力投入往 往出现高度相关情况,大企业二者都大,小企业都小。
(2)滞后变量的引入
在经济计量模型中,往往需要引入滞后经济变量来 反映真实的经济关系。例如消费变动的影响因素不仅有 本期可支配收入,还应考虑以往各期的可支配收入;固 定资产存量变动的影响因素不仅有本期投资,还应考虑 以往若干期的投资。同一变量的前后期之值很可能有较 强的线性相关性,模型中引入了滞后变量,多重共线性 就难以避免。
第七章 多重共线性
(Multicollinearity)
一、多重共线性的概念 二、实际经济问题中的多重共线性 三、多重共线性的后果 四、多重共线性的检验 五、克服多重共线性的方法 六、案例
一、多重共线性的概念
对于模型
Yi= 0+ 1X1i+ 2X2i+ + kXki+ i
i=1,2,…,n 其基本假设之一是解释变量是互相独立的。
求出X1与X2的简单相关系数r,若|r|接近1,则说明两变量 存在较强的多重共线性。
(2) 对多个解释变量的模型,采用综合统计检验法
若 在OLS法下:R2与F值较大,但t检验值较小,说明各 解释变量对Y的联合线性作用显著,但各解释变量间存在共 线性而使得它们对Y的独立作用不能分辨,故t检验不显著。
计量经济学(第四章多重共线性)

06
总结与展望
研究结论总结
多重共线性现象普遍存在于经济数据中,对计量 经济学模型的估计和解释产生了重要影响。
通过使用多种诊断方法,如相关系数矩阵、方差膨 胀因子(VIF)和条件指数(CI),可以有效地识别 多重共线性问题。
在存在多重共线性的情况下,普通最小二乘法 (OLS)估计量虽然仍然是无偏的,但其方差可能 变得很大,导致估计结果不稳定。
主成分分析法的优点
可以消除多重共线性的影响,同 时降低自变量的维度,简化模型。
岭回归法
岭回归法的基本思想
通过在损失函数中加入L2正则化项(即所有自变量的平方和),使得回归系数的估计更加稳定, 从而消除多重共线性的影响。
岭回归法的步骤
首先确定正则化参数λ的值,然后求解包含L2正则化项的损失函数最小化问题,得到岭回归系数的估 计值。
逐步回归法的优点
可以自动选择重要的自变量,同时消除多重共线性的影响。
主成分分析法
主成分分析法的基本思想
通过正交变换将原始自变量转换 为互不相关的主成分,然后选择 少数几个主成分进行回归分析。
主成分分析法的步骤
首先对原始自变量进行标准化处理, 然后计算相关系数矩阵并进行特征值 分解,得到主成分及其对应的特征向 量。最后,选择少数几个主成分作为 新的自变量进行回归分析。
岭回归法的优点
可以有效地处理多重共线性问题,同时避免过拟合现象的发生。此外,岭回归法还可以提供对所 有自变量的系数进行压缩估计的功能,使得模型更加简洁易懂。
05
实证研究与结果分
析
数据来源及预处理
数据来源
本研究采用的数据集来自于公开的统 计数据库,涵盖了多个经济指标和影 响因素的观测值。
数据预处理
计量经济学第三节 多重共线性

第三节多重共线性
假定六:解释变量之间不是完全线性相关的。
目的与要求:1.多重共线性的概念?
2.多重共线性产生的主要原因是什么?
3.多重共线性会导致什么后果?
4.多重共线性的检验方法 5.多重共线性的解决方法
一、多重共线性的概念
对于模型 Yi=0+1X1i+2X2i++kXki+i i=1,2,…,n 其基本假设之一是解释变量是互相独立的。 如果某两个或多个解释变量之间出现了完全 的线性相关性或接近线性相关,则称该模型出现 了多重共线性。
如投资函数 :
t
It 0 1X 可以变换成 It X
t / 0
2X
t 1
u
:
/ 1
t
X
t 1
t
/ 2
X
t
u
X
X
(2).进行变换,采用相对量作为解释变量
例如,某产品的销售量Y 取决于其出厂价格X1、
市场价格X2和市场总供应量X3。设定模型为
消选取相关性最强的
变量建立一元回归模型
在一元回归模型中引入第二个变量, 选择要求:模
型中每个解释变量影响显著,参数符号正确,校正的
~ 判定系数值 R 2 有所提高.
在选取的二元回归模型中以同样方式引入第三个变
量……
(四).增加样本观测值。
ln y 0 1 ln x 1 2 ln x 2 3 ln x 3 u
由于X1、X2、X3高度相关,我们可以用X1 /X2代替X1、 X2对y的影响。模型变为:
ln y
/ 0
/ 1
计量经济学第四章 多重共线性

