2020年吉林省中考数学模拟试题(含答案)

合集下载

吉林省吉林市2020年中考数学模拟试卷(4月份)(含答案)

吉林省吉林市2020年中考数学模拟试卷(4月份)(含答案)

吉林省吉林市2020年中考数学模拟试卷(4月份)一.选择题(每题2分,满分12分)1.下列各式的结果中,符号为正的是()A.(﹣2)+(﹣5)B.0﹣8 C.(﹣1)×(﹣10)D.3÷(﹣4)2.2019年10月1日,天安门广场迎来新中国成立以来的第15次国庆阅兵.据统计,截止至当天下午6点,央视新闻置顶的“国庆阅兵”阅读数已超过34亿.数据34亿用科学记数法表示为()A.0.34×1010B.3.4×109C.3.4×108D.34×1083.不等式3≥2x﹣1的解集在数轴上表示正确的为()A.B.C.D.4.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱5.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=100°,则∠α=()A.80°B.100°C.120°D.160°6.如图,在△ABC中,∠B=2∠C,以点A为圆心,AB长为半径作弧,交BC于点D,交AC 于点G;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线AE交BC于点F,若以点G为圆心,GC长为半径作两段弧,一段弧过点C,而另一段弧恰好经过点D,则此时∠FAC的度数为()A.54°B.60°C.66°D.72°二.填空题(满分24分,每小题3分)7.比较大小:﹣3 0.(填“>”、“=”或“<”号)8.因式分解:4a3﹣16a=.9.甲乙两人同解方程组时甲正确解得,乙因抄错c而得,则a+c =.10.一元二次方程x2﹣x+(b+1)=0无实数根,则b的取值范围为.11.如图,AB∥CD,DE∥CB,∠B=35°,则∠D=°.12.如图,三角尺在灯泡O的照射下在墙上形成影子,现测得OA=20cm,AA′═50cm,这个三角尺的周长与它在墙上形成影子的周长比是.13.如图,在▱ABCD中,AB=6,BC=6,∠D=30°,点E是AB边的中点,点F是BC边上一动点,将△BEF移沿直线EF折叠,得到△GEF,当FG∥AC时,BF的长为.14.如图,正六边形ABCDEF内接于⊙O,AB=2,则图中阴影部分的面积为三.解答题15.(5分)先化简,再求值:,其中x=1,y=.16.(5分)新型冠状病毒肺炎疫情发生后,全社会积极参与疫情防控工作,某市为了尽快完成100万只口罩的生产任务,安排甲、乙两个大型工厂完成.已知甲厂每天能生产口罩的数量是乙厂每天能生产口罩的数量的1.5倍,并且在独立完成60万只口罩的生产任务时,甲厂比乙厂少用5天.问至少应安排两个工厂工作多少天才能完成任务?17.(5分)如图,已知AB=DC,DB=AC.求证:∠B=∠C.18.(5分)某校初二对某班最近一次数学测验或续(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有名同学参加这次测验;(2)这次测验成绩的中位数落在第几组内(从左到右数);(3)若该校一共有360名初二学生参加这次测验,成绩80分以上(不含80分)为优秀,估计该校这次数学测验的优秀人数是多少人?四.解答题19.(7分)步行是全世界公认的有效、科学的健身方法.为了方便市民步行健身,某区园林部门决定将某公园里的一段斜坡AB改造成AC.已知原坡角∠ABD=30°,改造后的斜坡AC的坡度为1:3,BC=30米,求原斜坡AB的长.(精确到0.1米,参考数据:≈1.732)20.(7分)四张大小、形状都相同的卡片上分别写有数字1,2,3,4,把它们放入不透明的盒子中摇匀.(1)从中随机抽出1张卡片,抽出的卡片上的数字恰好是偶数的概率为.(2)从中随机抽出1张卡片,记录数字后放回摇匀,再抽出一张卡片,记录数字.用树状图或列表法求两次抽出的卡片上的数字恰好是两个相邻整数的概率.21.(7分)如图,直线y1=3x﹣5与反比例函数y2=的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1>y2时自变量x的取值范围.22.(7分)如图,在平行四边形ABCD中,点E在AD上,连接BE、CE,EB平分∠AEC.(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,∠A=90°,BC=5,AE=1,求线段BE的长.五.解答题23.(8分)学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t (分钟)之间的函数关系如图所示.(1)根据图象信息,当t=分钟时甲乙两人相遇,甲的速度为米/分钟,乙的速度为米/分钟;(2)图中点A的坐标为;(3)求线段AB所直线的函数表达式;(4)在整个过程中,何时两人相距400米?24.(8分)阅读理解,并解答问题:如图所示的8×8网格都是由边长为1的小正方形组成,图①中的图案是3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理,它表现了我国古人对数学的钻研精神和聪明才智,是我国数学史上的骄傲.问题:请用“赵爽弦图”中的四个直角三角形通过你所学过的图形变化,在图②,图③的方格纸中设计另外两个不同的图案,每个直角三角形的顶点均在方格纸的格点上,且四个三角形互不重叠.画图要求:(1)图②中所设计的图案(不含方格纸)必须是轴对称图形但不是中心对称图形;(2)图③中所设计的图案(不含方格纸)必须既是轴对称图形,又是中心对称图形.六.解答题25.(10分)如图,在正方形ABCD中,M、N分别是射线CB和射线DC上的动点,且始终∠MAN=45°.(1)如图1,当点M、N分别在线段BC、DC上时,请直接写出线段BM、MN、DN之间的数量关系;(2)如图2,当点M、N分别在CB、DC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;(3)如图3,当点M、N分别在CB、DC的延长线上时,若CN=CD=6,设BD与AM的延长线交于点P,交AN于Q,直接写出AQ、AP的长.26.(10分)如图,已知抛物线与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C(0,3).(1)求抛物线的解析式;(2)点D是第一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连接BD、CD.设点D的横坐标为m,△BCD的面积为S.求S 关于m的函数解析式及自变量m的取值范围,并求出S的最大值;(3)已知M为抛物线对称轴上一动点,若△MBC是以BC为直角边的直角三角形,请直接写出点M的坐标.参考答案一.选择题1.解:A、原式=﹣7,不符合题意;B、原式=﹣8,不符合题意;C、原式=10,符合题意;D、原式=﹣,不符合题意,故选:C.2.解:34亿=3400000000=3.4×109.故选:B.3.解:﹣2x≥﹣1﹣3,﹣2x≥﹣4,x≤2,故选:B.4.解:根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选:D.5.解:优弧AB上任取一点D,连接AD,BD,.∵四边形ACBD内接与⊙O,∠C=100°,∴∠ADB=180°﹣∠C=180°﹣100°=80°,∴∠AOB=2∠ADB=2×80°=160°.故选:D.6.解:如图,连接AD,根据作图过程可知:AE是BD的垂直平分线,DG=CG,AB=AD=AG,设∠C=x,则∠CDG=x,∠AGD=2x,∴∠ADG=∠AGD=2x,∵∠B=2∠C,∴∠B=2x,∴∠ADB+∠ADG+∠GDC=2x+2x+x=180°,∴x=36°,∴∠FAC=90°﹣36°=54°.故选:A.二.填空题7.解:=5,32=9,∵5<9,∴<3,∴﹣3<0.故答案为:<.8.解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)9.解:把代入②得:3c+14=8,解得:c=﹣2,把和代入①得:,解得:,所以a+c=4+(﹣2)=2,故答案为:2.10.解:∵一元二次方程x2﹣x+(b+1)=0无实数根,∴△=(﹣)2﹣4×1×(b+1)<0,解得:b>﹣,故答案为:b>﹣.11.解:∵AB∥CD,∴∠C=∠B=35°.∵DE∥CB,∴∠D=180°﹣∠C=145°.故答案为:145.12.解:如图,∵OA=20cm,AA′=50cm,∴===,∵三角尺与影子是相似三角形,∴三角尺的周长与它在墙上形成的影子的周长的比=AB:A′B′=2:7.故答案为2:7.13.