概率论习题课

合集下载

概率论与数理统计 习题课1-1

概率论与数理统计 习题课1-1
7 12
P( A B C ) =
事件的关系 互斥: 互斥:AB = φ 对立事件, 对立事件,样本空间的划分
P ( B A) = P ( B )
n个事件两两互斥,就称这n个事件互斥 个事件两两互斥,就称这n
独立
P ( A B ) = P ( A)
P ( AB ) = P ( A) P ( B )
n个事件独立的要求很高
3 1 1 2 4未中, 3 或者1、、未中, 伤 L因此总的概率为 C 4 6 2 3
3 4
1 3 1 1 ∴ P ( A) = 1 − P ( A ) = 1 − − C 4 6 6 2
4
3
1 n k k
条件概率
乘法公式
全概公式和贝叶斯公式
n个独立事件至少发生其一的概率
伯努利概型
在n重伯努利试验中,事件A恰好发生k次的概率 重伯努利试验中,事件A恰好发生k
k Pn (k ) = Cn p k q n − k , k = 0,1,2, L , n
1. B
掷两颗骰子,已知两颗骰子的点数之和为7 2. 掷两颗骰子,已知两颗骰子的点数之和为7,求其中 一颗为1的概率。 一颗为1的概率。 解:
3. 某人忘记了电话号码的最后一个数字,因此他随意地拨号, 某人忘记了电话号码的最后一个数字,因此他随意地拨号, 求他拨号不超过3次而接通电话的概率; (1)求他拨号不超过3次而接通电话的概率; 若已知最后一个数字是奇数,那么此概率是多少? (2)若已知最后一个数字是奇数,那么此概率是多少?
解:设A = {第 i 次拨号拨对 }, i = 1,2,3 i
1 3
表示施放4枚深水炸弹击沉潜水艇的事件 解 设A表示施放 枚深水炸弹击沉潜水艇的事件,则 表示施放 枚深水炸弹击沉潜水艇的事件,

概率习题课一

概率习题课一

性质 4 设 A、B 为两事件 , 且 A B , 则 P A B P A P B 并且 P A P B .
概率论
性质 5 对于任一事件 A , 都有 P A 1 . 性质 6 设 A, B 为任意两个事件 , 则
P A B P A P B P AB P A B C P A P B P C P AB P AC P BC P ABC
例9
分析:只需计算P( A1 D)和P( A3 D)比较大小
概率论
A1 , A2 , A3组成了样本空间的一个划分,且 1 P(A1 )=P(A 2 )=P(A3 )= 3 1 另外,P( D A1 ) , P( D A2 ) 0, P( D A3 ) 1, 2 则由贝叶斯公式:
1 1 P( A1 )P( D A1 ) 1 3 2 P( A1 D) 3 1 1 1 1 0 1 3 P( Ai )P( D Ai ) 3 2 3 3 i 1
2) P( A B) P( B A) P( B AB) y z 3) P( A B) P( A) P( B) P( AB) 1 x z
4) P( A B) P( A B) 1 x y z
概率论
例3 (摸球问题)设盒中有3个白球,2个红球,现 从合中任抽2个球,求取到一红一白的概率。 解:设A表示“取到一红一白”
n
i 1,2,, 一发子弹,
以A、B、C分别表示甲、乙、丙命中目标,试
用A、B、C的运算关系表示下列事件:
作业 P23 1.7
概率论
若W表示昆虫出现残翅,E表示有退化性眼睛,且 P(W)=0.125,P(E)=0.075, P(WE)=0.025, 求下列 事件的频率: (1)昆虫出现残翅或退化性眼睛 P(W+E)=P(W)+P(E)-P(WE)=0.175 (2)昆虫出现残翅,但没有退化性眼睛 P(W-E)=P(W)-P(WE)=0.1 (3)昆虫未出现残翅,也无退化性眼睛

