实际问题与一元二次方程 优秀教学设计(教案)
实际问题与一元二次方程教学设计教案(完美版)

平均变化率问题中的数量关系。
活动的侧重点是列方程解应用题,提高学生应用方程分析解决问题的能力。
活动中涉及了一元二次方程解法,列方程解应用题的一般规律等。
这些问题在现实世界中有许多原型,让学生理解两轮传播和两个时间段的平均变化率可以用一元二次方程作为数学模型,从而使问题得到解决。
二、教学目标1、知识目标:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。
.(2)能根据具体问题的实际意义,检验结果是否合理。
2、能力目标:(1)经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能用一元二次方程对之进行描述。
(2)体验解决问题的多样性,发展实践应用意识。
3、情感目标:通过用一元二次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。
4、德育目标:了解数学对促进社会进步和发展人类理性精神的作用。
三、教学策略在本课的学习中,应重视相关内容与实际的联系,加强对一元二次方程是解决现实问题的一种数学模型的认识。
分析和解决的关键是找出问题中的相关数量之间的相等关系,并把这样的关系“翻译”为一元二次方程。
在教学中借助现代化教学媒体和网络资源,让学生通过观察、试验、操作、分析、猜想、发现其中的等量关系,从而正确的理解问题情境,最后能够解决问题。
四、教学环境和资源准备1、教学环境:多媒体网络教室2、资源准备:多媒体课件。
五、教学过程(一)总结回顾、引入新知:教师活动:(1)通过前面的学习你知道解一元二次方程有那些方法吗?你有何体会?(2)列一元二次方程解应用题分几步呢?应注意那些?学生活动:利用局域网聊天系统讨论交流、然后发言回答。
教师用教师机归纳板书。
(如图)2.列一元一次方程解应用题的步骤?①审题②设出未知数③找等量关系④列方程⑤解方程⑥答.(3)和一元一次方程、二元一次方程一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型,下面我们来看几个例子:(二)合作探究、学习新知:(1)教师机出示探究1内容教师布置:问题1、本题中有那些数量关系?问题2、第二轮传染时第一个还传染吗?学生活动:利用局域网聊天系统分9个小组进行讨论。
21.3实际问题与一元二次方程教案

21.3实际问题与一元二次方程教案篇一:21.3实际问题与一元二次方程教学设计教案教学准备1.教学目标知识技能1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.2.能根据具体问题的实际意义,检验结果是否合理.过程方法经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
情感态度与价值观通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.2.教学重点/难点教学重点:列一元二次方程解有关传播问题的应用题教学难点:发现传播问题中的等量关系3.教学用具制作课件,精选习题4.标签教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、探索新知【问题情境】有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?【分析】(1)本题中有哪些数量关系?(2)如何理解“两轮传染”?(3)如何利用已知的数量关系选取未知数并列出方程?(4)能否把方程列得更简单,怎样理解?(5)解方程并得出结论,对比几种方法各有什么特点?【解答】设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。
于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.【思考】如果按这样的传播速度,三轮传染后有多少人患了流感?【活动方略】教师提出问题学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.【设计意图】使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.三、例题分析例1、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.例2、参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛?例3、学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?【分析】(1)两题中有哪些数量关系?(2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?(3)对比两题,它们有什么联系与区别?【活动方略】教师活动:操作投影,将例题显示,组织学生讨论.学生活动:合作交流,讨论解答。
