专题训练:反比例函数与一次函数的综合应用(含答案)
2019-2020年中考数学:反比例函数与一次函数综合题(含答案)

2019-2020年中考数学:反比例函数与一次函数综合题(含答案) 针对演练1. 如图,一次函数y =kx +1(k ≠0)与反比例函数y =mx (m ≠0)的图象有公共点A (1,2),直线l ⊥x 轴于点N (3,0),与一次函数和反比例函数的图象分别相交于点B ,C ,连接AC . (1)求k 和m 的值; (2)求点B 的坐标; (3)求△ABC 的面积.第1题图2. 已知正比例函数y =2x 的图象与反比例函数y =kx (k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1.(1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小?若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图3. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第3题图4. (2016巴中10分)已知,如图,一次函数y =kx +b (k 、b 为常数, k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D .若OB =2OA =3OD =6.(1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标; (3)直接写出不等式:kx +b ≤nx 的解集.第4题图5. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第5题图6. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=mx (x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC .(1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第6题图7. 如图,直线y =x +b 与x 轴交于点C(4,0),与y 轴交于点B ,并与双曲线y =mx (x <0)交于点A (-1,n ). (1)求直线与双曲线的解析式; (2)连接OA ,求∠OAB 的正弦值;(3)若点D 在x 轴的正半轴上,是否存在以点D 、C 、B 构成的三角形△OAB 相似?若存在求出D 点的坐标,若不存在,请说明理由.第7题图8. (2016金华8分)如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第8题图9. 如图,已知双曲线y =kx 经过点D (6,1),点C 是双曲线第三象限上的动点,过点C 作CA ⊥x 轴,过点D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.第9题图10. 如图,点B 为双曲线y =kx (x >0)上一点,直线AB 平行于y 轴,交直线y =x 于点A ,交x 轴于点D ,双曲线y =kx 与直线y =x 交于点C ,若OB 2-AB 2=4. (1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD ?若存在,求出点P 的坐标;若不存在,请说明理由.第10题图【答案】1.解:(1)∵点A (1,2)是一次函数y =kx +1与反比例函数y =mx 的公共点,∴k +1=2,1m=2,∴k =1,m =2;(2)∵直线l ⊥x 轴于点N (3,0),且与一次函数的图象交于点B , ∴点B 的横坐标为3,将x =3代入y =x +1,得y =3+1=4, ∴点B 的坐标为(3,4);(3)如解图,过点A 作AD ⊥直线l ,垂足为点D , 由题意得,点C 的横坐标为3, ∵点C 在反比例函数图象上,∴y =2x=23, ∴C 点坐标为(3,23),∴BC =BN -CN =4-23=103, 又∵AD =3-1=2,∴S △ABC =12BC ·AD =12×103×2=103.第1题解图2.解:(1)设A 点的坐标为(x ,y ),则OP =x ,P A =y , ∵△OAP 的面积为1, ∴12xy =1, ∴xy =2,即k =2, ∴反比例函数的解析式为2y x=; (2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2, ∴点B 的纵坐标为y =22=1, 即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点, ∴22x x=, 解得x 1=1,x 2=-1(舍去). ∴y =2,∴点A 的坐标为(1,2),∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0), 即点M 的坐标为(53,0).第2题解图3.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1; (2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1, ∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m ,∴m =-1,∴点P 的坐标为(-1,-2). 4.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0). 将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10). 将点C (-2,10)代入y =nx ,得10=2n-,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分)(2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分) 将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x <0或x ≥5. …………………………………… (10分) 【解法提示】不等式kx +b ≤n x 的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.5.