1概率ACH1-习题课

1概率ACH1-习题课
3 分析:样本空间: 10
C
(1)最小号码为5,即从6、7、8、9、10里选两个, 所求概率为:
C C
2 5 3 10
1 12
(2)最大号码为5,即从1,2,3,4里选两个,
2 所求概率为: 4 3 10
1 C = 20 C
8、从一批由1100件正品,400件次品组成的产品中
任取200件.求: (1)恰有90件次品的概率;(2)至少有2件次品的概率。
解: P( AB) P( A) P( AB ) =0.7-0.5=0.2
P ( AB) P( AB) P( B A B ) P ( A B ) P( A) P ( B ) P( AB )
0.2 0.25. 0.7 0.6 0.5
16、根据以往资料表明,某一3口之家,患某种传染病的概率
贝叶斯公式
P ( Bi A) P ( Bi | A) P ( A) P ( A | Bi ) P ( Bi )
P( A | B )P( B )
j 1 j j
n
i 1,2,, n
事件的独立性
P ( A1 An ) P ( A1 ) P ( An ) P ( A1 An ) 1 P ( A1 An ) 1 P ( A1 An ) 1 P ( A1 ) P ( An )
配成一双”(事件A)的概率是多少?
4 解: 样本空间总数:C10 210
1
3
5
7
9
事件A:4只恰成1双或恰成2双.
2 4只恰成2双的取法: C5 10
2 4 2 61 8 10 1 1 2 1 1 ) 4只恰成1双的取法:C5 C4 C2C2 120 或C(C8 - C4 120 5