x2i
3 2
x3i
x3i
参数的估计值为:
ˆ2
x32i x2i yi x2i x3i x3i yi
(
x22i )(
x32i ) (
x2i
x 3i
)2
x32i
2
x3i yi x32i 2 2
x32i x32i
x2i x3i x22i
x2i x3i
ˆ1 Y ˆ2 X 2 ˆ3 X 3
ˆ2
x32i x2i yi x2i x3i x3i yi ( x22i )( x32i ) ( x2i x3i )2
ˆ3
x22i x3i yi x2i x3i x2i yi •
(
x22i )(
x32i ) (
x2i
x 3i
)
2
x2i yi x3i yi
x2i x3i x32i
4.2多重共线性的后果
如果X1和X2完全线性相关,则存在非0的λ使得:
1 2 X 2i 3 X 3i 0
则有:
1 2 X 2 3 X 3 0
2 X 2i X 2 3 X3i X3 0
X 2i X3i X 2iYi
X
2 3i
X
3iYi
VAR
COV
(βˆ )
2
(XX)1
2
N X 2i
X 3i
X2i
X
2 2i
X 2i X 3i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Y=23812.76+1.5479X3 (5.2876) (33.047) R2=0.973264 D.W.=0.2997
可见,Y受X2的影响最大,选择(2)式作
为初始的回归模型。
可编辑ppt
12
上述初始回归模型,寻 找最佳回归方程。为求简明,先列出回归结果如 下表,过程截图放在说明部分。
Y=-3204.732+2.8134X2-0.1091X3 (-1.644) (18.427) (-1.997) R2=0.9979 D.W.=0.613
可编辑ppt
16
用逐步回归法克服多重共线性
➢逐步回归
第二步,引入变量X3
可编辑ppt
17
用逐步回归法克服多重共线性
➢逐步回归
第一步与第二步表明,X1与X3是多余的。故 最终的拟合模型为:
检验,判断模型存在可编多辑p重pt 共线性。
7
检验多重共线性
➢检验简单相关系数
进一步选择Covariance Analysis的Correlation,得到变 量之间的偏相关系数矩阵,观察偏相关系数。
可以发现,Y与X 1 、X 2 、X 3 的相关系数都在0.9以
上,但输出结果中,解释变量X1、X3的回归系数却
可编辑ppt
2
实验步骤
➢收集整理实验数据 ➢建立线性回归模型 ➢检验多重共线性 ➢用逐步回归法克服多重共线性
可编辑ppt
3
收集整理实验数据
1978年至2011年我国税收收入与国民生产总值情况
(来源于中国统计年鉴)
可编辑ppt
4
建立线性回归模型
➢ 用普通最小二乘法估计模型
利用实验数据分别建立Y关于X1、X2、X3的散点图( SCAT Xi Y)
可编辑ppt
14
用逐步回归法克服多重共线性
➢逐步回归
第一步,引入变量X1
可编辑ppt
15
用逐步回归法克服多重共线性
➢逐步回归
第一步:在初始模型中引入 X 3 ,模型拟合优度提高, 但是参数符号不合理,且变量没有通过了t检验,故去 掉C、X3
Y=24023.76+4.1804X2 (-1.1194) (116.4316) R2=0.9978 D.W.=0.6285
10
用逐步回归法克服多重共线性
➢找出最简单的回归形式
分别作Y与X1、X2、X3间的回归(LS Y C Xi )
可编辑ppt
11
用逐步回归法克服多重共线性
➢找出最简单的回归形式
Y=24023.76+4.1804X1 (5.887) (36.5072) R2=0.977979
D.W.=0.1937
Y=-1592.676+2.6322X2 (-1.1194) (116.4316) R2=0.997792 D.W.=0.6285
无法通过显著性检验。认为解释变量之间存在多重
共线性。
可编辑ppt
8
用逐步回归法克服多重共线性
➢找出最简单的回归形式
分别作Y与X1、X2、X3间的回归(LS Y C Xi )
可编辑ppt
9
用逐步回归法克服多重共线性
➢找出最简单的回归形式
分别作Y与X1、X2、X3间的回归(LS Y C Xi )
可编辑ppt
可编辑ppt
13
用逐步回归法克服多重共线性
➢逐步回归
第一步:在初始模型中引入 X 1 ,模型拟合优度提高, 但是参数符号不合理,且变量没有通过了t检验,故去 掉C、X1
Y=24023.76+4.1804X2 (-1.1194) (116.4316) R2=0.9978 D.W.=0.6285
Y=-3665.342-0.3671X1+2.8591X2 (-1.7503) (-1.334) (16.672) R2=0.9979 D.W.=0.644
可编辑ppt
5
建立线性回归模型
➢ 用普通最小二乘法估计模型
利用实验数据分别建立Y关于X1、X2、X3的散点图( SCAT Xi Y)
根据散点图可以看出Y 与X1、X2、X3都呈现 正的线性相关,
可编辑ppt
6
建立线性回归模型
➢建立一个多元线性回归模型
输出结果,只有X2的系数通过显著性检验,
其他没有通过,而F值很大,通过了显著性
计量经济学多重共线性分析
可编辑ppt
1
计量经济学多重共线性分析
根据1980年至2011年我国国民生产总值与社 会固定资产投资、社会消费品零售总额和建筑 业总产值的关系,建立并检验影响国民生产总 值的函数模型,以掌握掌握多重共线性问题出 现的来源、后果、检验及修正的原理,以及相 关的Eviews操作方法。
Y=24023.76+4.1804X2
可编辑ppt
18
可编辑ppt
19