解:∵四边形ABCD是平行四边形,∴∠B=∠D=30°,CD=AB=6,AD=BC=6,作CH⊥AD于H,则CH=CD=3,DH=CH=3=AD,∴AH=DH,∴CA=CD=AB=6,∴∠ACB=∠B=30°,∵FG∥AC,∴∠BFG=∠ACB=30°,∵点E是AB边的中点,∴BE=3,分两种情况:①作EM⊥BF于M,在BF上截取EN=BE=3,连接EN,如图1所示:则∠ENB=∠B=30°,∴EM=BE=,BM=NM=EM=,∴BN=2BM=3,由折叠的性质得:∠BFE=∠GFE=15°,∵∠NEF=∠ENB﹣∠BFE=15°=∠BFE,∴FN=EN=3,∴BF=BN+FN=3+3;②作EM⊥BC于M,在BC上截取EN=BE=3,连接EN,如图2所示:则∠ENB=∠B=30°,∴EN∥AC,EM=BE=,BM=NM=EM=,∴BN=2BM=3,∵FG∥AC,∴FG∥EN,∴∠G=∠GEN,由折叠的性质得:∠B=∠G=30°,∴∠GEN=∠ENB=∠B=∠G=30°,∵∠BEN=180°﹣∠B﹣∠ENB=180°﹣30°﹣30°=120°,∴∠BEG=120°﹣∠GEN=120°﹣30°=90°,由折叠的性质得:∠BEF=∠GEF=∠BEG =45°,∴∠NEF=∠NEG+∠GEF=30°+45°=75°,∠NFE=∠BEF+∠B=45°+30°=75°,∴∠NEF=∠NFE,∴FN=EN=3,∴BF=BN﹣FN=3﹣3;故答案为:3+3或3﹣3.14.解:如图,连接BO,FO,OA.由题意得,△OAF,△AOB都是等边三角形,∴∠AOF=∠OAB=60°,∴AB∥OF,∴△OAB的面积=△ABF的面积,∵六边形ABCDEF是正六边形,∴AF=AB,∴图中阴影部分的面积等于扇形OAB的面积×3=×3=2π,故答案为:2π.三.解答题15.解:原式=(x2﹣2xy+y2+2x﹣2xy+y﹣y2﹣y)÷(﹣x)=(x2﹣4xy+2x)÷(﹣x)=﹣2x+8y﹣4,当x=1,y=时,原式=﹣2×1+8×﹣4=﹣2+4﹣4=﹣2.16.解:设乙厂每天能生产口罩x万只,则甲厂每天能生产口罩1.5x万只,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意,∴1.5x=6.再设应安排两个工厂工作y天才能完成任务,依题意,得:(6+4)y≥100,解得:y≥10.答:至少应安排两个工厂工作10天才能完成任务.17.解:连接AD,∵AB=DC,DB=AC.AD=DA,∴△ABD≌△DCA(SSS)∴∠B=∠C.18.解:(1)2+9+10+14+5=40人,答:该班共有40名学生参加测验.(2)40个数据从小到大排列后处在第20、21位的两个数的平均数是中位数,而第20、21位的两个数都落在第3组,答:这次测验成绩的中位数落在第三组.(3)360×=171人,答:该校360名学生中这次数学测验为优秀的人数是171人.四.解答题19.解:设AD=x米,在Rt△ABD中,∠ABD=30°,∴AB=2AD=2x,∴BD==x,∵斜坡AC的坡度为1:3,∴CD=3AD=3x,由题意得,3x﹣x=30,解得,x=15+5,则AB=2x=30+10≈47.3,答:原斜坡AB的长约为47.3米.20.解:(1)从中随机抽出1张卡片,抽出的卡片上的数字恰好是偶数的概率==;故答案为;(2)画树状图为:共有16种等可能的结果数,其中两次抽出的卡片上的数字恰好是两个相邻整数的结果数为6,所以两次抽出的卡片上的数字恰好是两个相邻整数的概率==.21.解:(1)∵点B(n,﹣6)在直线y=3x﹣5上,∴﹣6=3n﹣5,解得n=﹣,∴B(﹣,﹣6),∵反比例函数的图象也经过点B,∴,解k=3;答:k和n的值为3、﹣.(2)设直线y=3x﹣5分别与x轴、y轴相交于点C、点D,当y=0时,即,∴,当x=0时,y=3×0﹣5=﹣5,∴OD=5,∵点A(2,m)在直线y=3x﹣5上,∴m=3×2﹣5=1.即A(2,1),∴S△AOB =S△AOC+S△COD+S△BOD=.答:△AOB的面积未经.(3)根据图象可知:或x>2.22.解:(1)△BCE是等腰三角形.理由如下:∵四边形ABCD是平行四边形,∴BC∥AD,∴∠CBE=∠AEB,∵BE平分∠AEC,∴∠AEB=∠BEC,∴∠CBE=∠BEC,∴CB=CE,∴△CBE是等腰三角形.(2)∵四边形ABCD是平行四边形,∠A=90°,∴四边形ABCD是矩形,∴∠A=∠D=90°,BC=AD=5,在RT△ECD中,∵∠D=90°,ED=AD﹣AE=4,EC=BC=5,∴AB=CD===3,在Rt△AEB中,∵∠A=90°,AB=3.AE=1,∴BE===.五.解答题23.解:(1)根据图象信息,当t=24分钟时甲乙两人相遇,甲的速度为2400÷60=40(米/分钟).∴甲、乙两人的速度和为2400÷24=100米/分钟,∴乙的速度为100﹣40=60(米/分钟).故答案为:24,40,60;(2)乙从图书馆回学校的时间为2400÷60=40(分钟),40×40=1600,∴A点的坐标为(40,1600).故答案为:(40,1600);(3)设线段AB所表示的函数表达式为y=kt+b,∵A(40,1600),B(60,2400),∴,解得,∴线段AB所表示的函数表达式为y=40t;(4)两种情况:①迎面:(2400﹣400)÷100=20(分钟),②走过:(2400+400)÷100=28(分钟),∴在整个过程中,第20分钟和28分钟时两人相距400米.24.解:(1)图②是轴对称图形而不是中心对称图形;(2)如图③既是轴对称图形,又是中心对称图形;六.解答题25.解:(1)BM+DN=MN,理由如下:如图1,在MB的延长线上,截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠ABC=∠D=90°,∴∠ABE=90°=∠D,在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴AE=AN,∠EAB=∠NAD,∴∠EAN=∠BAD=90°,∵∠MAN=45°,∴∠EAM=45°=∠NAM,在△AEM和△ANM中,,∴△AEM≌△ANM(SAS),∴ME=MN,又∵ME=BE+BM=BM+DN,∴BM+DN=MN;故答案为:BM+DN=MN;(2)(1)中的结论不成立,DN﹣BM=MN.理由如下:如图2,在DC上截取DF=BM,连接AF,则∠ABM=90°=∠D,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AM=AF,∠BAM=∠DAF,∴∠BAM+∠BAF=∠BAF+∠DAF=∠BAD=90°,即∠MAF=∠BAD=90°,∵∠MAN=45°,∴∠MAN=∠FAN=45°,在△MAN和△FAN中,,∴△MAN≌△FAN(SAS),∴MN=NF,∴MN=DN﹣DF=DN﹣BM,∴DN﹣BM=MN.(3)∵四边形ABCD是正方形,∴AB=BC=AD=CD=6,AD∥BC,AB∥CD,∠ABC=∠ADC=∠BCD=90°,∴∠ABM=∠MCN=90°,∵CN=CD=6,∴DN=12,∴AN===6,∵AB∥CD,∴△ABQ∽△NDQ,∴====,∴=,∴AQ=AN=2;由(2)得:DN﹣BM=MN.设BM=x,则MN=12﹣x,CM=6+x,在Rt△CMN中,由勾股定理得:62+(6+x)2=(12﹣x)2,解得:x=2,∴BM=2,∴AM===2,∵BC∥AD,∴△PBM∽△PDA,∴===,∴PM=AM=,∴AP=AM+PM=3.26.解:(1)抛物线解析式为y=a(x+1)(x﹣3)=a(﹣x2+2x+3),即3a=3,解得:a=1,抛物线解析式为y=﹣x2+2x+3;(2)设直线BC的函数解析式为y=kx+b,∵直线BC过点B(3,0),C(0,3),∴,解得,∴y=﹣x+3,设D(m,﹣m2+2m+3),E(m,﹣m+3),∴DE=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,∴,∵,∴当时,S有最大值,最大值;(3)设点M(1,m),则MB2=m2+4,MC2=1+(m﹣3)2,BC2=18;①当MC是斜边时,1+(m﹣3)2=m2+4+18;解得:m=﹣2;②当MB是斜边时,同理可得:m=4,故点M的坐标为:(1,﹣2),(1,4).。

2020年吉林省长春市汽开区中考数学一模试卷 解析版

2020年吉林省长春市汽开区中考数学一模试卷  解析版