概率论课后习题答案

概率论课后习题答案

习题1解答1. 写出下列随机试验的样本空间Ω:(1)记录一个班一次数学考试的平均分数(设以百分制记分); (2)生产产品直到有10件正品为止,记录生产产品的总件数;(3)对某工厂出厂的产品进行检查,合格的记为“正品”,不合格的记为“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果; (4)在单位圆内任意取一点,记录它的坐标.解:(1)以n 表示该班的学生人数,总成绩的可能取值为0,1,2,…,100n ,所以该试验的样本空间为{|0,1,2,,100}ii n nΩ==.(2)设在生产第10件正品前共生产了k 件不合格品,样本空间为{10|0,1,2,}k k Ω=+=,或写成{10,11,12,}.Ω=(3)采用0表示检查到一个次品,以1表示检查到一个正品,例如0110表示第一次与第四次检查到次品,而第二次与第三次检查到的是正品,样本空间可表示为{00,100,0100,0101,0110,1100,1010,1011,0111,1101,1110,1111}Ω=.(3)取直角坐标系,则有22{(,)|1}x y x y Ω=+<,若取极坐标系,则有{(,)|01,02π}ρθρθΩ=≤<≤<.2.设A 、B 、C 为三事件,用A 、B 、C 及其运算关系表示下列事件. (1)A 发生而B 与C 不发生; (2)A 、B 、C 中恰好发生一个; (3)A 、B 、C 中至少有一个发生; (4)A 、B 、C 中恰好有两个发生; (5)A 、B 、C 中至少有两个发生; (6)A 、B 、C 中有不多于一个事件发生.解:(1)ABC 或A B C --或()A B C -;(2)ABC ABC ABC ;(3)AB C 或ABCABCABCABCABCABCABC ;(4)ABC ABCABC .(5)AB AC BC 或ABC ABC ABCABC ;(6)ABCABCABCABC .3.设样本空间{|02}x x Ω=≤≤,事件{|0.51}A x x =≤≤,{|0.8 1.6}B x x =<≤,具体写出下列事件:(1)AB ;(2)A B -;(3)A B -;(4)A B .解:(1){|0.81}AB x x =<≤; (2){|0.50.8}A B x x -=≤≤;(3){|00.50.82}A B x x x -=≤<<≤或; (4){|00.5 1.62}AB x x x =≤<<≤或.4. 一个样本空间有三个样本点, 其对应的概率分别为22,,41p p p -, 求p 的值. 解:由于样本空间所有的样本点构成一个必然事件,所以2241 1.p p p ++-=解之得1233p p =-=-,又因为一个事件的概率总是大于0,所以3p =- 5. 已知()P A =0.3,()P B =0.5,()P A B =0.8,求(1)()P AB ;(2)()P A B -;(3)()P AB .解:(1)由()()()()P AB P A P B P AB =+-得()()()()030.50.80P AB P A P B P A B =+-=+-=.(2) ()()()0.300.3P A B P A P AB -=-=-=. (3) ()1()1()10.80.2.P AB P AB P AB =-=-=-=6. 设()P AB =()P AB ,且()P A p =,求()P B . 解:由()P AB =()1()1()1()()()P AB P AB P AB P A P B P AB =-=-=--+得()()1P A P B +=,从而()1.P B p =-7. 设3个事件A 、B 、C ,()0.4P A =,()0.5P B =,()0.6P C =,()0.2P AC =,()P BC =0.4且AB =Φ,求()P A B C .解:()()()()()()()()0.40.50.600.20.400.9.P A B C P A P B P C P AB P AC P BC P ABC =++---+=++---+=8. 将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:依题意可知,基本事件总数为34个.以,1,2,3i A i =表示事件“杯子中球的最大个数为i ”,则1A 表示每个杯子最多放一个球,共有34A 种方法,故34136().416A P A ==2A 表示3个球中任取2个放入4个杯子中的任一个中,其余一个放入其余3个杯子中,放法总数为211343C C C 种,故211343239().416C C C P A == 3A 表示3个球放入同一个杯子中,共有14C 种放法,故14331().416C P A ==9. 在整数0至9中任取4个,能排成一个四位偶数的概率是多少?解:从0至9 中任取4个数进行排列共有10×9×8×7种排法.其中有(4×9×8×7-4×8×7+9×8×7)种能成4位偶数. 故所求概率为4987487987411098790P ⨯⨯⨯-⨯⨯+⨯⨯==⨯⨯⨯. 10. 一部五卷的文集,按任意次序放到书架上去,试求下列事件的概率:(1)第一卷出现在旁边;(2)第一卷及第五卷出现在旁边;(3)第一卷或第五卷出现在旁边;(4)第一卷及第五卷都不出现在旁边;(5)第三卷正好在正中.解:(1)第一卷出现在旁边,可能出现在左边或右边,剩下四卷可在剩下四个位置上任意排,所以5/2!5/!42=⨯=p .(2)可能有第一卷出现在左边而第五卷出现右边,或者第一卷出现在右边而第五卷出现在左边,剩下三卷可在中间三人上位置上任意排,所以 10/1!5/!32=⨯=p .(3)p P ={第一卷出现在旁边}+P{第五卷出现旁边}-P{第一卷及第五卷出现在旁边}2217551010=+-=. (4)这里事件是(3)中事件的对立事件,所以 10/310/71=-=P .(5)第三卷居中,其余四卷在剩下四个位置上可任意排,所以5/1!5/!41=⨯=P . 11. 把2,3,4,5诸数各写在一X 小纸片上,任取其三而排成自左向右的次序,求所得数是偶数的概率.解:末位数可能是2或4.当末位数是2(或4)时,前两位数字从剩下三个数字中选排,所以 23342/1/2P A A =⨯=.12. 一幢10层楼的楼房中的一架电梯,在底层登上7位乘客.电梯在每一层都停,乘客从第二层起离开电梯,假设每位乘客在哪一层离开电梯是等可能的,求没有两位及两位以上乘客在同一层离开的概率.解:每位乘客可在除底层外的9层中任意一层离开电梯,现有7位乘客,所以样本点总数为79.事件A “没有两位及两位以上乘客在同一层离开”相当于“从9层中任取7层,各有一位乘客离开电梯”.所以包含79A 个样本点,于是7799)(A A P =.13. 某人午觉醒来,发觉表停了, 他打开收音机,想听电台报时, 设电台每正点是报时一次,求他(她)等待时间短于10分钟的概率.解:以分钟为单位, 记上一次报时时刻为下一次报时时刻为60, 于是这个人打开收音机的时间必在),60,0(记 “等待时间短于10分钟”为事件,A 则有(0,60),Ω=)60,50(=A ,⊂Ω于是)(A P 6010=.61= 14. 甲乙两人相约812-点在预定地点会面。

