两位数乘法速算技巧
两位数乘法速算技巧窍门

两位数乘法速算技巧原理:设两位数分别为10A+B,10C+D,其积为S,根据多项式展开:S= (10A+B) ×(10C+D)=10A×10C+ B×10C+10A×D+ B×D,而所谓速算,就是根据其中一些相等或互补(相加为十)的关系简化上式,从而快速得出结果。
注:下文中“--”代表十位和个位,因为两位数的十位相乘得数的后面是两个零,请大家不要忘了,前积就是前两位,后积是后两位,中积为中间两位,满十前一,不足补零.A.乘法速算一.前数相同的:1.1.十位是1,个位互补,即A=C=1,B+D=10,S=(10+B+D)×10+A×B方法:百位为二,个位相乘,得数为后积,满十前一。
例:13×1713 + 7 = 2- - (“-”在不熟练的时候作为助记符,熟练后就可以不使用了)3 × 7 = 21-----------------------221即13×17= 2211.2.十位是1,个位不互补,即A=C=1, B+D≠10,S=(10+B+D)×10+A×B方法:乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一。
例:15×1715 + 7 = 22- (“-”在不熟练的时候作为助记符,熟练后就可以不使用了)5 × 7 = 35-----------------------255即15×17 = 2551.3.十位相同,个位互补,即A=C,B+D=10,S=A×(A+1)×10+A×B方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积例:56 × 54(5 + 1) × 5 = 30- -6 × 4 = 24----------------------30241.4.十位相同,个位不互补,即A=C,B+D≠10,S=A×(A+1)×10+A×B方法:先头加一再乘头两,得数为前积,尾乘尾,的数为后积,乘数相加,看比十大几或小几,大几就加几个乘数的头乘十,反之亦然例:67 × 64(6+1)×6=427×4=287+4=1111-10=14228+60=4288----------------------4288方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
2位数乘法速算技巧

2位数乘法速算技巧
以下是 6 条关于 2 位数乘法速算技巧:
1. 嘿,你知道吗,有一种速算技巧超厉害呢!比如 34 乘以 11,这不就等于把 3 和 4 拉开,中间加上 3 与 4 的和嘛!那就是 374 呀!这样算起来多快呀,岂不妙哉?
2. 哇塞,两位数乘两位数也有绝招哦!就像 23 乘以 45,你可以先算 20 乘以 45 等于 900,再加上 3 乘以 45 等于 135,加起来就是 1035 啦!是不是很神奇呀!
3. 嘿嘿,还有一个超有用的技巧呢!当遇到十几乘十几时,比如 13 乘以14,可以先把其中一个数加上另一个数的个位,也就是 13 加 4 等于 17,再乘以 10,得到 170,然后加上两个数个位相乘的积 3 乘以 4 等于 12,最后就是 182 啦!想一想,多简单呀!
4. 哎呀呀,要是碰到一个数接近整十数,那就更好办啦!像 48 乘以 52,把 48 看成 50 减 2,把 52 看成 50 加 2,利用平方差公式,不就等于 50 的平方减 2 的平方嘛,也就是 2500 减 4 等于 2496 呀!这就很容易算出来了呀!
5. 你瞧,对于末位是 5 的两位数相乘也有特别的办法哦!比如说 35 乘以45,先让 3 乘以 4 加 1 等于 13,这就是前面的数,后面直接写上 25,结果就是 1575 呀!多有意思啊!
6. 还有哦,当两个两位数相同且个位与十位相同的数相乘时,比如 66 乘以66,先算 6 乘以 6 加 1 等于 37,后面再写上两个 6 相乘的积 36,就是4356 啦!这可太棒啦!
我的观点就是这些 2 位数乘法速算技巧真的超级实用,能让我们的计算变得又快又准确,为啥不好好掌握呢!。
乘法两位数速算技巧