2020年吉林省长春市汽开区中考数学一模试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)在﹣2,0,﹣1,2这四个数中,最小的数是()A.﹣2B.0C.﹣1D.22.(3分)2020年4月1日,意大利外长在众议院接受问询时表示,自新冠肺炎疫情暴发以来,意大利总计从海外获得3000万只口罩,其中2200万只来自中国.将2200万用科学记数法表示为()A.22×106B.2.2×106C.2.2×107D.0.22×1073.(3分)如图是由5个完全相同的小正方体组成的立体图形,此立体图形的左视图是()A.B.C.D.4.(3分)一元二次方程x2+3x﹣1=0根的判别式的值为()A.5B.13C.D.5.(3分)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余 4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺.”如果设木条长为x尺,绳子长为y尺,根据题意列方程组正确的是()A.B.C.D.6.(3分)如图,在⊙O中,弦AB、CD相交于点E,∠A=50°,∠B=30°,则∠BED 的大小为()A.80°B.100°C.110°D.105°7.(3分)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A'B'的位置,已知AO 的长为3米.若栏杆的旋转∠AOA'=α,则栏杆A端升高的高度为()A.米B.3sinα米C.米D.3cosα米8.(3分)如图,在平面直角坐标系中,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在函数y=(x>0,k>0)的图象上.若正方形ADEF的面积为4,且BF=2AF,则k的值为()A.24B.12C.6D.3二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:=.10.(3分)分解因式:2a﹣2ab=.11.(3分)不等式7﹣5x≤2的解集是.12.(3分)如图,OA∥CB,OC∥AB.若∠1=50°,则∠2的大小为度.13.(3分)如图,AB=4.分别以点A、B为圆心,AB长为半径画圆弧,两圆弧交于点C,再以点C为圆心,以AB长为半径画圆弧交AC的延长线于点D,连结BD、BC,则△ABD的面积是.14.(3分)如图,在平面直角坐标系中,抛物线y=ax2﹣4ax+3a(a是常数,且a>0)与x 轴交于A、B两点(点A在点B的左边),与y轴交于点C,连结AC,将线段AC绕点A 顺时针旋转90°,得到线段AD,连结BD.当BD最短时,a的值为.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(3x﹣1)2﹣x(9x+2),其中x=.16.(6分)小明和小红两人参加一个幸运挑战活动,活动规则是:一个布袋里装有2个红球,1个白球,除颜色外其余均相同.小明从布袋中随机摸出一个球,记下颜色后放回并搅匀;小红再从布袋中随机摸出一个球,若颜色相同,则挑战成功.用画树状图(或列表)的方法,求两人挑战成功的概率.17.(6分)为支持“抗疫防病”工作,某口罩厂由甲、乙两车间承制防护型口罩.已知乙车间每天生产口罩数量是甲车间每天生产口罩数量的2倍.如果两车间各自生产600万只防护型口罩,乙车间比甲车间少用6天.求甲车间每天生产这种防护型口罩的数量.18.(7分)如图,在⊙O中,AB是直径,AP是过点A的切线,点C在⊙O上,点D在AP 上,且AC=CD,延长DC交AB于点E.(1)求证:CA=CE.(2)若⊙O的半径为5,∠AEC=50°,求的长.(结果保留π)19.(7分)近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如表统计表.使用次数(次)012345人数(人)11152328203(1)这天部分出行学生使用共享单车次数的众数是(次).(2)求这天部分出行学生平均每人使用共享单车的次数.(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?20.(7分)图①、图②、图③均是5×5的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,不要求写出画法,保留作图痕迹.(1)在图①中以线段AB为腰画一个等腰直角三角形ABC.所画△ABC的面积为.(2)在图②中以线段AB为斜边画一个等腰直角三角形ABD.(3)在图③中以线段AB为边画一个△ABE,使∠BAE=90°,其面积为.21.(8分)一辆货车从甲地出发以50km/h的速度匀速驶往乙地,行驶1h后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.轿车行驶0.8h后两车相遇.图中折线AB﹣BC表示两车之间的路程y(km)与货车行驶时间x(h)之间的函数关系.(1)甲、乙两地之间的路程是km,轿车的速度是km/h.(2)求直线BC所对应的函数表达式(3)在图中画出货车与轿车相遇后的y(km)与x(h)之间的函数图象.22.(9分)教材呈现:如图是华师版九年级上册数学教材第77页的部分内容.定理证明:请根据教材内容,结合图①,写出证明过程.定理应用:在矩形ABCD中,AB=2AD,AC为矩形ABCD的对角线,点E在边AB上,且AE=3BE.(1)如图②,点F在边CB上,连结EF.若,则EF与AC的关系为.(2)如图③,将线段AE绕点A旋转一定的角度α(0°<α<360°),得到线段AE',连结CE′,点H为CE'的中点,连结BH.设BH的长度为m,若AB=4,则m的取值范围为.23.(10分)如图,在△ABC中,AB=AC=5,BC=6.点P从点B出发,沿BC以每秒2个单位长度的速度向终点C运动,同时点Q从点C出发,沿折线CA﹣AB以每秒5个单位长度的速度运动,到达点A时,点Q停止1秒,然后继续运动.分别连结PQ、BQ.设△BPQ的面积为S,点P的运动时间为t秒.(1)求点A与BC之间的距离.(2)当BP=2AQ时,求t的值.(3)求S与t之间的函数关系式.(4)当线段PQ与△ABC的某条边垂直时,直接写出t的值.24.(12分)已知函数y=(k为常数).(1)当k=﹣1时,①求此函数图象与y轴交点坐标.②当函数y的值随x的增大而增大时,自变量x的取值范围为.(2)若已知函数经过点(1,5),求k的值,并直接写出当﹣2≤x≤0时函数y的取值范围.(3)要使已知函数y的取值范围内同时含有±2和±4这四个值,直接写出k的取值范围.2020年吉林省长春市汽开区中考数学一模试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)在﹣2,0,﹣1,2这四个数中,最小的数是()A.﹣2B.0C.﹣1D.2【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣2<﹣1<0<2,故选:A.2.(3分)2020年4月1日,意大利外长在众议院接受问询时表示,自新冠肺炎疫情暴发以来,意大利总计从海外获得3000万只口罩,其中2200万只来自中国.将2200万用科学记数法表示为()A.22×106B.2.2×106C.2.2×107D.0.22×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2200万=22000000=2.2×107.故选:C.3.(3分)如图是由5个完全相同的小正方体组成的立体图形,此立体图形的左视图是()A.B.C.D.【分析】找到从左面看,所得到的图形即可.【解答】解:该几何体的左视图为故选:D.4.(3分)一元二次方程x2+3x﹣1=0根的判别式的值为()A.5B.13C.D.【分析】直接利用b2﹣4ac的值即可.【解答】解:∵a=1,b=3,c=﹣1,∴△=32﹣4×1×(﹣1)=13.故选:B.5.(3分)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余 4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺.”如果设木条长为x尺,绳子长为y尺,根据题意列方程组正确的是()A.B.C.D.【分析】本题的等量关系是:木长+4.5=绳长;×绳长+1=木长,据此可列方程组即可.【解答】解:设木条长为x尺,绳子长为y尺,根据题意可得,,故选:A.6.(3分)如图,在⊙O中,弦AB、CD相交于点E,∠A=50°,∠B=30°,则∠BED 的大小为()A.80°B.100°C.110°D.105°【分析】由圆周角定理推知∠A=∠D=50°,再根据三角形内角和定理求得即可.【解答】解:如图,∵∠A=50°,∴∠D=∠A=50°.又∵∠B=30°,∴∠BED=180°﹣∠A﹣∠B=100°,故选:B.7.(3分)如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到A'B'的位置,已知AO 的长为3米.若栏杆的旋转∠AOA'=α,则栏杆A端升高的高度为()A.米B.3sinα米C.米D.3cosα米【分析】根据直角三角形的解法解答即可.【解答】解:栏杆A端升高的高度=AO•sin∠AOA′=3sinα(米),故选:B.8.(3分)如图,在平面直角坐标系中,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在函数y=(x>0,k>0)的图象上.若正方形ADEF的面积为4,且BF=2AF,则k的值为()A.24B.12C.6D.3【分析】先由正方形ADEF的面积为4,得出边长为2,求得AB.再设B点的横坐标为t,则E点坐标(t+2,2),根据点B、E在反比例函数y=的图象上,列出t的方程,即可求出k.【解答】解:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t+2,2),∵点B、E在反比例函数y=的图象上,∴k=6t=2(t+2),解得t=1,k=6.