概率论第一章习题课

概率论第一章习题课

概率论与数理统计第一章习题课1. 掷3枚硬币, 求出现3个正面的概率. 解: 设事件A ={出现3个正面}基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件,则125.08121)(3====n n A P A .2. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率. 解: 设事件A ={能打开门}, 则A 为不能打开门基本事件总数210C n =, 有利于A 的基本事件数27C n A =, 467.0157910212167)(21027==⨯⨯⋅⨯⨯==C C A P因此, 533.0467.01)(1)(=-=-=A P A P .3. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率.解: 设A i 为取到i 个次品, i =0,1,2,3,基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i则138.09833209495432194959697396979899100543213)(856.0334920314719969798991009394959697)(510049711510059700=⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯=⨯===⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C n n A P00006.09833512196979697989910054321)(006.0983359532195969739697989910054321)(51002973351003972322=⨯⨯==⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯=⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C C n n A P4. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率.解: 设A 为任取三个球恰为一红一白一黑的事件,则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310121315==⨯⨯⨯⨯⨯⨯⨯===C C C C n n A P A5. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件,则基本事件总数1644=⨯=n , 有利于A 的基本事件数422=⨯=A n , 有利于B 的基本事件数632=⨯=B n , 则25.041164)(====n n A P A 375.083166)(====n n B P B . 6. 为防止意外, 在矿内同时设有两种报警系统A 与B , 每种系统单独使用时, 其有效的概率系统A 为0.92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85, 求(1) 发生意外时, 这两个报警系统至少有一个有效的概率 (2) B 失灵的条件下, A 有效的概率解: 设A 为系统A 有效, B 为系统B 有效, 则根据题意有P (A )=0.92, P (B )=0.93, 85.0)|(=A B P(1) 两个系统至少一个有效的事件为A ∪B , 其对立事件为两个系统都失效, 即B A B A = , 而15.085.01)|(1)|(=-=-=A B P A B P , 则988.0012.01)(1)(012.015.008.015.0)92.01()|()()(=-=-==⨯=⨯-==B A P B A P A B P A P B A P(2) B 失灵条件下A 有效的概率为)|(B A P , 则829.093.01012.01)()(1)|(1)|(=--=-=-=B P B A P B A P B A P 7. 用3个机床加工同一种零件, 零件由各机床加工的概率分别为0.5, 0.3, 0.2, 各机床加工的零件为合格品的概率分别等于0.94, 0.9, 0.95, 求全部产品中的合格率.解: 设A 1,A 2,A 3零件由第1,2,3个机床加工, B 为产品合格,A 1,A 2,A 3构成完备事件组.则根据题意有P (A 1)=0.5, P (A 2)=0.3, P (A 3)=0.2, P (B |A 1)=0.94, P (B |A 2)=0.9, P (B |A 3)=0.95,由全概率公式得全部产品的合格率P (B )为93.095.02.09.03.094.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P8. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率.解: 设A 0,A 1,A 2,A 3为第一次比赛取到了0,1,2,3个新球, A 0,A 1,A 2,A 3构成完备事件组.设B 为第二次取到的3个球中有2个新球. 