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-, ∴n =1, ∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n , 1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53, 令y =0,得x =-5, 则C 点坐标为(-5,0),∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第5题解图6.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与 y 轴交于点C , ∴A (-4,0),C (0,1), 又∵AC =BC ,CO ⊥AB ,∴O 为AB 的中点,即OA =OB =4,且BP =2OC =2,∴点P 的坐标为(4,2),将点P (4,2)代入y 2=mx ,得m =8,∴反比例函数的解析式为y 2=8x;(2)x >4;【解法提示】由图象可知,当y 1>y 2时,即是直线位于双曲线上方的部分,所对应的自变量x 的取值范围是x >4.(3)存在.假设存在这样的D 点,使四边形BCPD 为菱形,如解图,连接DC 与PB 交于点E ,∵四边形BCPD 为菱形, ∴CE =DE =4, ∴CD =8,∴D 点的坐标为(8,1),将D (8,1)代入反比例函数8y x,D 点坐标满足函数关系式,即反比例函数图象上存在点D ,使四边形BCPD 为菱形,此时 D 点坐标为(8,1).第6题解图7.解:(1)∵直线y =x +b 与x 轴交于点C (4,0), ∴把点C (4,0)代入y =x +b ,得b =-4,∴直线的解析式为y =x -4, ∵直线也过A 点,∴把点A (-1,n )代入y =x -4,得n =-5, ∴A (-1,-5),将A (-1,-5)代入y =mx (x <0),得m =5, ∴双曲线的解析式为5y x; (2)如解图,过点O 作OM ⊥AC 于点M , ∵点B 是直线y =x -4与y 轴的交点, ∴令x =0,得y =-4,∴点B (0,-4),∴OC =OB =4, ∴△OCB 是等腰直角三角形, ∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OM OB =4OM ,∴OM =22,∵AO =12+52=26,∴在△AOM 中,sin ∠OAB =OM OA =2226=21313;第7题解图(3)存在.如解图,过点A 作AN ⊥y 轴于点N ,则AN =1,BN =1, ∴AB =12+12=2, ∵OB =OC =4, ∴BC =42+42=42, 又∵∠OBC =∠OCB =45°, ∴∠OBA =∠BCD =135°,∴△OBA ∽△BCD 或△OBA ∽△DCB , ∴OB BC =BA CD 或OB DC =BA BC ,即442=CD 或4DC =242, ∴CD =2或CD =16, ∵点C (4,0),∴点D 的坐标是(6,0)或(20,0).8.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F . 设AE =AC =t , 点E 的坐标是(3,t ). 在Rt △AOB 中, tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t , ∴点C 的坐标是(3+32t ,12t ). ∵点C 、E 在y =kx 的图象上, ∴(3+32t )×12t =3t , 解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分) ②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23), 设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第8题解图9.解:(1)∵双曲线y =k x 经过点D (6,1), ∴6k =1,解得k =6; (2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1, ∴点C 的纵坐标为1-4=-3, ∴6x=-3,解得x =-2, ∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得, ∴直线CD 的解析式为y =12x -2;(3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c), ∴点A 、B 的坐标分别为A (c ,0),B (0,1),设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得, ∴直线AB 的解析式为y =-1x c+1, 设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c+, ∵AB 、CD 的解析式中k 都等于1c-, ∴AB 与CD 的位置关系是AB ∥CD .10.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x (x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a ),∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a )2+a 2,∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a )2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M , ,2y x y x =⎧⎪⎨=⎪⎩联立 2222x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩解得或(舍去), ∴C 点坐标为(2,2),∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12), ∴AB =4-12=72,CM =4-2, ∴S △ABC =12CM ·AB =12×(4-2)×72=7-724;第10题解图(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP , 设P 点坐标为(a ,2a),则A 点坐标为(a ,a ), ∴AP =|a -2a|, ∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|, ∴(a -2)2=14×222(2)a a-,即(a -2)2=14×222((a a a +⨯-, ∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去), ∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。