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)计算:=.【分析】先将二次根式化为最简,然后合并同类二次根式即可得出答案.【解答】解:=3﹣=2.故答案为:2.10.(3分)分解因式:2a﹣2ab=2a(1﹣b).【分析】直接提公因式2a即可.【解答】解:原式=2a•1﹣2a•b=2a(1﹣b),故答案为:2a(1﹣b).11.(3分)不等式7﹣5x≤2的解集是x≥1.【分析】移项,合并同类项即可求解.【解答】解:7﹣5x≤2,移项得:﹣5x≤2﹣7,则﹣5x≤﹣5.所以x≥1,故答案是:x≥1.12.(3分)如图,OA∥CB,OC∥AB.若∠1=50°,则∠2的大小为130度.【分析】根据平行线的性质先求出∠O的大小,再根据平行线的性质先求出∠2的大小.【解答】解:∵OC∥AB,∠1=50°,∴∠O=50°,∵OA∥CB,∴∠2=130°.故答案为:130.13.(3分)如图,AB=4.分别以点A、B为圆心,AB长为半径画圆弧,两圆弧交于点C,再以点C为圆心,以AB长为半径画圆弧交AC的延长线于点D,连结BD、BC,则△ABD的面积是8.【分析】根据作图过程可得AB=AC=BC=CD=4,所以三角形ABC是等边三角形,△ABD是直角三角形,进而可求BD的长,最后求出三角形ABD的面积.【解答】解:根据作图过程可知:AB=AC=BC=4,∴三角形ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BC=CD∴∠D=∠CBD=30°,∴∠ABD=90°,∴BD=4,∴S△ABD=AB•BD=4×4=8.故答案为:8.14.(3分)如图,在平面直角坐标系中,抛物线y=ax2﹣4ax+3a(a是常数,且a>0)与x 轴交于A、B两点(点A在点B的左边),与y轴交于点C,连结AC,将线段AC绕点A 顺时针旋转90°,得到线段AD,连结BD.当BD最短时,a的值为.【分析】过点D作DE⊥x轴于点E,令y=0得关于x的方程,解得x的值,则可知点A、点B的坐标及OA、OB的长,再证明△ACO≌△DAE(AAS),从而可用含a的式子表示出DE和BE的长,然后在Rt△BDE中,由勾股定理得出关于a的不等式,则可得a的最小值.【解答】解:如图,过点D作DE⊥x轴于点E,则∠AED=90°,令y=0得:ax2﹣4ax+3a=0,解得:x1=1,x2=3.∴OA=1,OB=3,令x=0,得:C(0,3a).∵旋转,∴AC=AD,∠CAD=90°,∴∠CAO+∠DAE=90°,∵∠COA=90°,∴∠CAO+∠ACO=90°,∴∠DAE=∠ACO,在△ACO和△DAE中,∴△ACO≌△DAE(AAS).∴DE=OA=1,AE=OC=3a,∴BE=AE﹣AB=3a﹣2,∴在Rt△BDE中,由勾股定理得:BD2=BE2+DE2=(3a﹣2)2+1≥1.当3a﹣2=0,即a=时,BD取得最小值.故答案为:.三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:(3x﹣1)2﹣x(9x+2),其中x=.【分析】直接利用完全平方公式以及单项式乘以多项式运算化简,再把已知数据代入得出答案.【解答】解:(3x﹣1)2﹣x(9x+2)=9x2﹣6x+1﹣9x2﹣2x=﹣8x+1,当x=时,原式=﹣8×+1=﹣3+1=﹣2.16.(6分)小明和小红两人参加一个幸运挑战活动,活动规则是:一个布袋里装有2个红球,1个白球,除颜色外其余均相同.小明从布袋中随机摸出一个球,记下颜色后放回并搅匀;小红再从布袋中随机摸出一个球,若颜色相同,则挑战成功.用画树状图(或列表)的方法,求两人挑战成功的概率.【分析】用列表法列举出所有等可能出现的结果,从中找出颜色相同的结果数,进而求出概率.【解答】解:用列表法表示所有可能出现的结果如下:由表可知,共有9种等可能出现的结果,其中颜色相同的有5种,∴两人挑战成功的概率为.17.(6分)为支持“抗疫防病”工作,某口罩厂由甲、乙两车间承制防护型口罩.已知乙车间每天生产口罩数量是甲车间每天生产口罩数量的2倍.如果两车间各自生产600万只防护型口罩,乙车间比甲车间少用6天.求甲车间每天生产这种防护型口罩的数量.【分析】设甲车间每天生产这种防护型口罩x万只,则乙车间每天生产这种防护型口罩2x万只,根据工作时间=工作总量÷工作效率结合两车间各自生产600万只防护型口罩时乙车间比甲车间少用6天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲车间每天生产这种防护型口罩x万只,则乙车间每天生产这种防护型口罩2x万只,依题意,得:﹣=6,解得:x=50,经检验,x=50是原分式方程的解,且符合题意.答:甲车间每天生产这种防护型口罩50万只.18.(7分)如图,在⊙O中,AB是直径,AP是过点A的切线,点C在⊙O上,点D在AP 上,且AC=CD,延长DC交AB于点E.(1)求证:CA=CE.(2)若⊙O的半径为5,∠AEC=50°,求的长.(结果保留π)【分析】(1)由切线的性质可得∠BAD=90°,根据等角的余角相等可证得∠CAE=∠AEC,从而根据等角对等边可得结论;(2)连接OC,先求得∠AOC=80°.再利用弧长公式计算即可.【解答】解:(1)证明:∵AB是⊙O的直径,AP是过点A的切线,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∠AED+∠EDA=90°,∵CA=CD,∴∠CAD=∠CDA,∴∠CAE=∠AEC,∴CA=CE.(2)连接OC,∵∠AEC=50°,∠CAE=∠AEC,∴∠EAC=50°,∵OA=OC,∴∠OCA=∠EAC=50°,∴∠AOC=180°﹣∠OCA﹣∠EAC=80°.∴的长为:=.19.(7分)近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如表统计表.使用次数(次)012345人数(人)11152328203(1)这天部分出行学生使用共享单车次数的众数是3(次).(2)求这天部分出行学生平均每人使用共享单车的次数.(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?【分析】(1)根据众数的定义求解可得;(2)根据加权平均数的公式列式计算即可;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生所占比例即可得.【解答】解:(1)∵使用次数为3次的有28人,次数最多,∴众数为3次,故答案为:3;(2)总人数为11+15+23+28+20+3=100,(0×11+1×15+2×23+3×28+4×20+5×3)÷100=2.4(次),答:这天部分出行学生平均每人使用共享单车2.4次;(3)1500×=765(人),答:估计这天使用共享单车次数在3次以上(含3次)的学生有765人.20.(7分)图①、图②、图③均是5×5的正方形网格,每个小正方形的顶点称为格点,小正方形的边长为1,点A、B均在格点上.在图①、图②、图③中,只用无刻度的直尺,在给定的网格中按要求画图,不要求写出画法,保留作图痕迹.(1)在图①中以线段AB为腰画一个等腰直角三角形ABC.所画△ABC的面积为.(2)在图②中以线段AB为斜边画一个等腰直角三角形ABD.(3)在图③中以线段AB为边画一个△ABE,使∠BAE=90°,其面积为.【分析】(1)根据等腰三角形的性质画出图形即可;(2)根据等腰三角形的性质和进行的性质画出图形即可;(3)根据等腰直角三角形的性质和平行线等分线段定理画出图形即可.【解答】解:(1)如图①所示,△ABC即为所求,△ABC的面积为=,故答案为:;(2)如图②所示,△ABD即为所求;(3)如图③所示,△ABE即为所求.21.(8分)一辆货车从甲地出发以50km/h的速度匀速驶往乙地,行驶1h后,一辆轿车从乙地出发沿同一条路匀速驶往甲地.轿车行驶0.8h后两车相遇.图中折线AB﹣BC表示两车之间的路程y(km)与货车行驶时间x(h)之间的函数关系.(1)甲、乙两地之间的路程是150km,轿车的速度是75km/h.(2)求直线BC所对应的函数表达式(3)在图中画出货车与轿车相遇后的y(km)与x(h)之间的函数图象.【分析】(1)根据函数图象可以解答本题;(2)根据函数图象中的数据可以求得线段BC所表示的函数表达式;(3)根据题意和函数图象可以中画出货车与轿车相遇后的y(km)与x(h)的函数图象.【解答】解:(1)由题意可得,甲乙两地之间的距离是150km,轿车的速度是;(150﹣50×1.8)÷0.8=75(km/h),故答案为:150,75;(2)点B的纵坐标是:150﹣50×1=100,∴点B的坐标为(1,100),设线段BC所表示的函数表达式是y=kx+b,,解得,∴线段BC所表示的函数表达式是y=﹣125x+225;(3)货车到达乙地用的时间为:150÷50=3(小时),轿车到达甲地用的时间为:150÷75=2(小时),因为货车提前1小时出发,所以它们同时到达目的地,货车与轿车相遇后的y(km)与x(h)的函数图象如右图所示.22.(9分)教材呈现:如图是华师版九年级上册数学教材第77页的部分内容.