【数学】培优反比例函数辅导专题训练附答案

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)

1.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣

2),与y轴交于点C.

(1)m=________,k1=________;

(2)当x的取值是________时,k1x+b>;

(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.

【答案】(1)4;

(2)﹣8<x<0或x>4

(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).

∴CO=2,AD=OD=4.

∴S梯形ODAC= •OD= ×4=12,

∵S四边形ODAC:S△ODE=3:1,

∴S△ODE= S梯形ODAC= ×12=4,

即OD•DE=4,

∴DE=2.

∴点E的坐标为(4,2).

又点E在直线OP上,

∴直线OP的解析式是y= x,

∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).

【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,

即反比例函数解析式为y2= ,

将点A(4,m)代入y2= ,得:m=4,即点A(4,4),

将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,

得:,

解得:,

∴一次函数解析式为y1= x+2,

故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),

∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,

故答案为:﹣8<x<0或x>4;

【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.

2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):

(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?

(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,

把B(10,40)代入得,k1=2,

∴y1=2x+20.

设C、D所在双曲线的解析式为y2= ,

把C(25,40)代入得,k2=1000,

当x1=5时,y1=2×5+20=30,

当,

∴y1<y2

∴第30分钟注意力更集中.

(2)解:令y1=36,

∴36=2x+20,

∴x1=8

令y2=36,

∴,

∵27.8﹣8=19.8>19,

∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.

【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.

3.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;

(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?

(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.

【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,

∴反比例函数解析式为y= ,正比例函数解析式为y= x;

(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;

(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,

∴OE= OA= ,点D(,2),

∴点B(3,4),

又∵点F在正比例函数y= x图象上,

∴F(,),

∴DF= 、BC=3、EA= ,

∴四边形DFCB的面积为 ×( +3)× = .

【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.

4.如图,Rt△ABO的顶点A是双曲线y= 与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO= .

相关文档
最新文档