一次函数与反比例函数的综合应用(含答案)

一次函数与反比例函数的综合应用一、选择题1. (2011四川凉山,12,4分)二次函数2y ax bx c =++的图象如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图象是( )考点:二次函数的图象;正比例函数的图象;反比例函数的图象. 专题:数形结合.分析:由已知二次函数y =ax 2+bx +c 的图象开口方向可以知道a 的取值范围,对称轴可以确定b 的取值范围,然后就可以确定反比例函数xay =与正比例函数y =bx 在同一坐标系内的大致图象.解答:解:∵二次函数y =ax 2+bx +c 的图象开口方向向下,∴a <0,对称轴在y 轴的左边,∴x =-ab2<0,∴b <0, ∴反比例函数xay =的图象在第二四象限, 正比例函数y =bx 的图象在第二四象限. 故选B .点评:此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a 的值,简单的图象最少能反映出2个条件:开口向下a <0;对称轴的位置即可确定b 的值. 2. (2011•青海)一次函数y=﹣2x+1和反比例函数y=的大致图象是( )O xy O yxAO yxBO yxDO yxCA、B、C、D、考点:反比例函数的图象;一次函数的图象。
分析:根据一次函数的性质,判断出直线经过的象限;再根据反比例函数的性质,判断出反比例函数所在的象限即可.解答:解:根据题意:一次函数y=﹣2x+1的图象过一、二、四象限;反比例函数y=过一、三象限.故选:D.点评:此题主要考查了一次函数的图象及反比例函数的图象,重点是注意y=k1x+b中k1、b及y=中k2的取值.3.(2011山东青岛,8,3分)已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或x>3 C.﹣1<x<0 D.x>3 考点:反比例函数与一次函数的交点问题。
反比例函数与一次函数的综合应用 参考答案与试题解析

反比例函数与一次函数的综合应用1.已知一次函数y1=kx﹣b与反比例函数y2=,在同一平面直角坐标系中的图象如图所示,则当kx<+b时,x的取值范围是()A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣3<x<0或x>1D.x>32.如图,一次函数y=k1x+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,若点C坐标是(3,6),且AB=BC.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取何值时,k1x+b<.3.如图,在平面直角坐标系中,一次函数与反比例函数相交于A(2,m)和B(6,2).(1)求直线AB的表达式;(2)△AOB的面积是;(3)点A到OB的距离AH的长度是.4.如图,一次函数y1=﹣2x+b的图象分别交x轴,y轴于D,C两点,交反比例函数y2=图象于A(﹣1,6),B(m,﹣2)两点.(1)求k,b的值;(2)点E是y轴上点C下方一点,若S=,求E点的坐标;△AEB(3)当y1>y2时,x的取值范围是.5.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;(3)若点P在线段AB上,且S:S△BOP=1:4,求点P的坐标.△AOP参考答案与试题解析1.已知一次函数y1=kx﹣b与反比例函数y2=,在同一平面直角坐标系中的图象如图所示,则当kx<+b时,x的取值范围是()A.x<﹣1或0<x<3B.﹣1<x<0或x>3C.﹣3<x<0或x>1D.x>3【解答】解:根据题意得:当y1<y2时,x的取值范围是﹣1<x<0或x>3,∴当kx<+b时,x的取值范围是﹣1<x<0或x>3.故选:B.2.如图,一次函数y=k1x+b的图象与x轴,y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,若点C坐标是(3,6),且AB=BC.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取何值时,k1x+b<.【解答】解:(1)∵点C(3,6)在反比例函数y=的图象上,∴k2=3×6=18,∴反比例函数的解析式为y=;如图,作CE⊥x轴于E,∵C(3,6),AB=BC,∴B(0,3),∵B、C在y=k1x+b的图象上,∴,解得,∴一次函数的解析式为y=x+3;(2)由,解得或,∴D(﹣6,﹣3),=S△BOC+S△BOD=×3×3+×3×6=;∴S△COD(3)由图象可得,当0<x<3或x<﹣6时,k1x+b<.3.如图,在平面直角坐标系中,一次函数与反比例函数相交于A(2,m)和B(6,2).(1)求直线AB的表达式;(2)△AOB的面积是16;(3)点A到OB的距离AH的长度是.【解答】解:(1)设反比例函数的解析式为y=,由题意可知:k=6×2=12,∴y=,∵A(2,m)在反比例函数y=的图象上,∴m==6,∴A(2,6),∵A(2,6)、B(6,2)在一次函数y=ax+b的图象上,∴,解得,∴直线AB的表达式为y=﹣x+8;(2)设直线AB与x轴的交点为C,令y=0,则﹣x+8=0,解得x=8,∴C(8,0),=S△AOC﹣S△BOC=﹣=16,∴S△AOB故答案为:16;(3)∵B(6,2),∴OB==2,∵S=OB•AH=16,△AOB∴AH==,故答案为:.4.如图,一次函数y1=﹣2x+b的图象分别交x轴,y轴于D,C两点,交反比例函数y2=图象于A(﹣1,6),B(m,﹣2)两点.(1)求k,b的值;=,求E点的坐标;(2)点E是y轴上点C下方一点,若S△AEB(3)当y1>y2时,x的取值范围是x<﹣1或0<x<3.