则有22962156101112321)|(,552132101112789321)(,442152167101112321)|(,55272101112389321)(,552842178101112321)|(,2202710111239321)(,552732189101112321)|(,2201101112321)(312162633123933121527231213292312142813122319131213290312330=⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯==C C C A B P C C A P C C C A B P C C C A P C C C A B P C C C A P C C C A B P C C A P根据全概率公式有455.01562.02341.00625.00022.022955214421552755282202755272201)|()()(30=+++=⋅+⋅+⋅+⋅==∑=i i i A B P A P B P9. 某商店收进甲厂生产的产品30箱, 乙厂生产的同种产品20箱, 甲厂每箱100个, 废品率为0.06, 乙厂每箱装120个, 废品率是0.05, 求:(1)任取一箱, 从中任取一个为废品的概率;(2)若将所有产品开箱混放, 求任取一个为废品的概率. 解: (1) 设B 为任取一箱, 从中任取一个为废品的事件. 设A 为取到甲厂的箱, 则A 与A 构成完备事件组4.05020)(,6.05030)(====A P A P 05.0)|(,06.0)|(==AB P A B P 056.005.04.006.06.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P(2) 设B 为开箱混放后任取一个为废品的事件.则甲厂产品的总数为30×100=3000个, 其中废品总数为3000×0.06=180个,乙厂产品的总数为20×120=2400个, 其中废品总数为2400×0.05=120个, 因此...055555555.0540030024003000120180)(==++=B P10. 有两个口袋, 甲袋中盛有两个白球, 一个黑球, 乙袋中盛有一个白球两个黑球. 由甲袋中任取一个球放入乙袋, 再从乙袋中取出一个球, 求取到白球的概率.解: 设事件A 为从甲袋中取出的是白球, 则A 为从甲袋中取出的是黑球, A 与A 构成完备事件组. 设事件B 为从乙袋中取到的是白球. 则P (A )=2/3, P (A )=1/3, P (B |A )=2/4=1/2, P (B |A )=1/4, 则根据全概率公式有417.012541312132)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P11. 上题中若发现从乙袋中取出的是白球, 问从甲袋中取出放入乙袋的球, 黑白哪种颜色可能性大?解: 事件假设如上题, 而现在要求的是在事件B 已经发生条件下, 事件A 和A 发生的条件概率P (A |B )和P (A |B )哪个大, 可以套用贝叶斯公式进行计算, 而计算时分母为P (B )已上题算出为0.417, 因此2.0417.04131)()|()()|(8.0417.02132)()|()()|(=⨯===⨯==B P A B P A P B A P B P A B P A P B A PP (A |B )>P (A |B ), 因此在乙袋取出的是白球的情况下, 甲袋放入乙袋的球是白球的可能性大.12. 假设有3箱同种型号的零件, 里面分别装有50件, 30件和40件, 而一等品分别有20件, 12件及24件. 现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回). 试求先取出的零件是一等品的概率; 并计算两次都取出一等品的概率.解: 称这三箱分别为甲,乙,丙箱, 假设A 1,A 2,A 3分别为取到甲,乙,丙箱的事件, 则A 1,A 2,A 3构成完备事件组. 易知P (A 1)=P (A 2)=P (A 3)=1/3. 设B 为先取出的是一等品的事件. 则6.04024)|(,4.03012)|(,4.05020)|(321======A B P A B P A B P 根据全概率公式有467.036.04.04.0)|()()(31=++==∑=i i i A B P A P B P 设C 为两次都取到一等品的事件, 则38.039402324)|(1517.029301112)|(1551.049501920)|(240224323021222502201=⨯⨯===⨯⨯===⨯⨯==C C A C P C C A C P C C A C P根据全概率公式有22.033538.01517.01551.0)|()()(31=++==∑=i i i A C P A P C P13. 发报台分别以概率0.6和0.4发出信号“·”和“—”。

概率论与数理统计随机变量及其分布习题课

概率论与数理统计随机变量及其分布习题课
2
01 排列及其逆序数
解 以X表示此人外出时电话铃响的次数, 由题意知X~π(2t), t表示外出的总时间,则X的的分布律为
当t=10/60=1/6时, (1)
,故所求概率为
(2)设外出最长时间为t(单位:h), 因为X~π(2t),
3
01 排列及其逆序数
因此无电话打进的概率为