九年级数学教案《实际问题与一元二次方程》

九年级数学教案《实际问题与一元二次方程》九年级数学教案《实际问题与一元二次方程》作为一名教学工作者,往往需要进行教案编写工作,教案是教学活动的总的组织纲领和行动方案。
那要怎么写好教案呢?下面是为大家整理的九年级数学教案《实际问题与一元二次方程》,仅供参考,大家一起来看看吧。
一、教材分析:1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。
本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;(2)能根据具体问题的实际意义,检验结果是否合理;(3)经历将实际问题抽象为代数问题的`过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:重点:列一元二次方程解与面积有关问题的应用题。
难点:发现问题中的等量关系。
二.教法、学法分析:1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。
教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。
还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。
同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。
因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
三.教学流程分析:本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:活动1复习回顾解决课前参与活动2封面设计问题的探究活动3草坪规划问题的延伸活动4课堂回眸这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
人教版九年级数学上册教学设计:21.3实际问题与一元二次方程

一、教学目标
(一)知识与技能
1.让学生掌握一元二次方程在解决实际问题中的应用,理解实际问题的数学模型构建过程,提高学生运用数学知识解决实际问题的能力。
2.使学生熟练掌握一元二次方程的求解方法,包括直接开平方法、配方法、公式法等,并能根据实际问题选择合适的方法进行求解。
4.拓展提升:针对学有余力的学生,布置一些拓展性的题目,如涉及一元二次方程与不等式、函数等知识的综合应用题。这些题目旨在提高学生的思维品质和数学素养,培养学生的自主学习能力。
5.反思总结:要求学生撰写一份学习心得,内容包括对本节课所学知识的理解、在解决问题过程中的收获与困惑以及今后学习的计划。这样有助于学生养成反思总结的良好习惯,提高自我认知能力。
4.培养学生严谨、踏实的科学态度,使学生养成勤奋刻苦的学习习惯,为未来的学习和发展奠定基础。
二、学情分析
九年级学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在本章节的学习中,他们对于一元二次方程的求解方法有了一定的了解,但可能在解决实际问题时,还不能熟练地将数学知识运用其中。此外,学生在分析问题和解决问题的过程中,可能存在以下情况:
3.案例教学,总结规律:通过具体案例的分析,引导学生总结一元二次方程求解的方法和技巧,培养学生的归纳总结能力。
4.分层次教学,关注个体差异:针对不同层次的学生,设计不同难度的实际问题,使每个学生都能在原有基础上得到提高。
5.强化练习,巩固知识:通过课后练习和拓展训练,巩固学生对一元二次方程求解方法的掌握,提高学生的应用能力。
1.教学内容:对本节课所学的一元二次方程求解方法进行总结,强调各种方法在实际问题中的应用。
2.教学方法:引导学生自主总结,鼓励学生发表自己的看法,教师进行补充和归纳。
21.3 实际问题与一元二次方程(3) 教学设计