乘法两位数速算技巧1. 尾数相乘法:这个方法适用于两个十位数相同,个位数相加等于10的情况。
例如,计算36乘以34,首先将尾数4乘以尾数6,得到24,然后将尾数相加得到10,最后将结果连接起来,得到1224,即36乘以34的结果。
2. 十位数交叉相乘法:这个方法适用于十位数不同,个位数相同的情况。
例如,计算43乘以47,首先将十位数相乘得到12,然后将个位数相乘得到21,最后将结果连接起来,得到2021,即43乘以47的结果。
3. 十位数相乘加个位数相乘法:这个方法适用于两位数各位数相差1的情况。
例如,计算57乘以58,首先将十位数相乘得到5乘以5等于25,然后将个位数相乘得到7乘以8等于56,最后将结果相加得到81,即57乘以58的结果。
4. 十位数相乘加个位数相乘再加尾数相乘法:这个方法适用于两位数各位数相差2的情况。
例如,计算63乘以65,首先将十位数相乘得到6乘以7等于42,然后将个位数相乘得到3乘以5等于15,最后将尾数相乘得到3乘以5等于15,将结果相加得到72,即63乘以65的结果。
5. 互补相乘法:这个方法适用于两位数各位数之和为10的情况。
例如,计算48乘以52,首先找到两位数各位数之和为10的互补数,即52的互补数是48,然后将互补数相乘得到40,最后在结果后面加上两位数各位数的乘积,得到2496,即48乘以52的结果。
6. 平方法:这个方法适用于两位数各位数相同的情况。
例如,计算33乘以33,首先将个位数的平方得到9,然后将个位数乘以2再乘以十位数,得到6乘以3等于18,最后将结果连接起来,得到1089,即33乘以33的结果。
7. 近似乘法:这个方法适用于需要进行估算的情况。
例如,计算98乘以95,可以将两个数都近似为100,然后将100乘以100得到10000,最后根据两个数与100的差值进行修正,即98减去2得到96,95减去5得到90,将修正后的数相乘得到8640,即98乘以95的结果。
二位数乘法速算技巧

二位数乘法速算技巧二位数乘法速算技巧介绍二位数乘法是基本的数学运算之一,对于快速准确地进行二位数乘法运算,我们可以掌握一些简单而实用的技巧。
本文将详细介绍这些技巧,并帮助你提高二位数乘法的速算能力。
技巧一:十位相乘和个位相乘在进行两个两位数相乘的时候,我们可以将其中一个数拆分成十位和个位,然后逐位相乘。
具体步骤如下: 1. 将两位数的一个数拆分成十位和个位。
2. 分别将拆分后的十位与另一个数逐位相乘,得到两个中间结果。
3. 将两个中间结果相加,即得到最终结果。
例如,计算32乘以49: 1. 拆分32为30和2。
2. 分别计算30乘以49和2乘以49,得到中间结果1470和98。
3. 将1470和98相加,得到最终结果1568。
技巧二:交换律和进位在进行二位数乘法的时候,我们可以利用交换律和进位的特性,简化计算过程。
具体步骤如下: 1. 将需要相乘的两个数按照个位和十位进行排列。
2. 从右至左,逐位相乘并得到中间结果。
3. 对于中间结果中的十位和个位,进行进位运算并相加,得到最终结果。
例如,计算34乘以57: 1. 按照个位和十位进行排列,即34乘以7和34乘以5。
2. 逐位相乘得到28和170。
3. 进行进位运算,将28中的十位进位到170的个位上,得到最终结果1938。
技巧三:利用倍数关系当一个数是另一个数的倍数时,进行乘法运算可以更加简化。
具体步骤如下: 1. 找到两个数中较小的一个数。
2. 判断较小的数是不是较大的数的一个倍数。
3. 若是倍数关系,进行简化计算。
例如,计算56乘以25: 1. 较小的数是25。
2. 判断25是不是56的倍数,发现25是56的4倍。
3. 由于25是56的4倍,我们将56乘以4,得到最终结果224。
技巧四:零的处理当一个数乘以10、100、1000等以10为底的指数时,我们可以进行简化计算。
具体步骤如下: 1. 找到需要相乘的两个数。
2. 若其中一个数是以10为底的指数,进行简化计算。
两位数乘法速算技巧

两位数乘法速算技巧原理:设两位数分别为10A+B,10C+D,其积为S,根据多项式展开:S= (10A+B) ×(10C+D)=10A×10C+ B×10C+10A×D+ B×D,而所谓速算,就是根据其中一些相等或互补(相加为十)的关系简化上式,从而快速得出结果。
注:下文中“--”代表十位和个位,因为两位数的十位相乘得数的后面是两个零,请大家不要忘了,前积就是前两位,后积是后两位,中积为中间两位,满十前一,不足补零.A.乘法速算一.前数相同的:1.1.十位是1,个位互补,即A=C=1,B+D=10,S=(10+B+D)×10+A×B方法:百位为二,个位相乘,得数为后积,满十前一。
例:13×1713 + 7 = 2- - (“-”在不熟练的时候作为助记符,熟练后就可以不使用了)3 × 7 = 21-----------------------221即13×17= 2211.2.十位是1,个位不互补,即A=C=1, B+D≠10,S=(10+B+D)×10+A×B方法:乘数的个位与被乘数相加,得数为前积,两数的个位相乘,得数为后积,满十前一。
例:15×1715 + 7 = 22- (“-”在不熟练的时候作为助记符,熟练后就可以不使用了)5 × 7 = 35-----------------------255即15×17 = 2551.3.十位相同,个位互补,即A=C,B+D=10,S=A×(A+1)×10+A×B方法:十位数加1,得出的和与十位数相乘,得数为前积,个位数相乘,得数为后积例:56 × 54(5 + 1) × 5 = 30- -6 × 4 = 24----------------------30241.4.十位相同,个位不互补,即A=C,B+D≠10,S=A×(A+1)×10+A×B方法:先头加一再乘头两,得数为前积,尾乘尾,的数为后积,乘数相加,看比十大几或小几,大几就加几个乘数的头乘十,反之亦然例:67 × 64(6+1)×6=427×4=287+4=1111-10=14228+60=4288----------------------4288方法2:两首位相乘(即求首位的平方),得数作为前积,两尾数的和与首位相乘,得数作为中积,满十进一,两尾数相乘,得数作为后积。
两位数乘法的速算技巧