【解答】解:(1)将A(﹣1,6)代入一次函数y=﹣2x+b,得b=4;将A(﹣1,6)代入,得k=﹣6.(2)设E(a,0),将B(m,﹣2)代入,得m=3,∴B(3,﹣2)∴)=2CE=2(4﹣a)=,∴E(0,);(3)观察图象,当y1>y2时,x的取值范围是x<﹣1或0<x<3,故答案为:x<﹣1或0<x<3.5.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;:S△BOP=1:4,求点P的坐标.(3)若点P在线段AB上,且S△AOP【解答】解:(1)∵反比例函数y=经过A(1,2),∴k2=1×2=2,∴反比例函数解析式为y=,∵B(﹣2,n)在比例函数y=的图象上,∴n==﹣1,∴B(﹣2,﹣1),∵直线y=k1x+b经过A(1,2),B(﹣2,﹣1),∴,解得,∴一次函数的解析式为y=x+1;(2)观察图象,k1x+b>的x的取值范围是﹣2<x<0或x>1;(3)设P(x,x+1),:S△BOP=1:4,∵S△AOP∴AP:PB=1:4,即PB=4PA,∴(x+2)2+(x+1+1)2=16[(x﹣1)2+(x+1﹣2)2],解得x1=,x2=2(舍去),∴P点坐标为(,).。
九年级数学一次函数及反比例函数练习题(含答案)

一次函数及反比例函数专题训练一、填空题:(每题 3 分,共 36 分)1、函数 y =x -2 自变量 x 的取值范围是____。
2、如图,在直角坐标系中,矩形ABOC 的长为 3,宽为 2,则顶点A 的坐标是____。
3、点 P (3,-4)关于原点对称的点是________。
4、直线 y =4x -3 过点(____,0)(0,____)5、已知反比例函数 y =-4x 的图像经过P (-2,m ),则 m =____。
6、函数 y =2x,当 x <0 时,y 随 x 的增大而____。
7、将直线 y =3x -1 向上平移 3 个单位,得到直线________。
8、已知:y 是 x 的反比例函数,且当 x =3 时,y =8。
则 y 与 x 的函数关系式为___。
9、一次函数 y =-3x +4 的图象与坐标轴所围成的三角形面积是____。
10、如果直线 y =ax +b 不经过第四象限,那么 ab ___0(填“≥”、“≤”或“=”)。
11、近视眼镜的度数 y (度)与镜片焦距 x (m )成反比例,已知 400°近视眼镜片的焦距为0.25m ,则眼镜度数 y 与镜片焦距 x 之间的函数关系式为________。
12、某书定价 8 元,如果购买 10本以上,超过 10 本的部分打八折。
请写出购买数量 x (本)与付款金额 y (元)之间的关系式____________。
二、选择题:(每题 4 分,共 24 分)1、点 P (a ,a -2)在第四象限,则 a 的取值范围是( )A 、-2<a <0B 、0<a <2C 、a >2D 、a <02、在函数 y =3x -2,y =1x+3,y =-2x ,y =-x 2+7 是正比例函数的有( )A 、0 个B 、1 个C 、2 个D 、3 个 3、王大爷饭后出去散步,从家中走 20 分钟到一个离家 900 米的公园,与朋友聊天10分钟后,然后用15分钟返回家里。
一次函数与反比例函数的综合应用训练

一次函数与反比例函数的综合应用训练例1:已知一次函数y=(3-k)x-2k2+18.(1)k为时,它的图象经过原点;(2)k为时,它的图象经过点(0,-2);(3)k为时,它的图象平行于直线y=-x;(4)k为时,它的图象垂直于直线y=2x+1;(5)k为时,y随x的增大而减小,=+的图象经过M(0,2),N(1,3)两点.例2:已知一次函数y kx b(l) 求k、b的值;=+的图象与x轴和y轴的交点坐标(2) 求一次函数y kx b=+的图象与坐标轴围成的三角形面积。
(3) 求一次函数y kx b例3:一家小型放映厅的盈利额y元同售票数x之间的关系如图所示,其中保险部门规定:超过150人时,要缴纳公安消防保险费50元,据图回答:(1)当0<x≤150时,y与x的关系式。
(2)当150<x≤200时,y与x的关系式。
(3)当售票数x为时,不赔不赚;当售票数x为时,赔本;若获得最大利润200元x为。
基础巩固小训练:一、选择题1、一次函数y=(m-2)x+(3-2m )的图像经过点(-1,-4),则m 的值为( ).A .-3B .3C .1D .-12、若一次函数y=(2-m )x+m 的图像经过第一、•二、•四象限,•则m•的取值范围是( )3、一次函数y=kx+b 满足x=0时y=-1;x=1时,y=1,则一次函数的表达式为( ).A .y=2x+1B .y=-2x+1C .y=2x-1D .y=-2x-14、如图,线段AB 对应的函数表达式为( )A .y=-32x+2B .y=-23x-2C .y=-23x+2(0≤x ≤3)D .y=-23x+2(0<x<3) 5、已知函数y=x-3,若当x=a 时,y=5;当x=b 时,y=3,a 和b 的大小关系是( )A .a>bB .a=bC .a<bD .不能确定6、已知正比例函数y =kx (k ≠0),y 随x 的增大而减小,则一次函数y =x +k 的图像大致是( )。
2023年九年级中考数学专题专练--反比例函数与一次函数的综合【含答案】

2023年九年级中考数学专题专练--反比例函数与一次函数的综合1.如图,在平面直角坐标系中,点A(m ,n)(m >0)在双曲线y = 上.4x (1)如图1,m =1,∠AOB =45°,点B 正好在y = (x >0)上,求B 点坐标; 4x (2)如图2,线段OA 绕O 点旋转至OC ,且C 点正好落在y = 上,C(a ,b),试求m 与a4x 的数量关系.2.如图,一次函数y=kx+3的图象与反比例函数y= 的图象交于P 、Q 两点,PA ⊥x 轴于点A ,mx 一次函数的图象分别交x 轴、y 轴于点C ,点B,其中OA=6,且 .12OC CA(1)求一次函数和反比例函数的表达式; (2)求△APQ 的面积;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值.3.如图,已知一次函数y 1=k 1x+b (k 1为常数,且k 1≠0)的图象与反比例函数y 2= (k 2为常数,2k x 且k 2≠0)的图象相交于A (1,2),B (m ,﹣1)两点.