定理证明:请根据教材内容,结合图①,写出证明过程.定理应用:在矩形ABCD中,AB=2AD,AC为矩形ABCD的对角线,点E在边AB上,且AE=3BE.(1)如图②,点F在边CB上,连结EF.若,则EF与AC的关系为EF∥AC,EF=AC.(2)如图③,将线段AE绕点A旋转一定的角度α(0°<α<360°),得到线段AE',连结CE′,点H为CE'的中点,连结BH.设BH的长度为m,若AB=4,则m的取值范围为﹣≤BH≤+.【分析】定理证明:如图①中,延长DE到F,使FE=DE,连接CF,利用全等三角形的性质证明四边形BDFC是平行四边形即可解决问题.定理应用:(1)如图②中,取AB,BC的中点M,N,连接MN.直接应用三角形的中位线定理解决问题即可.(2)如图③中,延长CB到T,连接AT,TE′.由三角形的中位线定理可知BH=TE′,求出TE′的取值范围即可解决问题.【解答】解:定理证明:如图①中,延长DE到F,使FE=DE,连接CF,在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD是平行四边形,∴DF∥BC,DF=BC,∴DE∥BC,DE=BC.定理应用:(1)如图②中,取AB,BC的中点M,N,连接MN.∵AE=3BE,BF:CF=1:3,∴AM=BM,CN=BN,ME=EB,FN=FB,∴MN∥AC,MN=AC,EF∥MN,EF=MN,∴EF∥AC,EF=AC.故答案为:EF∥AC,EF=AC.(2)如图③中,延长CB到T,连接AT,TE′.∵CH=HE′,CB=BT,∴BH=TE′,∵四边形ABCD是矩形,∴∠ABC=∠ABT=90°,∵AB=4,BC=AD=BT=2,∴AT===2,∵AE=3BE,AB=4,∴AE=AE′=3,∴2﹣3≤TE′≤2+3,∴﹣≤BH≤+.故答案为:﹣≤BH≤+.23.(10分)如图,在△ABC中,AB=AC=5,BC=6.点P从点B出发,沿BC以每秒2个单位长度的速度向终点C运动,同时点Q从点C出发,沿折线CA﹣AB以每秒5个单位长度的速度运动,到达点A时,点Q停止1秒,然后继续运动.分别连结PQ、BQ.设△BPQ的面积为S,点P的运动时间为t秒.(1)求点A与BC之间的距离.(2)当BP=2AQ时,求t的值.(3)求S与t之间的函数关系式.(4)当线段PQ与△ABC的某条边垂直时,直接写出t的值.【分析】(1)如图1中,作AD⊥BC于D.利用等腰三角形的三线合一以及勾股定理求解即可.(2)如图2,3中,分点Q在线段AC或线段AB上两种情形分别构建方程求解即可.(3)如图2,3中分点Q在线段AC或线段AB上两种情形分别求解即可.(4)分两种情形:①点Q在线段AC上,考虑PQ⊥AC或PQ⊥求解,②点Q在线段AB上,考虑PQ⊥AB求解即可.【解答】解:(1)如图1中,作AD⊥BC于D.∴AB=AC,AD⊥BC,∴BD=CD=BC=3,在Rt△ABD中,AD===4,答:点A与BC之间的距离为4.(2)如图2中,当点Q在线段AC上时,∵BP=2AQ,∴2t=2(5﹣5t),∴t=.如图3中,当点Q在线段AB上时,∵BP=2AQ,∴2t=2×[5(t﹣1)﹣5],∴t=,综上所述,满足条件的t的值为或.(3)①如图2中,当0<t≤1时,作QH⊥BC于H,则QH=CQ•sin C=4t,S=•BP•QH=×2t×4t=4t2.②当1<t≤2时,S=•BP•AD=×2t×4=4t.③如图3中,当2<t<3时,作QH⊥BC于H,则QH=BQ•sin B=[10﹣5(t﹣1)]=12﹣4t,∴S=•BP•QH=×2t×(12﹣4t)=﹣4t2+12t.综上所述,S=.(4)①点Q在AC上,当PQ⊥AC时,由cos C==,可得=,解得t=,当Q⊥BC时,由cos C==,可得=,解得t=>1不符合题意舍弃.当t=1.5时,点Q与A重合,点P与D重合,此时PQ⊥BC.②点Q在AB上,当PQ⊥AB时,由cos B=,可得=,∴=,解得t=,综上所述,满足条件的t的值为或1.5或.24.(12分)已知函数y=(k为常数).(1)当k=﹣1时,①求此函数图象与y轴交点坐标.②当函数y的值随x的增大而增大时,自变量x的取值范围为x≤﹣1或x≥1.(2)若已知函数经过点(1,5),求k的值,并直接写出当﹣2≤x≤0时函数y的取值范围.(3)要使已知函数y的取值范围内同时含有±2和±4这四个值,直接写出k的取值范围.【分析】(1)①把k=﹣1代入函数关系式,令x=0求出y的值即可得到结论;②把①中的函数关系式配方成顶点式即可求出结论;(2)根据题意分k<1和k≥1两种情况求出k的值,再根据当﹣2≤x≤0时求出函数y的取值范围;(3)画出函数图象,运用数形结合法求解即可.【解答】解:(1)当k=﹣1时,,①当x=0时,y=3,∴函数图象与y轴的交点坐标为(0,3);②,x≤﹣1时,y随x的增大而增大;x>﹣1时,当x≥1时,y随x的增大而增大;综上所述,当x≤﹣1或x≥1时,y随x的增大而增大;故答案为:x≤﹣1或x≥1.(2)当k<1时,1+2k+k2﹣2k=5,∴k2=4,∴k=﹣2.∴,当x=﹣2时,y=﹣4;当﹣2≤x≤0时,y=(x﹣2)2+4,∵a=1>0,对称轴为直线x=2,∴当﹣2<x≤0时,8≤y<20;②当k≥1时,k2﹣4k+6=0无实数解;综上:当﹣2≤x≤0时,y的取值范围是y=﹣4或8≤y<20;(3)由题意得,,当k≤0时,则y=﹣(x﹣k)2+2k(x≤2k),最大值2k≥﹣2,即k≥﹣1,∴﹣1≤k≤0;当0<k<2时,即2k<4,则当x>k时,y=(x+k)2﹣2k(x>k),最小值<4即可;将x=k,y=4代入得4k2﹣2k=4,解得,,(舍去),∴;当k≥2时,y=﹣(x﹣k)2+2k(x≤k)最大值2k≥2,如图,此时,图象左右两边最大值不小于4,∴k≥2,综上,或k≥2.。

2020年中考数学全真模拟试卷13套附答案(适用于吉林省长春市)

2020年中考数学全真模拟试卷13套附答案(适用于吉林省长春市)

中考数学模拟试卷题号得分一二三总分一、选择题(本大题共8 小题,共24.0 分)1.-2019 的相反数是()A. B. - C. 2019 D. -20192.据不完全统计,长春市2018 年中考人数只有47000 多人,比2017 年减少1.2 万余人,创史新低.数据47000 用科学记数法表示为()A. 4.7×104B. 47×103C. 4.7×10-4D. 0.47×1053.图中的几何体是由4 个完全相同的小正方体搭成的,则下列说法正确的是()A. 主视图的面积最小小B. 左视图的面积最D. 三个视图的面积相等C. 俯视图的面积最小4.若关于x的一元二次方程x2-x+a=0 有实数根,则a的取值范围是()A. a>B. a≥C. a<D. a≤5.如图,在Rt△ABC中,∠ACB=90°,∠BAC=33°,把△ABC绕点A按顺时针方向旋转∠BAC的大小,得到△AB′C′,延长BC交B′C′于点D,则∠BDC′等于()A. 147°B. 143°C. 157°D. 153°6.如图,在△ABC中,按以下步骤作图:①分别以A、B为圆心,大于长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于D,连结AD.若AD=AC,∠B=25°,则∠C=()A. 70°B. 60°C. 50°D. 40°7.如图钓鱼竿AC长6m,露在水面上的鱼线BC长3 m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15°到AC′的位置,此时露在水面上的鱼线B'C'长度是()A. 3mB.C. m mD. 4m8.如图,反比例函数y= (k>0.x>0)的图象经过矩形OABC的对角线AC上的点M,且CM= AM,若△ABC的面积为18,则k的值为()A. 6B. 8C. 10D. 12二、填空题(本大题共6 小题,共18.0 分)9.24°18′=______°.10.分解因式:2x2-4x+2=______.11.不等式组的解集是______.12.如图,⊙O的半径为4cm,正六边形ABCDEF内接于⊙O,则图中阴影部分面积为______cm2.(结果保留π)13.如图,在▱ABCD中,AB=AC=10,点E为CD边上一点.将▱ABCD沿围AE翻折,点D恰好与BC边的中点F重合,则边BC的长为______.14.如图,在平面直角坐标系中,过点P(m,0)作x轴的垂线,分别交抛物线y=x2+ x+2 与直线y=- x-2 于点A和点C,以线段AC为对角线作正方形ABCD,则正方形ABCD的面积最小值为______.三、解答题(本大题共10 小题,共78.0 分)15.先化简,再求值:(1- )÷,其中x=- .16.苏宇为帮助同桌李蕾巩固“平面直角坐标系中点的坐标特点”这基础知识,在三张完全相同且不透明的卡片止面分别写上了-3,0,2 三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a,放回该卡片重新洗匀,再从三张卡片中随机取出一张,将卡片上的数字记为b,然后让李蕾在平直角坐标系中找出点M(a,b)的位置.