两位数乘法的速算技巧引言:在日常生活中,我们经常需要进行乘法计算。
对于两位数乘法,很多人可能觉得比较繁琐和耗时。
然而,如果学会了一些速算技巧,我们就能够快速准确地完成这类计算。
本文将介绍一些简单易用的两位数乘法的速算技巧,帮助大家提高计算效率。
一、交叉相乘法交叉相乘法是两位数乘法中最常用的速算方法之一。
它能够快速计算两个十位数和两个个位数的乘积。
具体步骤如下:1. 将两个两位数的个位数相乘,得到一个十位数。
2. 将两个两位数的十位数相乘,得到一个百位数。
3. 将第一步和第二步的结果相加,得到最终的乘积。
示例:以17乘以23为例,按照交叉相乘法进行计算:1. 7乘以3等于21,写下十位数为2,个位数为1。
2. 1乘以3等于3,写下百位数为3。
3. 将2和3相加,得到最终结果23,即17乘以23的乘积。
这种方法在计算乘法时非常实用,特别是对于一些两位数的乘法。
它简化了计算步骤,提高了计算效率。
二、倍数相乘法倍数相乘法也是一种常用的速算方法。
它适用于某个数乘以一个十的倍数。
具体步骤如下:1. 先将个位数与十位数相乘,得到一个十位数。
2. 再乘以十的倍数。
示例:以87乘以30为例,按照倍数相乘法进行计算:1. 7乘以3等于21,写下十位数为2,个位数为1。
2. 乘以十的倍数30,即将21后面加上两个零,得到2100,即87乘以30的乘积。
这种方法通过简化计算步骤,提高了计算效率。
在实际应用中,我们经常需要计算商品的总价、折扣等,这时倍数相乘法能够派上用场。
三、近似调整法在进行两位数乘法时,有时候我们可以利用近似调整法来估计乘积。
这种方法适用于需要计算大概结果的情况,特别是当我们需要快速对答案进行估算或检查时。
具体步骤如下:1. 先将两个数中的一个数近似为一个较简单的数。
2. 进行乘法运算,得到一个大概的估算结果。
3. 根据估算结果和实际数值之间的差异,进行调整,得到更精确的答案。
示例:以98乘以37为例,按照近似调整法进行计算:1. 将37近似为30,这样可以更方便进行乘法运算。
两位数乘法速算技巧

二位数乘法速算本领(符合小教三年级以上教死)之阳早格格创做1.十几乘十几:心诀:尾乘尾干积尾,尾乘尾干积尾,尾加尾搁中间.例:12×14=?解: 1×1=1 2+4=62×4=8 12×14=168注:个位相乘,谦10要进位.2.几十一乘几十一:心诀:尾乘尾干积尾,尾加尾搁中间,尾乘尾干积尾.例:21×41=?解:2×4=8 2+4=6 1×1=1 21×41=861注:个位相乘,谦10要进位3.第一个乘数互补(二个数字之战是10),另一个乘数数字相共:心诀:一个头加1后,头乘头,尾乘尾.例:37×44=?解:3+1=4 4×4=16 7×4=28 37×44=1628注:个位相乘,没有敷二位数要用0占位.4.尾共尾战十(尾相加等于10):心诀:尾加1再乘尾,个位积写正在后.例:23×27=?解:2+1=32×3=63×7=21 23×27=621注:个位相乘,没有敷二位数要用0占位.尾乘尾再加尾,个位积写正在后例:34×74=3×7+4=254×4=1634×74=2516个位相乘,没有敷二位数要用0占位心诀:二头一推,中间相加例:11×232+3=511×23=253注:相加谦十要进一7.十一乘任性数:心诀:尾尾没有动下降,中间之战下推.例:11×23125=?解:2+3=5 3+1=4 1+2=3 2+5=7 2战5分别正在尾尾 11×23125=254375 注:战谦十要进一.8.十几乘任性数:心诀:第二乘数尾位没有动背下降,第一果数的个位乘以第二果数后里每一个数字,加下一位数,再背下降.例:13×326=?解:13个位是3 3×3+2=11 3×2+6=12 3×6=18 13×326=4238 注:战谦十要进一.。
两位数乘法速算技巧

