3案例分析(多重共线性)
第五章 多重共线性的概念

σ2
恰为X1与X2的线性相关系数的平方r2 ∑x ∑x
2 1i 2 2i
(∑ x1i x 2i ) 2
由于 r2 ≤1,故 1/(1- r2 )≥1
完全不共线时, 当完全不共线 完全不共线
r2
=0
ˆ var( β 1 ) = σ 2 / ∑ x12i
1 σ2 ˆ ⋅ > var(β 1 ) = 2 2 x1i 1 − r x12i ∑ ∑
1.
检验多重共线性是否存在
(1)对两个解释变量的模型,采用简单相关系数法 (1)对两个解释变量的模型,采用简单相关系数法 对两个解释变量的模型 求出X1与X2的简单相关系数r,若|r|接近1,则 说明两变量存在较强的多重共线性。 (2)对多个解释变量的模型,采用综合统计检验法 (2)对多个解释变量的模型, 对多个解释变量的模型 若在OLS法下:R2与F值较大,但t检验值较小,说明 各解释变量对Y的联合线性作用显著,但各解释变量间存 在共线性而使得它们对Y的独立作用不能分辨,故t检验不 显著。即R2较大但t值显著的不多。另外判断参数估计值 的符号,如果不符合经济理论或实际情况,可能存在多重 共线性。
ˆ Y = 7.29 + 27.58X2 −15161.5X3
SE =(121.50) t =(0.06) ( ) (28.79) (0.958) ) (21.41) (- 7.06) )
R 2 = 0.946
我们发现: 值小。 我们发现:例1中X2、X3的 t 值小。且X3的系数符号 中 的系数符号 与经济意义不符和。原因? 与经济意义不符和。原因? 值大, 的系数符号与经济意义不符合。 例2中X3的 t 值大,但X3的系数符号与经济意义不符合。 原因? 原因?
回归分析中的多重共线性问题及解决方法(Ⅲ)

回归分析是统计学中常用的一种分析方法,它用于研究一个或多个自变量与一个因变量之间的关系。
然而,在进行回归分析时,经常会面临一个多重共线性的问题。
多重共线性是指在回归模型中,自变量之间存在高度相关性的情况。
当自变量之间存在多重共线性时,就会导致回归系数估计不准确,增加了回归模型的不稳定性。
这对于研究者来说是一个很大的困扰,因为他们很难判断自变量之间到底是有关系还是无关系,从而无法准确地分析自变量对因变量的影响。
多重共线性问题的存在会使得回归系数的估计值变得不稳定,回归系数的符号可能会与理论上相悖,使得回归模型的解释性大大降低。
同时,多重共线性还会增加回归系数的标准误差,导致对回归系数的假设检验结果不可信。
那么,如何解决多重共线性问题呢?首先,我们可以通过计算自变量之间的相关系数来判断是否存在多重共线性。
如果自变量之间的相关系数较高,就需要考虑采取一些措施来解决多重共线性问题。
一种解决方法是通过方差膨胀因子(VIF)来检验多重共线性。
VIF是用来判断自变量之间存在多重共线性的一个指标,通常VIF大于10就表示存在多重共线性。
其次,我们可以采取一些方法来解决多重共线性问题。
一种解决方法是通过主成分分析(PCA)来降维。
主成分分析是一种常用的降维方法,它可以将原始的自变量通过线性变换转换为一组新的主成分,从而减少自变量之间的相关性。
通过主成分分析,可以将原始的自变量转换为一组新的主成分,从而减少自变量之间的相关性,解决多重共线性问题。
另一种解决多重共线性问题的方法是通过岭回归(Ridge Regression)。
岭回归是一种常用的回归分析方法,它通过对回归系数进行惩罚,可以减少自变量之间的相关性,从而解决多重共线性问题。
通过岭回归,可以对自变量的回归系数进行缩减,从而减少多重共线性对回归系数估计的影响。
此外,我们还可以通过逐步回归法(Stepwise Regression)来解决多重共线性问题。
逐步回归法是一种常用的变量选择方法,它可以通过逐步添加或删除自变量来选择最优的回归模型。
多元线性回归模型案例(DOC)

多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。
此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。
影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。
(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。
二·模型设定为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。
暂不考虑文化程度及人口分布的影响。
从《中国统计年鉴》收集到以下数据(见表1):表1 中国人口增长率及相关数据设定的线性回归模型为:1222334t t t t t Y X X X u ββββ=++++三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对话框“Workfile Range ”。