请你用画树状图或列表的方式帮李蕾求点M落在第二象限的概率.17.甲、乙两火车站相距1200 千米,采用“和谐号”动车组提速后,列车行驶的速度是原来的2.5 倍,从甲站到乙站的时间缩短了6 小时,求列车提速前的速度.18.如图,在6×6的正方形网格中,每个小正方形的顶点称为格点,小正方形边长均为1 线段AB的端点均在格点上.(1)在图中画出等腰直角△ABC,使∠BAC=90°,则△ABC面积为______.(2)在图中找一点D,并连结AD、BD,使△ABD的面积为.(要求:只用无刻度的直尺,保留作图痕迹,不写作法)19.如图,在半圆中,点O是圆心,AB是直径,点C是的中点,过点C作BD的垂线,交BD的延长线于点E.(1)求证:CE是半圆的切线.(2)若∠ABC=30°,AB=4,则的长为______.20.为了调查学生对垃圾分类及投放知识的了解情况,从甲、乙两校各随机抽取40 名学生进行了相关知识测试,获得了他们的成绩(百分制),并对数据(成绩)进行了整理、描述和分析.下面给出了部分信息.a.甲、乙两校40 名学生成绩的频数分布统计表如下:成绩x50≤x<60 60≤x<70 70≤x<80 80≤x<90 90≤x≤100学校甲乙461131315101422(说明:成绩80 分及以上为优秀,70~79 分为良好,60~69 分为合格,60 分以下为不合格)b.甲校成绩在70≤x<80 这一组的是:70 70 70 71 72 73 73 73 74 75 76 77 78 c.甲、乙两校成绩的平均分、中位数、众数如下:学校甲平均分74.2中位数众数85n乙73.5 76 84根据以上信息,回答下列问题:(1)写出表中n的值;(2)在此次测试中,某学生的成绩是74 分,在他所属学校排在前20 名,由表中数据可知该学生是______校的学生(填“甲”或“乙”),理由是______;(3)假设乙校800 名学生都参加此次测试,估计成绩优秀的学生人数.21.在长春创建文明堿区的活动中,需铺设两段长度相等的彩色道砖,分别交给甲、乙两个施队同时进行施工,甲、乙两队所铺设彩色道砖的长度y(米)与施工时间(x)时之间的部分函数图象如图所示.请解答下列问题:(1)甲队的速度是______米/时.(2)当2≤x≤6时,求乙队铺设彩色道砖的长度y与x之间的函数关系式.(3)如果甲队施工速度不变,乙队在开挖6 小时后,施工速度增加到12 米/时,结果两队同时完成了任务.求甲队从开始施工到完工所铺设的彩色道砖的长度.22.【感知】“如图①,∠MON=90°,OC平分∠MON,作∠ACB=90°,CA、CB分别交射线OM、ON于A、B两点,连结AB,求∠ABC的度数”.为了求解问题,某同学做了如下的分析,“过点C作CD⊥OM于点D,CE⊥ON于点E,”进而求解,则∠ABC=______.【拓展】如图②,一般地,设∠MON=α(0°<α<180°),OC平分∠MON,作∠ACB=180°-α,CA、CB分别交射线OM、ON于A、B两点,连结AB.(1)求∠ABC的度数.(用含a的代数式表示)(2)若a=60°,OA=6,OB=4,则OC=______.23.如图,在△ABC中,AB=AC= ,BC=4.动点P从点B出发,沿BC以每秒2 个单位长度的速度向终点C运动.当点P与点B、C不重合时,过点P作PQ⊥BC交折线BA-AC于点Q,以PQ为边向左作正方形PQMN.设正方形PQMN与△ABC重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)用含t的代数式表示PQ的长;(2)直接写出点M在△ABC内部时t的取值范围.(3)求S与t之间的函数关系式.(4)直接写出点M落在△ABC的中位线所在直线上时t的值.24.在平面直角坐标系中,点A(1,0),点B在x轴上,以点B为直角顶点作等腰直角△ABC,当点C落在某函数的图象上时,称点C为该函数的“悬垂点”,△ABC 为该函数的“悬垂等腰直角三角形”.(1)若点C是函数y= x+3 的悬垂点,直接写出点C的横坐标为______;(2)若反比例函数y= (k>0)的悬垂等腰直角三角形面积是2,求k的值.(3)对于函数y=x2-5x+7,当l≤x≤n(n>1)时,该函数的悬垂点只有一个,求n 的取值范围.(4)若函数y=x2-2ax+a2+a-3 的悬垂等腰直角△ABC的面积范围为2≤S△ABC≤,且点C在第一象限,直接写出a的取值范围.答案和解析1.【答案】C【解析】解:-2019 的相反数是2019.故选:C.直接利用相反数的定义得出答案.此题主要考查了相反数,正确把握定义是解题关键.2.【答案】A【解析】解:将47000 用科学记数法表示为:4.7×104.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1 时,n是正数;当原数的绝对值<1 时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:主视图的面积与俯视图的面积相同,是3 个小正方形的面积之和,而左视图的面积是2 个小正方形的面积之和,所以左视图的面积最小.故选:B.根据该几何体的三视图可逐一判断.本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.4.【答案】D【解析】解:根据题意得△=(-1)2-4a≥0,解得a≤.故选:D.利用判别式的意义得到△=(-1)2-4a≥0,然后解不等式即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0 时,方程有两个不相等的实数根;当△=0 时,方程有两个相等的实数根;当△<0 时,方程无实数根.5.【答案】A【解析】解:∵把△ABC绕点A按顺时针方向旋转∠BAC的大小,∴∠BAC=∠CAC'=33°,∠ACB=∠AC'B'=90°∵∠CAC'+∠ACD+∠BDC'+∠AC'B'=360°∴∠BDC'=360°-90°-90°-33°=147°故选:A.由旋转的性质可得∠BAC=∠CAC'=33°,∠ACB=∠AC'B'=90°,由四边形内角和定理可求∠BDC′的度数.本题考查了旋转的性质,四边形内角和定理,熟练运用旋转的性质是本题的关键.6.【答案】C【解析】解:由作法得MN垂直平分AB,∴DA=DB,∴∠DAB=∠B=25°,∴∠CDA=∠DAB+∠B=50°,∵AD=AC,∴∠C=∠CDA=50°.故选:C.利用基本作图得到MN垂直平分AB,则DA=DB,再根据等腰三角形的性质和三角形外角性质求出∠CDA的度数,然后利用AD=AC得到∠C的度数.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.7.【答案】B【解析】解:∵sin∠CAB= = ,∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°== ,解得:B′C′=3故选:B..因为三角形ABC和三角形AB′C′均为直角三角形,且BC、B′C′都是我们所要求角的对边,所以根据正弦来解题,求出∠CAB,进而得出∠C′AB′的度数,然后可以求出鱼线B'C'长度.此题主要考查了解直角三角形的应用,解本题的关键是把实际问题转化为数学问题.8.【答案】B【解析】解:过点M作ME∥OC,MF∥OA,∵四边形OABC是矩形,∴OC=AB,OA=BC.设MF=x,ME=y,则,即,即,则AB= x;,则BC=3y.所以xy=AB×BC.因为△ABC的面积为18,∴AB×BC=36.所以xy=36,即xy=8.所以反比例函数y= (k>0,x>0)中k=8.故选:B.过点M作ME∥OC,MF∥OA,设MF=x,ME=y,根据相似三角形的性质可得AB= x,BC=3y ,则xy=AB×BC,从而可解xy值,即k值.本题主要考查了反比例函数系数k的几何意义,难度中等,解决这类问题一般是从反比例函数图象上的点分别向x轴、y轴作垂线段,两垂线段的长度的乘积即为k值的绝对值.9.【答案】24.3【解析】解:24°18′=24.3°.故答案为:24.3.将18′换算为0.3°,再加上24°即可求解.考查了度分秒的换算,度、分、秒是常用的角的度量单位.1 度=60 分,即1°=60′,1 分=60 秒,即1′=60″.10.【答案】2(x-1)2【解析】解:2x2-4x+2,=2(x2-2x+1),=2(x-1)2.先提取公因数2,再利用完全平方公式进行二次分解.完全平方公式:(a±b)2=a2±2ab+b2.本题主要考查提公因式法分解因式和利用完全平方公式分解因式,难点在于需要进行二次分解因式.11.【答案】-1<x<2【解析】解:解不等式3x+3>0,得:x>-1,解不等式2x<4,得:x<2,则不等式组的解集为-1<x<2,故答案为:-1<x<2.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12.【答案】【解析】解:如图所示:连接BO,CO,∵正六边形ABCDEF内接于⊙O,∴AB=BC=CO=4,∠ABC=120°,△OBC是等边三角形,∴CO∥AB,在△COW和△ABW中,∴△COW≌△ABW(AAS),∴图中阴影部分面积为:S扇形OBC= = .