两位数乘法速算技巧1.乘法口诀法乘法口诀法是最基本的两位数乘法速算技巧。
根据乘法口诀,我们可以很容易地计算出任意两位数的乘积。
以计算15乘以24为例,首先我们将15拆分为10和5,24拆分为20和4、然后将这四个数按照其中一种关系排列,即10乘以20、10乘以4、5乘以20、5乘以4,然后计算出结果:200、40、100、20。
最后将这些结果相加,得到最终的结果:200+40+100+20=360。
2.十位数相乘,个位数相加当两个数中的个位数相加等于10时,可以利用这个特点进行速算。
以计算35乘以25为例,首先将25的个位数5和35的十位数3相乘,得到15;然后将35的个位数5和25的十位数2相乘,得到10。
最后将这两个结果相加,得到最终结果:15+10=253.十位数分解当两个数中的十位数相加等于10且个位数相同,可以利用这个特点进行速算。
以计算48乘以52为例,首先将48拆分成40和8,52拆分成50和2、然后将这四个数按照其中一种关系排列,即40乘以50、40乘以2、8乘以50、8乘以2,然后计算出结果:2000、80、400、16、最后将这些结果相加,得到最终的结果:2000+80+400+16=24964.十位数相等,各位数之和为10当两个数中的十位数相等且个位数之和等于10时,可以利用这个特点进行速算。
以计算34乘以36为例,我们可以将两个数的十位数3作为乘积的十位数,个位数4和6的和10作为乘积的个位数。
即34乘以36的结果可以快速得出为12245.交换顺序当两个数的顺序互换时,乘积是相等的。
以计算24乘以63为例,我们可以将24和63的顺序互换,即63乘以24、这样计算起来比较简单,得到乘积为1512、同理,如果要计算63乘以24,也可以互换顺序得到同样的结果。
6.按位乘法对于两位数乘以两位数的情况,我们可以按位进行乘法运算。
例如计算23乘以47,首先将23的个位数3分别与47的个位数7相乘,得到21;然后将23的十位数2分别与47的个位数7相乘,得到14;接着将23的个位数3分别与47的十位数4相乘,得到12;最后将23的十位数2分别与47的十位数4相乘,得到8、将这四个结果相加,得到最终结果:21+14+12+8=55以上是一些常用的两位数乘法速算技巧,通过灵活运用这些技巧,可以在短时间内快速计算出两位数的乘积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
两位数乘法速算技巧(适合小学三年级以上学生)
1.十几乘十几:口诀:首乘首做积首,尾乘尾做积尾,尾加尾放中间。
例:12×14=?
解: 1×1=1
2+4=6
2×4=8
12 × 14=168
注:个位相乘,满 10 要进位。
2.几十一乘几十一:口诀:首乘首做积首,首加首放中间,尾乘尾做积尾。
例:21×41=?
解:2×4=8
2+4=6
1× 1=1
21 × 41=861
注:个位相乘,满 10 要进位
3.第一个乘数互补(两个数字之和是 10),另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。
例:37×44=?
解:3+1=4
4 × 4=16
7 × 4=28
37 × 44=1628 注:个位相乘,不够两位数要用 0 占位。
4.首同尾和十(尾相加等于 10):口诀:首加1再乘首,个位积写在后。
例:23×27=?
解:2+1=3
2×3=6
3×7= 21
23 × 27=621 注:个位相乘,不够两位数要用 0 占位。
5.尾同首和十首乘首再加尾,个位积写在后例:34×74=
3×7+4=25
4×4=16
34×74=2516 个位相乘,不够两位数要用 0 占位
6.十一乘两位数口诀:两头一拉,中间相加例:11×23
2+3=5
11×23=253
注:相加满十要进一
7.十一乘任意数:口诀:首尾不动下落,中间之和下拉。
例:11×23125=?
解:2+3=5
3+1=4
1+2=3
2+5=7
2和 5 分别在首尾
11 × 23125=254375 注:和满十要进一。
8.十几乘任意数:口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。
例:13×326=?
解:13 个位是 3
3× 3+2=11
3 × 2+6=12
3 × 6=18
13 × 326=4238
注:和满十要进一。