(1)求一次函数和反比例函数的解析式;(2)若A 1(m 1,n 1),A (m 2,n 2),A 3(m 3,n 3)为反比例函数图象上的三点,且m 1<m 2<0<m 3,请直接写出n 1、n 2、n 3的大小关系式;(3)结合图象,请直接写出关于x 的不等式k 1x+b > 的解集.2k x 4.如图,在平面直角坐标系xOy 中,直线y=x﹣2与双曲线y= (k≠0)相交于A,B 两点,且点Akx 的横坐标是3.(1)求k 的值;(2)过点P(0,n)作直线,使直线与x 轴平行,直线与直线y=x﹣2交于点M ,与双曲线y=kx (k≠0)交于点N ,若点M 在N 右边,求n 的取值范围.5.已知双曲线y= 和直线y=kx+4.6x (1)若直线y=kx+4与双曲线y= 有唯一公共点,求k 的值.6x(2)若直线y=kx+4与双曲线交于点M (x 1,y 1),N (x 2,y 2).当x 1>x 2,请借助图象比较y 1与y 2的大小.6.如图,已知A (﹣2,﹣2),B (1,4)是一次函数y =kx+b (k≠0)的图象和反比例函数(m≠0)的图象的两个交点,直线AB 与y 轴交于点C.my x =(1)求一次函数和反比例函数的解析式;(2)求△AOC 的面积;(3)结合图象直接写出不等式的解集.mkx b x +<7.如图,在平面直角坐标系系中,一次函数y 1=kx+b(k0)与反比例函数y 2= (m≠0)的图象交mx 于第二、第四象限A ,B 两点,过点A 作AD ⊥x 轴,垂足为D ,AD=4,sin ∠AOD= ,且点B 的45坐标为(n ,-2).(1)求一次函数与反比例函数的表达式;(2)将一次函数y 1=kx+b(k0)向下移动2个单位的函数记为y 3,当y 3<y 2时,求x 的取值范围。
中考数学教材重点--- 反比例函数与一次函数的综合真题练习(含答案解析)

中考数学教材重点--- 反比例函数与一次函数的综合真题练习(含答案解析)1.(2023•攀枝花模拟)如图,已知直线y=mx与双曲线的一个交点坐标为(﹣1,3),则它们的另一个交点坐标是()A.(1,3)B.(3,1)C.(1,﹣3)D.(﹣1,3)【分析】反比例函数的图像是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:因为直线y=mx过原点,双曲线的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(﹣1,3),另一个交点的坐标为(1,﹣3).故选:C.2.(2023•滨湖区一模)在平面直角坐标系xOy中,反比例函数与一次函数y =ax+b(a>0)的图像相交于A(﹣8,m)、B(﹣2,n)两点,若△AOB面积为15,则k的值为()A.﹣8B.﹣7.5C.﹣6D.﹣4【分析】过点A、B分别作y轴的垂线,垂足分别为C、D,根据点A(﹣8,m)、B(﹣2,n)都在反比例函数的图像上,推出n=4m,根据S梯形ACDB=S△OAB=15,求得n﹣m=3,进一步计算即可求解.【解答】解:∵反比例函数与一次函数y=ax+b(a>0)的图像相交于A (﹣8,m)、B(﹣2,n)两点,∴A(﹣8,m)、B(﹣2,n)两点在第二象限,过点A、B分别作y轴的垂线,垂足分别为C、D,则AC=8,BD=2,OC=m,OD=n,∴CD=n﹣m,∵点A(﹣8,m)、B(﹣2,n)都在反比例函数的图像上,∴S△AOC=S△BOD,﹣8m=﹣2n,即n=4m,∵S△AOC+S梯形ACDB=S△BOD+S△OAB,∴S梯形ACDB=S△OAB=15,即,∴n﹣m=3,∴4m﹣m=3,解得m=1,∴A(﹣8,1),∴k=﹣8×1=﹣8.故选:A.3.(2023•宁波模拟)如图,一次函数y1=x﹣1的图像与反比例函数的图像交于点A (2,m),B(n,﹣2),当y1>y2时,x的取值范围是()A.x<﹣1或x>2B.x<﹣1或0<x<2C.﹣1<x<0或0<x<2D.﹣1<x<0或x>2【分析】先把B(n,﹣2)代入y1=x﹣1,求出n值,再根据图像直接求解即可.【解答】解:把B(n,﹣2)代入y1=x﹣1,得﹣2=n﹣1,解得:n=﹣1,∴B(﹣1,﹣2),∵图像交于A(2,m)、B(﹣1,﹣2)两点,∴当y1>y2时,﹣1<x<0或x>2.故选:D.4.(2023•宁德模拟)如图,已知直线l与x,y轴分别交于A,B两点,与反比例函数的图像交于C,D两点,连接OC,OD.若△AOC和△COD的面积都为3,则k的值是()A.﹣2B.﹣3C.﹣4D.﹣6【分析】由S△AOC=S△COD得,AC=CD,设C(,m),A(0,n),由中点坐标公式得,D(,2m﹣n),代入解析式得到n=m,过点作CH⊥y轴于H,利用S△AOC=3,可求出k.【解答】解:如图,∵S△AOC=S△COD,以AC,CD作底,高相同∴AC=CD,即C为AD的中点,设C(,m),A(0,n),由中点坐标公式得,D(,2m﹣n),∵D(,2m﹣n)在反比例函数y=的图像上,∴,∴n=m过点作CH⊥y轴于H,则CH=﹣,OA=n=m,∵S△AOC=3,∴OA•CH=3,∴×m×(﹣)=3,∴k=﹣4.故选:C.5.(2023•宿迁模拟)如图,在平面直角坐标系中,直线l与函数的图像交于A、B两点,与x轴交于C点,若OA=AB,且∠OAB=90°,则tan∠AOC的值为()A.B.C.D.【分析】作AE⊥x轴于E,BF⊥y轴于F,交于点D,设A(m,),则OE=m,AE=,通过证得△AOE≌△BAD(AAS),求得B(),代入,即可得到(m﹣)(m+)=k,整理得m2﹣=k,方程两边同除k得﹣=1,设=y,则方程变为﹣y=1,化为y2+y﹣1=0,解得y=,即可求得tan∠AOC ====.【解答】解:作AE⊥x轴于E,BF⊥y轴于F,交于点D,设A(m,),则OE=m,AE=,∵∠OAB=90°,∴∠OAE+∠DAB=90°,∵∠OAE+∠AOE=90°,∴∠DAB=∠AOE,∵OA=AB,∠AEO=∠ADB=90°,∴△AOE≌△BAD(AAS),∴AD=OE=m,BD=AE=,∴B(),∵函数的图像过B点,∴(m﹣)(m+)=k,整理得m2﹣=k,方程两边同除以k得﹣=1,设=y,则方程变为﹣y=1,化为y2+y﹣1=0,解这个方程得y=,∴k>0,∴>0,∴=,∴tan∠AOC====.故选:A.6.(2023•呼和浩特一模)如图,在平面直角坐标系中,直线y=﹣3x+3交x轴于A点,交y轴于B点,以AB为边在第一象限作正方形ABCD,其中顶点D恰好落在双曲线上,现将正方形ABCD沿y轴向下平移a个单位,可以使得顶点C落在双曲线上,则a的值为()A.B.C.2D.