故答案为:.根据图形分析可得求图中阴影部分面积实为求扇形部分面积,将原图阴影部分面积转化为扇形面积求解即可.此题主要考查了正多边形和圆以及扇形面积求法,得出阴影部分面积=S是解题扇形OBC关键.13.【答案】4【解析】解:∵四边形ABCD是平行四边形∴AD=BC,∵AB=AC=10,点F是BC的中点,∴BF=CF= BC,AF⊥BC∵将▱ABCD沿围AE翻折,点D恰好与BC边的中点F重合,∴AD=AF,∴AF=BC=2BF,∵AB2=AF2+BF2,∴100=BF2+4BF2,∴BF=2∴BC=2BF=4故答案为:4由等腰三角形的性质可得BF=CF= BC,AF⊥BC,由折叠的性质和平行四边形的性质可得AD=AF=BC,由勾股定理可求BF的长,即可求BC的长.本题考查了翻折变换,平行四边形的性质,勾股定理,利用勾股定理求出BF的长是本题的关键.14.【答案】【解析】解:由题可知,A(m,m2+ m+2),C(m,- m-2),∴AC=m2+2m+4,当m=-1 时,AC min=3,∴S min= ,故答案为.根据点P(m,0)得到点A,C的坐标,求得线段AC的长度,当线段AC最短时,正方形面积最小.本题主要考查二次函数的应用,熟练掌握二次函数的最小值是解答本题的关键.15.【答案】解:原式=(- )•= •=x-1,当x=- 时,原式=- -1=- .【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.16.【答案】解:用列表法表示所有可能出现的结果数:共有9 种可能出现的结果,其中落在第二象限的有2 种,∴点M(a,b)落在第二象限的概率为P= .【解析】用树状图或列表法列举出所有可能出现的结果,从中找出符合(a,b),在第二象限的结果数,从而求出点M落在第二象限的概率.考查列表法、树状图法求随机事件的概率,根据题意用树状图或列表法列举出所有可能出现的结果是解决问题的关键.17.【答案】解:设列车提速前的速度为x千米/小时,则提速后的速度为2.5x千米/小时,依题意,得:- =6,解得:x=120,经检验,x=120 是原方程的解,且符合题意.答:列车提速前的速度为120 千米/小时.【解析】设列车提速前的速度为x千米/小时,则提速后的速度为2.5x千米/小时,根据时间=路程÷速度结合提速后比提速前节省6 小时到达,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.【答案】6.5【解析】解:(1)如图所示:△ABC面积= ×÷2=6.5;(2)点D在直线l上即可,答案不唯一.故答案为:6.5.(1)作出格点直角三角形,再根据三角形面积公式计算即可求解;(2)作出与AB距离的平行线,找到格点,再连结即可求解.此题主要考查了作图-应用与设计,以及三角形面积求法,正确掌握三角形面积求法是解题关键.19.【答案】π【解析】证明:(1)如图,连接OC,∵点C是中点∴∴∠ABC=∠CBD∵OB=OC∴∠OCB=∠OBC,∴∠OCB=∠CBD∴OC∥BD,且CE⊥BE∴CE⊥OC,且OC是半径,∴CE是半圆O的切线.(2)∵∠ABC=30°,且∠OCB=∠ABC,∴∠OCB=∠ABC=30°∴∠AOC=60°∵AB=4∴OA=2∴的长= = π故答案为:(1)连接OC,由C为弧AD的中点,可得∴∠ABC=∠CBD,又知∠OCB=∠OBC,即证得∠OCB=∠CBE,进而证明出OC∥BE,最后即可证明出CE是⊙O的切线;(2)由弧长公式可求解.本题考查了切线的判定和性质,弧长计算公式,解答本题的关键是证明BE∥OC,此题难度不大.20.【答案】(1)这组数据的中位数是第20、21 个数据的平均数,所以中位数n= =72.5;(2)甲甲这名学生的成绩为74 分,大于甲校样本数据的中位数72.5 分,小于乙校样本数据的中位数76 分,(3)在样本中,乙校成绩优秀的学生人数为14+2=16.假设乙校800 名学生都参加此次测试,估计成绩优秀的学生人数为.【解析】解:(1)见答案(2)甲这名学生的成绩为74 分,大于甲校样本数据的中位数72.5 分,小于乙校样本数据的中位数76 分,所以该学生在甲校排在前20 名,在乙校排在后20 名,而这名学生在所属学校排在前20 名,说明这名学生是甲校的学生.故答案为:甲,甲这名学生的成绩为74 分,大于甲校样本数据的中位数72.5 分,小于乙校样本数据的中位数76 分.(3)见答案【分析】(1)根据中位数的定义求解可得;(2)根据甲这名学生的成绩为74 分,大于甲校样本数据的中位数72.5 分,小于乙校样本数据的中位数76 分可得;(3)利用样本估计总体思想求解可得.本题主要考查频数分布表、中位数及样本估计总体,解题的关键是根据表格得出解题所需数据及中位数的定义和意义、样本估计总体思想的运用.21.【答案】10【解析】解:(1)甲队的速度:60÷6=10米/时.故答案为:10;(2)设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=kx+b,由图可知,函数图象过点(2,30),(6,50),∴,解得,∴y=5x+20;(3)由图可知,甲队速度是:60÷6=10(米/时),设甲队从开始到完工所铺设彩色道砖的长度为m米,依题意,得,解得m=110,答:甲队从开始施工到完工所铺设的彩色道砖的长度为110 米.(1)根据速度=路程÷时间,即可解答;(2)设函数关系式为y=kx+b,然后利用待定系数法求一次函数解析式解答;(3)先求出甲队的速度,然后设甲队从开始到完工所铺设彩色道砖的长度为m米,再根据6 小时后两队的施工时间相等列出方程求解即可.本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,难点在于(3)根据6 小时后的施工时间相等列出方程.22.【答案】45°【解析】解:【感知】如图①,∵CD⊥OM,CE⊥ON∴∠CDO=∠CEO=∠MON=90°,∴四边形ODCE是矩形∴∠DCE=∠ACB=90°,∴∠DCA+∠ACE=∠BCE+∠ACE∴∠DCA=∠BCE∵OC平分∠MON,∴CD=CE∴△CAD≌△CBE(ASA)∴AC=BC∴∠CAB=∠CBA∵∠CAB+∠CBA=90°∴∠CAB=∠CBA=45°故答案为:45°【拓展】(1)如图②,过点C作CD⊥OM于点D,CE⊥ON于点E,∴∠ADC=∠BEC=90°∵OC平分∠MON,∴CD=CE∵∠DCE=180°-α,∠ACB=180°-α∴∠DCE=∠ACB∴∠DCE-∠ACE=∠ACB-∠ACE即∠DCA=∠ECB∴△ACD≌△BCE(ASA)∴CA=CB∴∠ABC=∠BAC= = ;(2)如图③,过点C作CD⊥OM于点D,CE⊥ON于点E,由(1)知:△ACD≌△BCE(ASA),△OCD≌△OCE(HL)∴AD=BE,OD=OE∵OD+OE=OA-AD+OB+BE=OA+OB=6+4=10∴OD=OE=5∵OC平分∠MON,∴∠AOC= ∠MON=30°∵=cos∠AOC∴OC= = = .【感知】先证明四边形ODCE是矩形,得∠DCA=∠BCE,再证明△CAD≌△CBE(ASA),得AC=BC,进而可求得∠ABC;【拓展】(1)过点C作CD⊥OM于点D,CE⊥ON于点E,证明△ACD≌△BCE(ASA),即可求得∠ABC;(2)过点C作CD⊥OM于点D,CE⊥ON于点E,证明:△ACD≌△BCE(ASA),△OCD≌△OCE(HL),可求得OD=OE=5,再利用特殊角三角函数值即可.本题考查了四边形内角和,全等三角形判定和性质,角平分线性质等知识点,解题关键是添加辅助线构造全等三角形.23.【答案】解:(1)由题意得:BP=2t如图1,过A作AD⊥BC于D,∵AB=AC= ,BC=4.∴BD=CD= BC=2,∴AD= = =1,∴tan∠B= = ,分两种情况:①当点Q在线段AB上时,即0<t≤1时,如图2,∴tan∠B= ,∴PQ=t;②当点Q在线段AC上时,即1<t<2 时,如图3,∴tan∠C=tan∠B= =∴PQ= PC= =2-t;(2)当M在边AB上时,如图4,由(1)知:MN=PQ=2-t=PN,tan∠B= = ,∴BN=2MN,∵BP=BN+PN,∴2t=3MN=3(2-t),t= ,∴点M在△ABC内部时t的取值范围是<t<2;(3)分三种情况:①0<t≤1时,如图5,正方形PQMN与△ABC重叠部分图形是四边形DNPQ,BP=2t,PQ=PN=MD=t,∴BN=2t-t=t,∴DN= t=DM,∴S=S正方形MNPQ-S△MDQ== ;②当1<t<时,如图6,正方形PQMN与△ABC重叠部分图形是五边形ODNPQ,∵PQ=PN=MN=2-t,∴BN=BP-PN=2t-(2-t)=3t-2,∵tan∠B= ,DN= BN= ,∴DM=MN-DN=2-t- =3- t,∵tan∠MOD=tan∠B= =∴OM=2MD,,∴S=S正方形MNPQ-S△MDO=(2-t)2- =(2-t)2- =- +11t-5;③当≤t<2 时,如图7,正方形PQMN与△ABC重叠部分图形是正方形MNPQ,S=PQ2=(2-t)2=t2-4t+4;综上,S与t之间的函数关系式为:S= ;(4)存在四种情况:①如图8,M在中位线MQ上,则Q是AB的中点,BQ= ,∴BP=1=2t,t= ;②如图9,M在中位线MT上,则T是BC的中点,BT=2,∴MT∥AC,∴∠C=∠BTM,∴tan∠BTM= = = ,∴NT=BP,∵BP+TN-BT=PN,∴2t+2t-2=t,t= ;③如图10,M在中位线MQ上,∴Q是AC的中点,同理得CP=1=4-2t,t= ;④如图11,M在中位线MT上,T是BC的中点,CP=TN=4-2t,PQ=PN=2-t,∵CT=TN+PN+PC,∴2=2(4-2t)+2-t,t= ;综上,t的值是秒或秒或秒或秒.