在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
4.3多重共线性

5.模型的预测功能受到限制
变大的方差容易使区间预测的 “区间”变大,使区间预测可靠性降 低。 在解释变量之间的相关结构得以 保持的条件下,模型仍可用于预测。
综上所述
严重的多重共线性常常会导致下列情形出现: 使得用普通最小二乘法得到的回归参数估计值很 不稳定,回归系数的方差随着多重共线性强度的增加 而加速增长,对参数难以做出精确的估计;造成回归 方程高度显著的情况下,有些回归系数通不过显著性 检验;甚至可能出现回归系数的正负号得不到合理的 经济解释。 但是应注意,如果研究的目的仅在于预测被解释 变量Y,而各个解释变量X之间的多重共线性关系的性 质在未来将继续保持,这时虽然无法精确估计个别的 回归系数,但可估计这些系数的某些线性组合,因此 多重共线性可能并不是严重问题。
当不完全共线(近似共线)时,
ˆ ) = var( β 1
3.参数估计量经济含义不合理
,
如果模型中两个解释变量具有线性相关 性,例如X1 和X2 ,那么它们中的一个变量可以由 另一个变量近似表征。 这时,X1和X2前的参数估计并不反映各自与 被解释变量之间的结构关系,而是反映它们对被 解释变量的共同影响。 所以各自的参数估计可能已经失去了应有的 经济含义,于是经常表现出似乎反常的现象,例 如本来应该是正的,结果却是负的。(137)
0 < r2 <1
∑
σ
2
x 12i
•
1 > 1− r2
∑
σ
2
x 12i
βˆ = ( X ′X ) − 1 X ′Y
如果存在完全共线性,则(X’X) -1 不存在,无法得到参数唯一的估计量。 即:多重共线性使参数估计值的方差增大
2
4.变量的显著性检验可靠性差
第四章多重共线性实例

表 4.3.3 中国粮食生产与相关投入资料
农业化肥施 粮食播种面 受灾面积 农业机械总
用量 X 1
(万公斤)
积X 2
(千公顷)
X3
(公顷)
动力X 4
(万千瓦)
1659.8
114047 16209.3
18022
1739.8
112884 15264.0
19497
1775.8
108845 22705.3
20913
Yˆ 28259.19 2.240X5
(-1.04) (2.66) R2=0.3064 F=7.07 DW=0.36
• 可见,应选第1个式子为初始的回归模型。
4、逐步回归
将其他解释变量分别导入上述初始回归模型,寻 找最佳回归方程。
C
X1 X2 X3
X4
X5
R2
DW
Y=f(X1)
30868 4.23
0.8852 1.56
t值
25.58 11.49
Y=f(X1,X2)
-43871 4.65 0.67
0.9558 2.01
t值
-3.02 18.47 5.16
Y=f(X1,X2,X3)
-11978 5.26 0.41 -0.19
0.9752 1.53
t值
0.85
19.6 3.35 -3.57
Y=f(X1,X2,X3,X4) -13056 6.17 0.42 -0.17 -0.09
1930.6
110933 23656.0
22950
1999.3
111268 20392.7
24836
2141.5
110123 23944.7
多元线性回归模型案例分析报告

多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平.此后,人口自然增长率<即人口的生育率>很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型.影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:<1>从宏观经济上看,经济整体增长是人口自然增长的基本源泉;<2>居民消费水平,它的高低可能会间接影响人口增长率.〕3〔文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率<4>人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响.二·模型设定为了全面反映中国"人口自然增长率"的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择"国名收入"及"人均GDP"作为经济整体增长的代表;选择"居民消费价格指数增长率"作为居民消费水平的代表.暂不考虑文化程度及人口分布的影响.