【分析】作CE⊥y轴于点E,作DF⊥x轴于点F,作CH⊥x轴于点H,交双曲线于点G,由函数解析式确定B的坐标是(0,3),A的坐标是(1,0),根据全等三角形的判定和性质得出△OAB≌△FDA≌△BEC,AF=OB=EC=3,DF=OA=BE=1,结合图形求解即可.【解答】解:作CE⊥y轴于点E,作DF⊥x轴于点F,作CH⊥x轴于点H,交双曲线于点G在y=﹣3x+3中,令x=0,解得:y=3,即B的坐标是(0,3),令y=0,解得:x=1,即A的坐标是(1,0),则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△EBC,∴AF=OB=EC=3,DF=OA=BE=1,故D的坐标是(4,1),C的坐标是(3,4),代入y=得:k=4,则函数的解析式是:y=.∴OE=4,则C的纵坐标是4,把x=3代入y=得:y=.即G的坐标是,∴CG=4﹣=,∴a=,故选:A.7.(2023•徐州模拟)如图,一次函数的图像与反比例函数的图像交于点A,与y轴交于点C,AD⊥x轴于点D,点D坐标为(4,0),则△ADC的面积为()A.3B.6C.8D.12【分析】根据AD⊥x轴,D(4,0)求出点A的横坐标,代入一次函数表达式中求出点A纵坐标,再利用三角形面积公式计算.【解答】解:∵AD⊥x轴,D(4,0),∴x A=4,代入中,∴,即A(4,3),∴△ADC的面积为,故选:B.8.(2023•茅箭区一模)如图已知反比例函数C1:的图像如图所示,将该曲线绕点O顺时针旋转45°得到曲线C2,点N是由曲线C2上一点,点M在直线y=﹣x 上,连接MN、ON,若MN=ON,△MON的面积为,则k的值为()A.B.C.﹣2D.﹣1【分析】将直线y=﹣x和曲线C2绕点O逆时针旋转45°,则直线y=﹣x与x轴重合,曲线C2与曲线C1重合,即可求解.【解答】解:∵将直线y=﹣x和曲线C2绕点O逆时针旋转45°后直线y=﹣x与x轴重合,∴旋转后点N落在曲线C1上,点M落在x轴上,如图所示,设点M和点N的对应点分别为点M'和N',过点N'作N'P⊥x轴于点P,连接ON',M'N',∵MN=ON,∴M'N'=ON',M'P=OP,∴S△MON=2S△PN'O=2×=|k|=,∵k<0,∴k=﹣.故选:B.9.(2023•西安二模)如图,在平面直角坐标系中,直线y=﹣x+1与x轴,y轴分别交于点A,B,与反比例函数的图像在第二象限交于点C,若AB=BC,则k的值为﹣2.【分析】过点C作CH⊥x轴于点H.求出点C的坐标,可得结论.【解答】解:过点C作CH⊥x轴于点H.∵直线y=﹣x+1与x轴,y轴分别交于点A,B,∴A(1,0),B(0,1),∴OA=OB=1,∵OB∥CH,∴△AOB∽△AHC,∴,∴==1,∴OA=OH=1,∴CH=2OB=2,∴C(﹣1,2),∵点C在y=的图像上,∴k=﹣2,故答案为:﹣2.10.(2023•双流区模拟)如图,已知一次函数的图像与反比例函数图像交于A,B两点.若AC∥x轴,且AC=BC,则△ABC面积的最小值为4.【分析】由题意设点A的坐标为(m,m+b),点B的坐标为(n,n+b),即可推出m+n=﹣,mn=﹣3,利用勾股定理求得AB2=4b2+16,进而推出S△ABC =AB•CT=AB2=b2+4,利用二次函数的性质即可求得△ABC的面积有最小值为4.【解答】解:由题意设点A的坐标为(m,m+b),点B的坐标为(n,n+b),联立,得x2+3bx﹣9=0,∴m+n=﹣,mn=﹣3,∴AB2=(m﹣n)2+(m+b﹣n﹣b)2=(m﹣n)2=[(m+n)2﹣4mn]=4b2+16,如图,过点C作CT⊥AB于点T,∵AC=BC,∴AT=BT=AB,由一次函数可知,∠CAB=30°,∴CT=AT=AB,∴S△ABC=AB•CT=AB2=b2+4,∴当b=0时,△ABC的面积有最小值为4,故答案为:4.11.(2023•青羊区模拟)如图,在平面直角坐标系中,一次函数y=3x与反比例函数的图像交于A,B两点,C是反比例函数位于第一象限内的图像上的一点,作射线CA交y轴于点D,连接BC,BD,若,△BCD的面积为30,则k=6.【分析】作CF⊥y于点I,BF⊥x,交CI的延长线于点F,作AE⊥CF于点E,设BC交y轴于点M,设A(m,3m),则B(﹣m,﹣3m),k=3m2,设点C的横坐标为a,则C (a,),可证明tan∠CAE=tan∠CBF=,则∠CAE=∠CBF,即可推导出∠CDM =∠CMD,则CD=CM,所以===,则CI=4FI,所以a=4m,C(4m,),由=tan∠CMD=tan∠CBF=,得DI=MI=3m,则DM=6m,于是得×6m ×m+×6m×4m=30,则m2=2,所以k=3m2=6.【解答】解:作CF⊥y于点I,BF⊥x,交CI的延长线于点F,作AE⊥CF于点E,设BC交y轴于点M,∵直线y=3x经过原点,且与双曲线y=交于A,B两点,∴点A与点B关于原点对称,设A(m,3m),则B(﹣m,﹣3m),k=3m2,设点C的横坐标为a,则C(a,),F(﹣m,),∵tan∠CAE===,tan∠CBF===,∴tan∠CAE=tan∠CBF,∴∠CAE=∠CBF,∵AE∥BF∥DM,∠CAE=∠CDM,∠CBF=∠CMD,∴∠CDM=∠CMD,∴CD=CM,∵===,∴CI=4FI,∴a=4m,∴C(4m,),∵=tan∠CMD=tan∠CBF===,∴DI=MI=CI=×4m=3m,∴DM=DI+MI=6m,∵DM•FI+DM•CI=S△BCD=30,∴×6m×m+×6m×4m=30,∴m2=2,∴k=3m2=3×2=6,故答案为:6.12.(2023•余姚市校级模拟)如图,点A在y=(x>0)的图像上,点B,C在y=(x <0)的图像上(C在B左边),直线AB经过原点O,直线AC交y轴于点M,直线BC 交x轴于点N.则=;=m,=n,则=.【分析】作AD⊥y轴交y轴于D,BE⊥x轴交x轴于E,CF⊥x轴交x轴于F,CG⊥y 轴交y轴于G,再设点A的坐标为(a,),点B的坐标为(b,),点C的坐标为(c,),从而可以表示出AD=a,OE=﹣bCG=﹣c,CF=﹣,BE=﹣,再根据三角形相似的判定定理得出△BEO∽△ODA,△CGM∽△ADM,△NCF∽△NBE,可分别表示出OA:OB,MC:MA,NB:NC,再由直线AB经过原点O,可以表示出及的值,最后代入即可得到答案.