要使


解之得
0.3466小时约为21分钟,因此,某人应控制外出时间小
16
01 排列及其逆序数
ꢀ例8 设随机变量
,记
, 则A. p随着 μ的增加而增加
C. p随着μ的增加而减少
B. p随着 σ的增加而增加 D. p随着σ的增加而减少

因为 为单调增函数, p σ
,
所以 随着 的增加而增加
应选B.
17
01 排列及其逆序数
ꢀ例9 测量某距离时,随机误差X(单位:cm)具有密度函数:
则性。
6
01 排列及其逆序数 ꢀ例3 设随机变量X的概率密度为 为X的分布函数, 求 解 由题意知,X的分布函数为
因此,
F(x)
7
01 排列及其逆序数 ꢀ例4 设某加油站每周补给一次油,如果这个加油站每 周的销售量(单位:千升)为一随机变量,其密度函数为
试问该加油站的储油罐需要多大,才能把一周内断油的概 率控制在5%以下?
,求
解 当y≤0时,Y的密度函数为 当y>0时,Y的分布函数为
的分布. ;
对上式两边关于y求导,得
20
01 排列及其逆序数 即
这是伽玛分布
的概率密度函数.
21
01 排列及其逆序数
ꢀ例11 设电流I是一个随机变量,它均匀分布在9A~11A 之间.若此电流通过2Ω的电阻,在其上消耗的功率W=2I2, 求W的概率密度.

概率论与数理统计习题课1

概率论与数理统计习题课1
(1)有机床需要工人照管的概率;
(2)机床因无人照管而停工的概率.
解:设 A 机床甲不需要工人照顾, B 机床乙不需要工人照顾, C 机床丙不需要工人照顾,
依题意,A、B、C 相互独立。
2019/7/17
16
第1章 习 题 课
(1) P( A B C ) P( ABC )
)

1

29 90

61 90
.
3
P(B1B2 ) P( Ai )P(B1B2 | Ai )
i 1
1 ( 3 7 7 8 5 20) 2 . 3 10 9 15 14 25 24 9
2019/7/17
21
第1章 习 题 课
从而
P ( B1
|
B2 )

P(B1B2 ) P(B2 )
于是 P( A) p 0.25(1 p) p [0.25(1 p)]2 p .
这是一个几何级数求和问题。由于公比
0 0.25(1 p) 1,该级数收敛。
P( A)
p
.
1 0.25(1 p)
若甲乙胜率相同,则
p
0.5 p 3 .
1 0.25(1 p)
i 1,2,3,.
A 甲获胜,
B 乙获胜,
2019/7/17
18
第1章 习 题 课
则 A A1 A1B2B3 A4 A1B2B3 A4B5B6 A7 ;
P( A1 ) p ; P( A1B2B3 A4 ) 0.25(1 p) p ; P( A1B2B3 A4B5B6 A7 ) [0.25(1 p)]2 p ;