从《中国统计年鉴》收集到以下数据<见表1>:表1中国人口增长率及相关数据设定的线性回归模型为: 三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews,点击File\New\Workfile,在对话框"Workfile Range".在"Workfile frequency"中选择"Annual" 〕年度〔,并在"Start date"中输入开始时间"1988",在"end date"中输入最后时间"2005",点击"ok",出现"Workfile UNTITLED"工作框.其中已有变量:"c"—截距项"resid"—剩余项.在"Objects"菜单中点击"New Objects",在"New Objects"对话框中选"Group",并在"Name for Objects"上定义文件名,点击"OK"出现数据编辑窗口.2、输入数据:点击"Quik"下拉菜单中的"Empty Group",出现"Group"窗口数据编辑框,点第一列与"obs"对应的格,在命令栏输入"Y",点下行键"↓",即将该序列命名为Y,并依此输入Y 的数据.用同年份 人口自然增长率<%.> 国民总收入<亿元> 居民消费价格指数增长率<CPI>% 人均GDP<元> 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 20065.38 213132 1.5 16024样方法在对应的列命名X 2、X 3、X 4,并输入相应的数据.或者在EViews 命令框直接键入"data Y 2X X 3 X 4… ",回车出现"Group"窗口数据编辑框,在对应的Y 、X 2、X 3、X 4下输入响应的数据.3、估计参数:点击"Procs"下拉菜单中的"Make Equation",在出现的对话框的"Equation Specification"栏中键入"Y C X 2 X 3 X 4",在"Estimation Settings"栏中选择"Least Sqares"〕最小二乘法〔,点"ok",即出现回归结果: 表3.4根据表3.4中数据,模型估计的结果为:〕0.913842〔 〕0.000134〔 〕0.033919〔 〕0.001771〔t= 〕17.08010〔 〕2.482857〔 〕1.412721〔 〕-2.884953〔930526.02=R 915638.02=R F=62.50441四、模型检验1、经济意义检验模型估计结果说明,在假定其它变量不变的情况下,当年国民总收入每增长1亿元,人口增长率增长0.000332%;在假定其它变量不变的情况下,当年居民消费价格指数增长率每增长 1%,人口增长率增长0.047918%;在假定其它变量不变的情况下,当年人均GDP 没增加一元,人口增长率就会降低0.005109%.这与理论分析和经验判断相一致.2、统计检验<1>拟合优度:由表3.4中数据可以得到:930526.02=R ,修正的可决系数为915638.02=R,这说明模型对样本的拟合很好.<2>F 检验:针对0234:0H βββ===,给定显著性水平0.05α=,在F 分布表中查出自由度为k-1=3和n-k=14的临界值34.3)14,3(=αF .由表3.4中得到F=62.50441,由于F=62.50441 >(3,21) 3.075F α=,应拒绝原假设0234:0H βββ===,说明回归方程显著,即"国民总收入"、"居民消费价格指数增长率"、"人均GDP"等变量联合起来确实对"人口自然增长率"有显著影响.<3>t 检验:分别针对0H :0(1,2,3,4)j j β==,给定显著性水平0.05α=,查t 分布表得自由度为n-k=14临界值145.2)(2/=-k n t α.由表3.4中数据可得,与^1β、^2β、^3β、^4β对应的t 统计量分别为17.08010、2.482857、1.412721、-2.884953除^3β,其绝对值均大于145.2)(2/=-k n t α,这说明分别都应当拒绝0H :)4,2,1(0==j j β,也就是说,当在其它解释变量不变的情况下,解释变量"国民总收入"、"人均GDP"分别对被解释变量"人口自然增长率"Y 都有显著的影响.^3β的绝对值小于145.2)(2/=-k n t α,:这说明接受0H :03=β,X3系数对t 检验不显著,这表明很可能存在多重共线性.所以计算各解释变量的相关系数,选择X2、X3、X4数据,点"view/correlations"得相关系数矩阵<如表4.4>:表4.4由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性. 五、消除多重共线性采用逐步回归的办法,去检验和解决多重共线性问题.分别作Y 对X2、X3、X4的一元回归,结果如表4.5所示:表4.5按2R 的大小排序为:X4、X2、X3以X2为基础,顺次加入其他变量逐步回归.