21.3 实际问题与一元二次方程(3)教学设计学习目标:1.掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.(重点)2.继续探究实际问题中的数量关系,列出一元二次方程解应用题.(重点)3.通过探究体会列方程的实质,提高灵活处理问题的能力.(难点)一、复习引入问题1 我们学习了哪些基本几何图形?问题2 怎样求他们的面积呢?有哪些计算公式?教师引导,同学们回答,用口述的形式进行.二、新知探究引例:要设计一本书的封面,封面长 27 cm,宽 21 cm,正中央是一个与整个封面长宽比例相同的长方形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到 0.1 cm)?教师引导同学们一起审题、分析问题,找准等量关系,解决问题.法一解:设上、下边衬的宽均为9x cm,则左、右边衬的宽为7 x cm.(27−18x)(21−14x)=34×27×21解得:x1=6+3√34(舍去), x2=6−3√34左、右的边衬的宽为:6−3√34×7=42−21√34≈1.4上、下的边衬的宽为:6−3√34×9=54−27√34≈1.8法二解:设正中央的矩形两边分别为9x cm,7x cm,列方程得:解得:上、下的边衬的宽为:左、右的边衬的宽为:在几何图形的面积问题中:规则图形:面积公式.不规则图形:割或补成规则图形,找出各部分面积之间的等量关系,再运用规则图形的面积公式列出方程.三、典例分析例如图,在一块宽为20 m,长为32 m的矩形地面上修筑同样宽的两条道路,余下的部分种上草坪,要使草坪的面积为540 m2,则道路的宽为多少?方法一:解:设道路的宽为x m.则方法二:解:设道路的宽为x m. 则(32 −x)(20 −x) = 540.整理,得x2 − 52x + 100 = 0.解得 : x1= 2,x2 = 50.当x = 50 时,32 −x = −18,不合题意,舍去.∴取x = 2.答:道路的宽为2 m.学生自己动手解答,教师总结、归纳.四、小试牛刀改善小区环境,争创文明家园.如图所示,某社区决定在一块长 (AD)16 m,宽 (AB)9 m 的矩形场地ABCD上修建三条同样宽的小路,其中两条与AB平行,另一条与 AD平行,其余部分种草,要使草坪部分的总面积为 112 m2,则小路的宽应为多少?解:设小路的宽应为x m.根据题意得:(16 - 2x)(9 -x) = 12,解得:x1 = 1,x2 = 16 (舍去).答:小路的宽应1 m.五、课堂小结本节课,你学到了什么数学知识?学会了哪些学习方法?六、布置作业见精准作业单七、板书设计。
人教版九年级上册《实际问题与一元二次方程》教案

人教版九年级上册《实际问题与一元二次方程》教案21.3实际问题与一元二次方程(一)学习目标:1、会依据详细问题(按肯定传播速度传播问题、数字问题和利润问题)中的数量关系列一元二次方程并求解;2、能依据问题的实际意义,检验所得结果是否合理;3、进一步把握列方程解应用题的步骤和关键.学习重点:列一元二次方程解决实际问题学习难点:找出实际问题中的等量关系教学过程:●学问回忆1、一元二次方程组的解法有;2、列方程解应用题的一般步骤:1);2);3);4);5):●课前预习:阅读课本探究1.弄清列一元二次方程组解应用题的根本思想与列一元一次方程解应用题的根本思想一样,一般步骤也一样;理解列一元二次方程组解实际题───设未知数x,找出两个相等关系,列出方程;对于求得的方程组的解,必需检验它是否符合实际意义或题意,再“答”题.●自主学习【问题1】有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?【分析】设每轮传染中平均一个人传染x个人,⑴开头有一人患了患流感,第一轮的传染源就是这个人,他传染了x 个人,用代数式表示第一轮后,共有人患了流感;其次轮传染中,这些人中每一个人又传染了x人,用代数式表示,其次轮后,共有人患流感;⑵依据等量关系列方程:;⑶解这个方程得:;⑷平均一个人传染了个人.⑸假如根据这样的传播速度,三轮传染后,有人患流感.解:●合作探究【例1】某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?【分析】设每个支干长出x个小分支。
则主干上长出x个分支,x个分支上共长出x2个小分支。
主干、支干和小分支的总数可用代数式1+x+x2表示。
依题意可列方程:1+x+x2=91解:设每个支干长出x个小分支,依题意可列方程:1+x+x2=91解这个方程,得:x1=9x2=-10(负根不合题意,合去)答:每个支干长出9个小分支。
一元二次方程与实际问题教案(教学设计)

一元二次方程与实际问题【教学目标】1.会利用一元二次方程解决简单的图形问题。
2.培养分析问题解决问题的能力,发展应用意识。