初等概率论习题课讲义

初等概率论习题课讲义

初等概率论习题课讲义专题一. 一些组合计数模式在古典概率问题中的应用.1.多组组合模式 有n 个不同元素,要把它们分为k 个不同的组,使得各组依次有121,,...,()kk i i n n n n n ==∑个元素,则一共有12!!!...!k n n n n 种不同分法.2.不尽相异元素的排列模式 有n 个元素,属于k 个不同的类,同类元素之间不可辨认,各类元素分别有121,,...,()kk i i n n n n n ==∑个,要把它们排成一列,则一共有12!!!...!k n n n n 种不同排法.3.分球入盒问题第一类 有n 个不同的小球,要把它们分入k 个不同的盒子,使得各盒依次有121,,...,()kk i i n n n n n ==∑个小球,则一共有多少种不同分法?(注意此问题的两个特征:小球不同,盒子也不同)(12!!!...!k n n n n )第二类 有n 个相同的小球,要把它们分入k 个不同的盒子,一共有多少种不同分法?(1) 允许空盒出现;(1nn k C +-) (2) 不允许空盒出现.(11k n C --)第三类 有n 个不同的小球,要把它们分入k 个相同的盒子,使得第i k 个盒子有i n 个小球,11,mmii i i i kk n k n ====∑∑,则一共有多少种不同分法?(11!(!)(!)imk ii mii n n k ==∏∏)4.大间距组合问题 设从数集{}1,2,...,n 中选出k 个不同的数11...k j j n ≤≤≤≤, 使之满足条件1(2,3,...,)i i j j m i k -->=,m 为正整数,且(1)k m n -<,求出不同的取法数目.((1)kn k m C --)5.相异元素的圆排列和项链数 将n 个不同元素不分首尾排成一圈,称为n 个相异元素的圆排列,则其排列总数为多少?((1)!n -)项链数:将n 粒不同珠子用线串成一副项链,则得到的不同项链数为多少? (n=1或2时为1,n>2时为(1)!n -/2)6.有限集合计数的容斥原理: 1111...(1)nnnnk ki j k k k k i j nA AA A A ===≤<≤⋃=-⋂++-⋂∑∑.(注意和概率论中加法公式进行类比和区分) 习题:1.设有 10只猫和4头猪随机地站成一行,求每两头猪之间都至少间隔两只猫的概率.2.将n 条手杖都截成一长一短两部分,然后将所得的2n 个小段随机分成n 对,每对连接成一条新的手杖,求以下事件的概率:(1)这2n 个小段全部被重新组成原来的手杖; (2)均为长的部分和短的部分连接.3.找零钱问题:设有一台自动售票机销售地铁车票,票价为5元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xn
p
x1
...
p
xn
dx1...dxn
0
AF
A
A
x dF
x
0,
A
0
B 1
F
B
B
x dF
x
0, B
得,
E
0
1
F
x dx
0
F
x dx
9
9.服从拉普拉斯分布,密度函数为p x 1 e x / ,
2 求E , D.
解 : E
x
1
e x / dx
t e t dt,
2
2
令t x /
t e t dt e t dt 0 2 etdt
E
n A Bn
AB
Bn1 ABeB a
n0
n!
n0 n 1!
Ba
3
3.设 为非负整数值,概率为P
=k
ak
1 ak1
,
a
0.求E
,
D .
E
i0
k
1
ak a
k
1
1 1 a
i0
k
a 1
a
k
令p a , 0 p 1 1 a
i0
k
pk
p
i0
pk
p
1
p
2
s2
3
exp
s2
2 2
,s
0,
0.
求平均速度和平均动能 假定分子质量为m
E sp s ds 0
2 s3 s2
0
3
exp
2
2
ds
令t s
2
0
t3
exp
t2 2
dt
2
0
t2d
exp
t2 2
2
t
2
exp
t2 2
0
2
0
exp
k
kn
k 1n
Nn
12 12.
若a b,证 : D b a2
4
因为a E b
Page 203 性质4
法1: 令f x E x2 ,当x E 时, min f x D
D
E
a
2
b
2
E
b
a
2
b
2
b
a 2
2
法2
:
积分中值定理:E
b
ma
dF
x
1
1.有五个队参加的比赛中,每个队与别的队都比赛一场, 若每场比赛参赛双方各有50%赢的机会,求整个比赛既 没有不败的队也没有不胜的队的概率.
2
2.随机变量取非负整数值n
0的概率为pn
A
Bn n!
,
已知E a, 试决定A与B
P n A Bn AeB 1 A eB
n0
n0 n!
D E 2 E 2 a 2a2 a2 a 1 a
4
4.事件A在第i次试验中出现的概率为pi , 是事件A在起初n次
独立试验中的出现次数,求E, D
解:设 =1
2
...
n,i
1,A出现 0,A出现
n
n
E E 1 2 ... n = Ei pi
i 1
i 1
由i相互独立,
n
n
D D 1 2 ... n = Di pi 1 pi
i 1
i 1
7
7.证 : 若取非负整数值的随机变量的数学期望存在,则
E P k
k 1
证 : P k P j
k 1
k 1 jk
P 1 P 2 P 3 ....
P 2 P 3 ...
P 3 ...
m,
amb
D
b
a
x
E
2
dF
x
h
E
2
,
ahb
由0 h E b a ,得证
2
13
13.1,2相互独立,均服从N
, 2
, 证:E max 1,2
证 : 12的联合密度为p x,
y
exp
x a2
2 2
y a2
2 2
E max 1,2 max x, y p x, y dxdy
dt 3
3m 2
2
0
td
exp
t2 2
3m 2 2
0
exp
t2 2
dt
3m 2 3m 2 2 2 2
t s
Page 133
11 11.
有放回抽样.设n辆车的车牌号中最大号码为k
P
k
k N
n
k
1
n
N
kn
k 1n
Nn
,k
1, 2,...,
N
E
N i 1
kP k E k 1
8
8.
E
0
1
F
x dx
0
F
x dx
S2
S1
1
S2
y Fx
S1
S1
0 F x dx
S2
0
1
F
x
dx
若 0,则E
0
1
F
x
dx
S2
8
8.
E
xdF
x
0
xdF
x
0
xdF
x
0
xdF
x
0
xd
1
F
x
xF
x
0
0
F
x dx
x 1
F
x
0
0
1
F
x dx
由均值存在得 x dF x
p
p
1 p2
E
1 1 a
a 1 a
1
a 1
a
2
a
3
3.
E 2
1 1 a
k 1
k2
a 1 a
k
1 1 a
k 1
k
1
k
1
pk
1 1 a
kpk
k 1
1 1 a
k
k 1
k
1
pk
a
p2 1 a
k 1
pk
a
p2 1 a
p 1 p
a
p2 1 a
2
1 p3
a 2a2
dx
x xp x, y dy
dx
yp x, y dy
x
dx
x x a p x, y dy
dx
y a p x, y dy a
x
dy
y
x
a
p
x,
y