首先加入X2回归结果为:t=〕2.542529〔 〕-2.970874〔 920622.02=R当取05.0=α时,131.2)318(025.0)(2/=-=-tt k n α,X2参数的t 检验显著,加入X3回归得t= 〕17.08010〔 〕2.482857〔〕1.412721〔 〕-2.884953〔930526.02=R 915638.02=R F=62.50441当取05.0=α时,145.2)418(2/=-αt ,X3参数的t 检验不显著,予以剔除即40005397.02000350.035540.16ˆX X Y -+=,这是最后消除多重共线性的结果.在假定其它变量不变的情况下,当年国民总收入每增长1亿元,人口增长率增长0.000332%;在假定其它变量不变的情况下,在假定其它变量不变的情况下,当年人均GDP 没增加一元,人口增长率就会降低0.005109%.金服131 王亚平13019122。
多重共线性案例

多重共线性案例:变量Y,X1,X2,X3,X4,X5的数据年Y X1X2X3X4X51974 98.45 560.2 153.20 6.53 1.23 1.891975 100.70 603.11 190.00 9.12 1.30 2.031976 102.80 668.05 240.30 8.10 1.80 2.711977 133.95 715.47 301.12 10.10 2.09 3.001978 140.13 724.27 361.00 10.93 2.39 3.291979 143.11 736.13 420.00 11.85 3.90 5.241980 146.15 748.91 491.76 12.28 5.13 6.831981 144.60 760.32 501.00 13.50 5.47 8.361982 148.94 774.92 529.20 15.29 6.09 10.071983 158.55 785.30 552.72 18.10 7.97 12.571984 169.68 795.50 771.16 19.61 10.18 15.121985 162.14 804.80 811.80 17.22 11.79 18.251986 170.09 814.94 988.43 18.60 11.54 20.591987 178.69 828.73 1094.65 23.53 11.68 23.37资料来源:《天津统计年鉴》1988.用1974-1987年数据建立天津市粮食需求模型如下,Y = -3.49 + 0.13 X1 + 0.07 X2 + 2.67 X3 + 3.44 X4– 4.49 X5(-0.11) (2.12) (1.95) (2.13) (1.41) (-2.03)R2 = 0.97, F = 52.59, T = 14, t0.05(8) = 2.31, (1974-1987)其中Y:粮食销售量(万吨/ 年),X1:市常住人口数(万人),X2:人均收入(元/ 年),X3:肉销售量(万吨/ 年),X4:蛋销售量(万吨/ 年),X5:鱼虾销售量(万吨/ 年)。
计量经济学 第3章 多重共线性

剔除P值大的自变量
和前面的回归结果比较,收入弹性增 大了,但是价格弹性的绝对值却下降 了。不过需要注意的是,简化了的模 型的系数估计是有偏的
程序(gretl)
• • • • • • • • • • • open E:\data\data31.xls setobs 1 1962 --time-series ly=log(y) lx1=log(x1) lx2=log(x2) lx3=log(x3) lx4=log(x4) model1 <- ols ly 0 lx1 lx2 lx3 lx4 corr lx1 lx2 lx3 lx4 vif model2 <- ols ly 0 lx1 lx2
程序(EViews)
• • • • • • • • • • • • wfopen E:\data\data31.xls @freq A 1962 genr ly=log(y) genr lx1=log(x1) genr lx2=log(x2) genr lx3=log(x3) genr lx4=log(x4) equation eq1.ls ly c lx1 lx2 lx3 lx4 freeze eq1.results cor lx1 lx2 lx3 lx4 eq1.varinf equation eq2.ls ly c lx1 lx2 freeze eq2.results
第3章 多重共线性
学习目标 案例简介 案例分析 问题探讨与思考 练习
学习目标
• 理解多重共线性定义及存在多重共线性所带来的影响 • 掌握如何辨别模型中是否存在多重共线性现象 • 能够对多重共线性加以处理