【教学重难点】1.利用一元二次方程解决简单的图形问题。
2.根据图形问题列方程。
【教学课时点】2课时【教学过程】【第一课时】一、创设情境师:前面我们学习了有关一元二次方程的知识,我们学习了什么是一元二次方程,学习了什么是一元二次方程的根,学习了如何解一元二次方程现在,老师要同学们想这样一个问题:为什么要学习这些知识?学习这些知识的目的是什么?(稍停后再叫学生)生:……(多让几名同学发表看法)师:和一元一次方程一样,一元二次方程也是解决实际问题的工具。
学习一元二次方程不是为了什么,而是为了解决实际问题。
从这节课开始,我们来学习如何利用一元二次方程解决实际问题。
二、尝试指导,讲授新课(师出示下面的例题)例:扎西家有一个长方形院子,它的长比宽多3米,面积为54平方米,院子的长和宽各是多少米?师:大家把这个题目默读几遍。
(生默读)师:题目要求院子的长和宽,我们设院子的长为x米,则院子的宽为多少米?x-()()3x-生:米(师板书:解:设院子的长为x米,则院子的宽为米)。
3师:读了题目,又设好了未知数,你能按题目的意思画一个图吗?大家试一试。
(生画图,师巡视)师:我们一起来画图扎西家有一个长方形的院子(边讲边画一个长方形),现在设这个院子的长为x 米(边讲边标:x 米),则宽为米(边讲边标:米),院子的面积为54平方米(边讲边标:面积54平方米,画好的图如下所示)。
师:根据这个图,大家列一列方程。
(生列方程,师巡视)师:(板书:根据题意列方程,得)列出的方程是什么?生:。
(多让几名同学回答,然后师板书:)师:(指方程)列出的方程是一个一元二次方程,大家把它整理成一般形式。
(生整理方程)师:整理后的方程是什么?生:(师板书:整理,得)师:(指)大家用公式法解这个方程。
(生解方程,师巡视)师:方程的两个根等于什么?等于什么?生:(师板书:解方程,得,如有必要师可在黑板的其它地方板演解方程过程)师:(指准)这里的x 表示什么?(稍停)表示院子的长,院子的长不能是负数,(指准)所以不符合题目的意思,要舍去(板书:(不合题意,舍去))。
九年级数学上册《实际问题与一元二次方程》优秀教学案例

在讲授新知环节,我会逐步引导学生从实际问题中抽象出一元二次方程。首先,分析问题中的已知条件和未知数,然后根据问题的关系列出相应的一元二次方程。在此过程中,我会详细讲解一元二次方程的求解方法,包括公式法、因式分解法、配方法等,并通过具体的实例进行演示。同时,强调在实际问题中如何选择合适的解法,以及如何对解进行验证和解释。
(三)学生小组讨论
讲授新知后,我会组织学生进行小组讨论。将学生分成若干小组,每组针对一个实际问题进行讨论,共同解决一元二次方程。在这个过程中,学生可以相互交流思路、分享解法,共同探讨如何将一元二次方程应用于实际问题。我会巡回指导,解答学生在讨论过程中遇到的问题,引导学生深入思考,提高学生解决问题的能力。
九年级数学上册《实际问题与一元二次方程》优秀教学案例
一、案例背景
在九年级数学上册的教学过程中,学生已经掌握了一元二次方程的基本概念和解法。然而,如何将一元二次方程应用于解决实际问题,成为学生需要突破的难点。《实际问题与一元二次方程》这一章节的教学目标就是让学生能够运用一元二次方程解决生活中的问题,提高学生的数学应用能力。在本教学案例中,我们将结合实际生活中的例子,引导学生发现一元二次方程在解决现实问题中的价值,培养学生将数学知识应用于实际情境的意识,激发学生的学习兴趣和探究精神。通过本案例的学习,学生将能够更好地理解数学与生活的紧密联系,提高解决实际问题的能力。
4.反思与评价相结合,提高学生的自我认知能力
在教学过程中,本案例重视学生的反思与评价。学生通过自我反思,总结自己在问题解决过程中的优点和不足,从而提高自我认知能力。同时,开展多种评价方式,全面评价学生的学习成果和过程表现,激发学生的学习积极性。
5.知识与实践相结合,强化数学应用能力
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与一元二次方程
【教学目标】
掌握建立数学模型以解决如何全面地比较几个对象的变化状况的问题。
复习一种对象变化状况的解题过程,引入两种或两种以上对象的变化状况的解题方法。
【教学重难点】
1.重点:如何全面地比较几个对象的变化状况。
2.难点与关键:某些量的变化状况,不能衡量另外一些量的变化状况。
【教学用具】
小黑板
【教学过程】
一、复习引入
(学生活动)请同学们独立完成下面的题目。
问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,•商场要想平均每天盈利120元,每张贺年卡应降价多少元?