dx
dy
y
x
a
p
y,
x
dx
a
前一积分交换积分次序,后一积分交换积分记号(x与y互换)
13
E max 1,2
dy
y
2
2
20
9 9.
D x 2 1 e x /dx,令t x /
2
2t2etdt 2t2 et 0
0
2 2
tet dt
0
22 tdet 22t et 0
0
2 2
et dt
0
22 et
0
2 2
10
10.
分子速度的分布密度函数 : p s
为p
x,证
:
E
1 1
2 2
... k ... n
k n
证:由i 0知分母不为零,利用独立同分布
E
1 1
2 2
... ...
k n
...
x1 x1
x2 x2
... ...
xk xn
p
x1
... p
xn
dx1...dxn
k
...
x1
x2
x1
...
t2 2
d
t2 2
2 2
10
E
1 2
m
2
1m 2
s2 p s ds
0
m
2
0
s4
3
exp
s2
2 2
ds
m 2
2
0
t4
exp
t2 2
dt
m 2 2
0
t3d
exp
t2 2
m 2
2
t
3
exp
t2 2
0
0
exp
t2 2
x
a
p
x,
y
dx
dy y
x
a
p
y,
x
dx
a
a 2
1
2 2
exp
ya
2 2
2
dy
y
x
a
exp
xa
2 2
2
dx
a 1
exp
y
a
2
2
dy
令 ya t
a 1 et2 dt a a
15
15.若1,2,...,n为正的独立随机变量, 服从相同分布, 密度函数
相关文档
最新文档