【解答】解:如图所示,作AD⊥y轴交y轴于D,BE⊥x轴交x轴于E,CF⊥x轴交x 轴于F,CG⊥y轴交y轴于G,设点A的坐标为(a,),点B的坐标为(b,),点C的坐标为(c,),则AD=a,OE=﹣b,CG=﹣c,CF=﹣,BE=﹣,∵BE⊥x轴,∴BE∥y轴,∴∠EBO=∠BOG,∵∠BOG=∠DOA,∴∠EBO=∠DOA,∵AD⊥y轴,∴∠BEO=∠ODA=90°,∴△BEO∽△ODA,∴OA:OB=AD:OE=﹣,∵AD⊥y轴,CG⊥y轴,∴△CGM∽△ADM,∴==﹣=m,∵BE⊥x,CF⊥x轴,∴△NCF∽△NBE,∴====n,∴==﹣,∵直线AB经过原点O,∴=,=,∴=,=,由图像可知,a>0,c<b<0,∴=﹣,=﹣,∴=﹣=,=﹣=,故答案为:;.13.(2023•岳阳一模)如图,已知正比例函数y1=x的图像与反比例函数y2=的图像相交于点A(3,n)和点B.(1)求n和k的值;(2)请结合函数图像,直接写出不等式x﹣<0的解集;(3)如图,以AO为边作菱形AOCD,使点C在x轴正半轴上,点D在第一象限,双曲线交CD于点E,连接AE、OE,求△AOE的面积.【分析】(1)先把点A(3,n)代入正比例函数解析式求出n的值,再把求出的点A坐标代入反比例函数解析式即可求出k值;(2)根据正比例函数和反比例函数都是关于原点成中心对称的,可得出点B的坐标,然后根据图像即可写出解集;(3)根据题意作出辅助线,然后求出OA的长,根据菱形的性质求出OC的长,可推出,然后求出菱形的面积即可求出△AOE的面积.【解答】解:(1)把点A(3,n)代入正比例函数可得:n=4,∴点A(3,4),把点A(3,4)代入反比例函数,可得:k=12;(2)∵点A与点B是关于原点对称的,∴点B(﹣3,﹣4),∴根据图像可得,不等式x﹣<0的解集为:x<﹣3或0<x<3;(3)如图所示,过点A作AG⊥x轴,垂足为G,∵A(3,4),∴OG=3,AG=4在Rt△AOG中,AO==5∵四边形AOCD是菱形,∴OC=OA=5,,∴.14.(2023•锦江区模拟)如图,在平面直角坐标系xOy中,一次函数y=2x+b的图像与x 轴交于点A(﹣2,0),与反比例函数交于点B(1,m).(1)求反比例函数的表达式;(2)点M为反比例函数在第一象限图像上的一点,过点M作x轴垂线,交一次函数y =2x+b图像于点N,连接BM,若△BMN是以MN为底边的等腰三角形,求△BMN的面积;(3)点P为反比例函数图像上一点,连接PB,若∠PBA=∠BAO,求点P的坐标.【分析】(1)用待定系数法即可求解;(2)若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,进而求解;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,进而求解.【解答】解:(1)将点A的坐标代入一次函数表达式得:0=﹣4+b,解得:b=4,即一次函数的表达式为:y=2x+4,当x=1时,y=2x+4=6,则点B(1,6),将点B的坐标代入反比例函数表达式得:k=1×6=6,即反比例函数表达式为:y=;(2)设点N的坐标为(t,2t+4),则点M(t,),若△BMN是以MN为底边的等腰三角形,则点B在MN的中垂线上,则(2t+4+)=6,解得:t=1(舍去)或3,则点M、N的坐标分别为:(3,10)、(3,2),则△BMN的面积=MN•(x M﹣x B)=(10﹣2)×(3﹣1)=8;(3)取AB的中点M,过点M作MH⊥AB交x轴于点H,∵点M是AB的中点且MH⊥AB,则∠PBA=∠BAO,由中点坐标公式得,点M(﹣,3),在Rt△AMH中,由AB的表达式知,tan∠BAO=2,则tan∠MHA=,则直线MH表达式中的k值为﹣,则直线MH的表达式为:y=﹣(x+)+3,令y=﹣(x+)+3=0,则x=,即点H(,0),由点B、H的坐标得,直线BH的表达式为:y=﹣x+,联立y=﹣x+和y=并解得:x=1(舍去)或,则点P的坐标为:(,).。
中考数学压轴题提升训练一次函数与反比例函数综合题含解析

一次函数与反比例函数综合题【例1】。
如图,直线l:y=ax+b交x轴于点A(3,0),交y于第一象限的点P,点P的轴于点B(0,-3),交反比例函数y kx横坐标为4.的解析式;(1)求反比例函数y kx(2)过点P作直线l的垂线l1,交反比例函数y k的图象于x点C,求△OPC的面积.【答案】见解析。
【解析】解:(1)∵y=ax+b交x轴于点A(3,0),交y轴于点B(0,-3),∴3a+b=0,b=-3,解得:a=1,即l1的解析式为:y=x-3,当x=4时,y=1,即P(4,1),将P点坐标代入y k得:k=4,x;即反比函数的解析式为:y4x(2)设直线l1与x轴、y轴分别交于点E,D,∵OA=OB=3,∴∠OAB=∠OBA=45°,∵l⊥l1,∴∠DPB=90°,∴∠ODP=45°,设直线l1的解析式为:y=-x+b,将点P(4,1)代入得:b=5,联立:y=-x+5,y4x,解得:x=1,y=4或x=4,y=1,即C(1,4),∴S△OPC=S△ODE-S△OCD-S△OPE=12×5×5-12×5×1-12×5×1=152.【变式1—1】.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=–12x+3交AB,BC于点M,N,反比例函数kyx的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.【答案】见解析.【解析】解:(1)∵B(4,2),四边形OABC为矩形,∴OA=BC=2,在y=–12x+3中,y=2时,x=2,即M(2,2),将M(2,2)代入kyx=得:k=4,∴反比例函数的解析式为:4yx=.(2)在4yx=中,当x=4时,y=1,即CN=1,∵S四边形BMON=S矩形OABC-S△AOM-S△CON=4×2-12×2×2-12×4×1=4,∴S△OPM=4,即12·OP·OA=4,∵OA=2,∴OP=4,∴点P 的坐标为(4,0)或(-4,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专训2 反比例函数与一次函数的综合应用
名师点金:反比例函数单独考查的时候很少,与一次函数综合考查的情况较多,其考查形式有:两种函数图象在同一坐标系中的情况,两种函数的图象与性质,两种函数图象的交点情况、交点坐标,用待定系数法求函数表达式及求与函数图象有关的几何图形的面积等.