案例简介
通过对人均鸡肉消费量和人均实际可支配收入、鸡肉的实际零售价格、猪肉的实际零售价格 及牛肉的实际零售价格之间的关系进行分析,以验证鸡肉的需求价格弹性及相关的交叉弹性 等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多重共线性的案例分析
一、研究的目的要求
近年来,中国旅游业一直保持高速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作用日益显现。
中国的旅游业分为国内旅游和入境旅游两大市场,入境旅游外汇收入年均增长22.6%,与此同时国内旅游也迅速增长。
改革开放20多年来,特别是进入90年代后,中国的国内旅游收入年均增长14.4%,远高于同期GDP 9.76%的增长率。
为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。
二、模型设定及其估计
经分析,影响国内旅游市场收入的主要因素,除了国内旅游人数和旅游支出以外,还可能与相关基础设施有关。
为此,考虑的影响因素主要有国内旅游人数2X ,城镇居民人均旅游支出3X ,农村居民人均旅游支出4X ,并以公路里程5X 和铁路里程6X 作为相关基础设
施的代表。
为此设定了如下对数形式的计量经济模型: 23456123456t t t t t t t Y X X X X X u ββββββ=++++++
其中 :t Y ——第t 年全国旅游收入
2X ——国内旅游人数 (万人)
3X ——城镇居民人均旅游支出 (元) 4X ——农村居民人均旅游支出 (元)
5X ——公路里程(万公里) 6X ——铁路里程(万公里)
为估计模型参数,收集旅游事业发展最快的1994—2003年的统计数据,如表4.1所示:
利用Eviews 软件,输入Y 、X2、X3、X4、X5、X6等数据,采用这些数据对模型进行OLS 回归,结果如表4.2:
表4.2
由此可见,该模型9954.02=R ,9897.02
=R 可决系数很高,F 检验值173.3525,明
显显著。
但是当05.0=α时776
.2)610()(025.02=-=-t k n t α,不仅2X 、6X 系数的t 检
验不显著,而且6X 系数的符号与预期的相反,这表明很可能存在严重的多重共线性。
计算各解释变量的相关系数,选择X2、X3、X4、X5、X6数据,点”Quick/Group statistics/correlations ”得相关系数矩阵(如表4.3):
表4.3
由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性。
三、消除多重共线性
采用逐步回归的办法,去检验和解决多重共线性问题。
分别作Y 对X2、X3、X4、X5、X6的一元回归,结果如表4.4所示:
表4.4
变量 X2 X3 X4 X5 X6 参数估计值
0.084
9.0523
11.667
34.33
2014.14
按2
R 的大小排序为:X3、X6、X2、X5、X4。
以X3为基础,顺次加入其他变量逐步回归。
首先加入X6回归结果为:
631784.285850632.7639.4109ˆX X Y t ++-=
t=(2.9086) (0.46214) 957152.02
=R
当取05.0=α时,365
.2)310()(025.02
=-=-t k n t
α,X6参数的t 检验不显著,予以剔除,
加入X2回归得
23029761.0194241.6393.3326ˆX X Y t ++-=
t=(4.2839) (2.1512) 973418.02
=R
X2参数的t 检验不显著,予以剔除,加入X5回归得
5390789.10736535.6972.3059ˆX X Y t ++-=
t=(6.6446) (2.6584) 978028.02
=R
X3、X5参数的t 检验显著,保留X5,再加入X4回归得
453221965.362909.13215884.4161.2441ˆX X X Y t +++-=
t=(3.944983) (4.692961) (3.06767)
991445.02=R 987186.02=R F=231.7935 DW=1.952587
当取05.0=α时,447
.2)410()(025.02=-=-t k n t α,X3、X4、X5系数的t 检验都显著,
这是最后消除多重共线性的结果。
这说明,在其他因素不变的情况下,当城镇居民人均旅游支出
3X 和农村居民人均旅游支出
4X 分别增长1元时,国内旅游收入t Y 将分别增长4.21亿元和3.22亿元。
在其他因素不变
的情况下,作为旅游设施的代表,公路里程5X 每增加1万公里时, 国内旅游收入t Y 将增长
13.63亿元。