老师点评:总利润=每件平均利润×总件数。
设每张贺年卡应降价x 元,•则每件平均利润
应是(0.3-x )元,总件数应是(500+0.1x
×100)
解:设每张贺年卡应降价x 元
则(0.3-x )(500+1000.1x
)=120
解得:x=0.1
答:每张贺年卡应降价0.1元。
二、探索新知
刚才,我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元?如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢?即绝对量与相对量之间的关系。
例1.某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,•那么商场平均每天可多售出34•张。
•如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大。
分析:原来,两种贺年卡平均每天的盈利一样多,都是150元;
0.30.751000.10.2534=≈,从这些数目看,•好像两种贺年卡每张降价的绝对量一样大,下面我们就通过解题来说明这个问题。
解:(1)从“复习引入”中,我们可知,商场要想平均每天盈利120元,甲种贺年卡应降价0.1元。
(2)乙种贺年卡:设每张乙种贺年卡应降价y 元,
则:(0.75-y )(200+0.25
y ×34)=120 即(34
-y )(200+136y )=120 整理:得68y 2+49y-15=0
∴y ≈-0.98(不符题意,应舍去)
y ≈0.23元
答:乙种贺年卡每张降价的绝对量大。
因此,我们从以上一些绝对量的比较,不能说明其它绝对量或者相对量也有同样的变化规律。
(学生活动)例2.两年前生产1t 甲种药品的成本是5000元,生产1t•乙种药品的成本是6000元,随着生产技术的进步,现在生产1t 甲种药品的成本是3000元,生产1t•乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
老师点评:
绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000元,•乙种药品成本的年平均下降额为(6000-3000)÷2=1200元,显然,•乙种药品成本的年平均下降额较大。
相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题。
解:设甲种药品成本的年平均下降率为x ,
则一年后甲种药品成本为5000(1-x )元,两年后甲种药品成本为5000(1-x )元。
依题意,得5000(1-x)2=3000
解得:x
1≈0.225,x
2
≈1.775(不合题意,舍去)
设乙种药品成本的平均下降率为y。
则:6000(1-y)2=3600
整理,得:(1-y)2=0.6
解得:y≈0.225
答:两种药品成本的年平均下降率一样大。
因此,虽然绝对量相差很多,但其相对量也可能相等。
三、巩固练习
新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台。
乙种冰箱每台进货价为2000元,市场调研表明:当销售价为2500元时,•平均每天能售出8台;而当销售价每降低45元时,平均每天就能多售出4台,•商场要想使这两种冰箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少?
四、应用拓展
例3.某商店经销一种销售成本为每千克40元的水产品,•据市场分析,•若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售利润。
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式。
(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少?
分析:(1)销售单价定为55元,比原来的销售价50元提高5元,因此,销售量就减少5
×10kg。
(2)销售利润y=(销售单价x-销售成本40)×销售量[500-10(x-50)]
(3)月销售成本不超过10000元,那么销售量就不超过10000
40=250kg,在这个提前下,•
求月销售利润达到8000元,销售单价应为多少。
解:(1)销售量:500-5×10=450(kg);销售利润:450×(55-40)=450×15=6750元(2)y=(x-40)[500-10(x-50)]=-10x2+1400x-40000
(3)由于水产品不超过10000÷40=250kg,定价为x元,则(x-400)[500-10(x-50)]=8000
解得:x
1=80,x
2
=60
当x
=80时,进货500-10(80-50)=200kg<250kg,满足题意。
1
当x
=60时,进货500-10(60-50)=400kg>250kg,(舍去)。
2
五、归纳小结
本节课应掌握:
建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题。