反比例函数图象与一次函数图象的位置判断
1.【2015·兰州】在同一直角坐标系中,一次函数y =kx -k 与反比例函数y =k
x (k ≠0)的
图象大致是( )
2.一次函数y =kx +b 与反比例函数y =k
x (k ≠0)在同一平面直角坐标系中的大致图象如
图所示,则k ,b 的取值范围是( )
A .k >0,b >0
B .k <0,b >0
C .k <0,b <0
D .k >0,b <0
(第2题) (第3题) (第4题)
反比例函数与一次函数的图象与性质
3.(中考·仙桃】如图,正比例函数y 1=k 1x 和反比例函数y 2=k 2
x 的图象交于A (1,2),B
两点,给出下列结论:
①k 1<k 2;②当x <-1时,y 1<y 2;③当y 1>y 2时,x >1;④当x <0时,y 2随x 的增大而减小.其中正确的有( )
A .0个
B .1个
C .2个
D .3个
4.已知函数y 1=x (x ≥0),y 2=4
x (x >0)的图象如图所示,则以下结论:
①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 1>y 2; ③当x =1时,BC =2;
④两函数图象构成的图形是轴对称图形;
⑤当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是____________.
反比例函数与一次函数的有关计算
类型1 利用点的坐标求面积
5.如图,在平面直角坐标系xOy 中,直线y =2x +n 与x 轴、y 轴分别交于点A ,B ,与双曲线y =4
x
在第一象限内交于点C (1,m ).
(1)求m 和n 的值;
(2)过x 轴上的点D (3,0)作平行于y 轴的直线l ,分别与直线AB 和双曲线y =4
x 交于点
P ,Q ,求△APQ 的面积.
(第5题)
类型2 利用面积求点的坐标
6.【2015·兰州】如图,A ⎝⎛⎭⎫-4,1
2,B (-1,2)是一次函数y 1=ax +b 与反比例函数y 2=m
x
图象的两个交点,AC ⊥x 轴于点C ,BD ⊥y 轴于点D . (1)根据图象直接回答:在第二象限内,当x 取何值时, y 1-y 2>0? (2)求一次函数表达式及m 的值.
(3)P 是线段AB 上一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 的坐标.
(第6题)
参考答案
1.A 2.C
3.C 点拨:把点A (1,2)的坐标分别代入y =k 1x ,y =k 2
x 中,得k 1=2,k 2=2.所以①是
错误的,易知点B 的坐标为(-1,-2),由图象可知②,④是正确的,当y 1>y 2时,x >1或-1<x <0,所以③是错误的,故选C .
4.①②④⑤
5.解:(1)把C (1,m )的坐标代入y =4x ,得m =4
1,∴m =4.
∴点C 的坐标为(1,4).
把C (1, 4)的坐标代入y =2x +n ,得4=2×1+n ,解得n =2. (2)对于y =2x +2,令x =3,则y =2×3+2=8, ∴点P 的坐标为(3,8).
令y =0,则2x +2=0,得x =-1, ∴点A 的坐标为(-1,0). 对于y =4x ,令x =3,则y =4
3.
∴点Q 的坐标为⎝⎛⎭⎫3,4
3. ∴PQ =8-43=20
3,AD =3+1=4.
∴△APQ 的面积=12AD ·PQ =12×4×203=40
3
.
点拨:注意反比例函数与一次函数图象的交点坐标满足两个函数的表达式,解答这类题通常运用方程思想.
6.解:(1)在第二象限内,当-4<x <-1时,y 1-y 2>0. (2)∵双曲线y 2=m x 过A ⎝⎛⎭⎫-4,12,∴m =-4×1
2=-2. ∵直线y 1=ax +b 过A ⎝⎛⎭⎫-4,1
2,B (-1,2), ∴⎩⎪⎨⎪⎧-4a +b =12,
-a +b =2,解得⎩⎨⎧a =1
2,b =52.
∴y 1=12x +52
.
(第6题)
(3)设P ⎝⎛⎭⎫n ,12n +5
2,过P 作PM ⊥x 轴于M ,PN ⊥y 轴于N , ∴PM =12n +5
2,PN =-n .
∵S △PCA =S △PDB , ∴12·AC ·CM =1
2
·BD ·DN , 即12×12(n +4)=12×1×⎝⎛⎭⎫2-12n -52,解得n =-52. ∴P 点坐标为⎝⎛⎭⎫-52,5
4.。