【解析】(1)分两种情况讨论:当点Q在线段AB上时,当点Q在线段AC上时.(2)先计算M在边AB上时t的值,根据点M在△ABC内部时两个边界点即可解答;(3)分三种情况:①0<t≤1时,如图5,正方形PQMN与△ABC重叠部分图形是四边形DNPQ,②当1<t<时,如图6,正方形PQMN与△ABC重叠部分图形是五边形ODNPQ,③当≤t<2 时,如图7,正方形PQMN与△ABC重叠部分图形是正方形MNPQ,分别计算面积即可;(4)点M落在△ABC的中位线所在直线上时,存在四种情况,画图可解答.本题是四边形的综合题,考查了正方形的性质、等腰三角形的性质、几何动点问题、勾股定理和重叠部分的面积,比较复杂,此类题要先求特殊位置时对应的t值,做到不重不漏,利用数形结合的思想,先确定重叠部分图形的形状,再求其面积.24.【答案】8 或-【解析】解:以点B为直角顶点作等腰直角△ABC,点A(1,0),∴直线CA的解析式为:y=x-1 或y=-x+1,(1)当直线CA的解析式为y=x-1 时,,解得:;即C点为(8,9),当直线CA的解析式为y=-x+1 时,,解得:;即C点为(,),故答案为:8 或- ;(2)设点C的横坐标为m,则点C的纵坐标为m-1,∵S△ABC= (m-1)2=2,∴m=-1,m=3,1 2∴点C的坐标为(-1,-2)或(3,2),∵点C在反比例函数y= (k>0)的图象上,∴k=2 或k=6;(3)设点C(m,m-1),∵点C在函数y=x2-5x+7 的图象上,∴m2-5m+7=m-1,解得:m=2,m=41 2∵当1≤x≤n(n>1)时,该函数的悬垂点只有一个,∴2≤n<4.(4)∵点C在第一象限,2≤S△ABC≤,∴2≤AB≤3,∵点A(1,0),∴3≤m≤4∵m2-2am+a2+a-3=m-1,∴a=m-2 或a=m+11 2当a=m-2 时,可得1≤a≤2,当a=m+1 时,可得4≤a≤5,综上所述,a的取值范围为:1≤a≤2或4≤a≤5.(1)设C(m,m+3),根据“悬垂等腰直角三角形”的定义可知∠CAB=45°,求出直线CA的解析式,C点即函数的图象与直线CA的交点,列方程求解即可;(2)先根据“悬垂等腰直角三角形”定义及悬垂等腰直角三角形面积是2,求得点C的坐标,再根据反比例函数概念求k的值;(3)设点C(m,m-1),根据“悬垂等腰直角三角形”定义可列方程m2-5m+7=m-1,求解后再根据“该函数的悬垂点只有一个,”即可求得结论;(4)根据“点C在第一象限,2≤S△ABC≤”,可得2≤AB≤3,进而得到:3≤m≤4,再由“悬垂等腰直角三角形”定义可得:m2-2am+a2+a-3=m-1,解得:a=m-2 或a=m+1,即可1 2得到结论.本题考查了一次函数的图象和性质,反比例函数的图象和性质,二次函数的图象和性质,三角形面积等,解题关键是对新定义“悬垂等腰直角三角形”的正确理解和运用.中考数学模拟试卷题号得分一二三总分一、选择题(本大题共8 小题,共24.0 分)1.如图,点A从数轴上的原点开始,向左移动2 个单位长度到点B,则点B表示的数为()A. -2B. 2C. -1D. 12.下列物体的长度最接近于8×102mm的是()A. 一张A4 纸的厚度C. 一张课桌的高度B. 一本数学课本的厚度D. 三层楼房的高度3.由若干个相同的小正方体搭成的几何体的俯视图如图,各小方格内的数字表示叠在该层位置的小正方体的个数,则这个几何体的左视图是()A. B. C. D.4.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“今有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50 钱;而甲把自己的钱给乙,则乙的钱数也为50 钱.问甲、乙各有多少钱?”设甲、乙原有钱数分别为x、y,下列所列方程组正确的是()A.C.B.D.5.如图,点D、E分别在∠BAC的边AB、AC上,沿DE将△ADE折叠到△A'DE的位置.若A'D⊥AC,∠BAC=28°,则∠ADE的大小为()A. 28°B. 31°C. 36°D. 62°6.如图,在△ABC中,∠C=90°.用直尺和圆规在边BC上确定一点P,使点P到点A、点B的距离相等,则符合要求的作图痕迹是()A.C.B.D.7.当地时间2019 年4 月15 日下午,法国巴黎圣母院发生火灾,大火烧毁了巴黎圣母院后塔的塔顶.烧毁前,为测量此塔顶B的高度,在地面选取了与塔底D共线的两点A、C,A、C在D的同侧,在A处测量塔顶B的仰角为27°,在C处测量塔顶B的仰角为45°,A到C的距离是89.5 米.设BD的长为x米,则下列关系式正确的是()A. tan27°=C. sin27°=B. cos27°=D. tan27°=8.如图,在平面直角坐标系中,矩形OABC的顶点A在x轴上,顶点B在第一象限,函数y= (x>0)的图象经过对角线OB上的一点D.若DB=2OD,则矩形OABC的面积为()A. 6B. 8C. 9D. 18二、填空题(本大题共6 小题,共18.0 分)9.计算:=______.10.因式分解:ab-a=______.11.若关于x的一元二次方程x2-2x+k=0 有实数根,则k的值可以是______.(写出一个即可)12.如图是某运算程序,根据该程序的指令,首先输入x的值为4,则输出的值为2,记作第一次操作;将第一次的输出值再次输入,则输出的值为3,记作第二次操作;…,如此循环操作,则第2019 次操作输出的值为______.13.将两块含30°角的全等的直角三角形纸片按如图①的方式摆放在一起,较长的直角边AC长为cm.将△DEF沿射线AB的方向平移,如图②.当四边形ADFC是菱形时,平移距离为______cm.14.如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6 米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8 米,距地面的高度为2.4 米,灯罩顶端D距灯柱AB的水平距离为1.4 米,则灯罩顶端D距地面的高度为______米.三、解答题(本大题共10 小题,共78.0 分)15.马小虎在解不等式的过程中出现了错误,解答过程如下:(1)马小虎的解答过程是从第______步开始出现错误的.(2)请写出此题正确的解答过程.16.现有三张不透明的卡片A、B、C,其中卡片的正面图案分别是佩奇、乔治、佩奇妈妈,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求恰好抽到佩奇和乔治的概率.17.目前,步行已成为人们最喜爱的健身方式之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现,小明步行消耗330000 卡能量的步数与小红步行消耗300000 卡能量的步数相同.已知小明平均每步消耗的能量比小红平均每步消耗的能量多3 卡,求小红平均每步消耗能量的卡数.18.如图,在△ABC中,∠C=90°,点O在边AB上,以O为圆心,OA为半径作圆,与边AC的另一个交点为D,BD恰好为⊙O的切线.(1)求证:∠A=∠CBD.(2)若∠CBD=36°,⊙O的半径为2,则的长为______.(结果保留π)19.图①、图②、图③均是5×5的正方形网格,每个小正方形的顶点称为格点.点A、B、C均在格点上.在图①、图②、图③给定的网格中按要求画图.(1)在图①中,画△ABC的高线AD.(2)在图②中,画△ABC的中线CE.(3)在图③中,画△ABC的角平分线BF.要求:借助网格,只用无刻度的直尺,不要求写出画法.20.某校七年级计划成立学生社团,要求每一位学生都选择一个社团而且只能选择一个社团.为了解学生对不同社团的选择意向,随机抽取了七年级部分学生进行“我最喜爱的社团”问卷调查,并将调查结果绘制成如下两个不完整的统计图表.七年级部分学生“我最喜爱的社团”调查结果统计表社团名称文学社团创客社团书法社团绘画社团体育社团音乐社团美食社团数学社团人数49a6 10 5b2请解答下列问题:(1)a=______,b=______.(2)在扇形统计图中,“绘画社团”所对应的扇形圆心角为______度.(3)该校七年级共有350 名学生,每个社团人数不低于30 人才可以开展.试通过计算估计该校七年级有哪些社团可以开展.21.甲、乙两人分别加工100 个零件,甲第1 个小时加工了10 个零件,之后每小时加工30 个零件.乙在甲加工前已经加工了40 个零件,在甲加工3 小时后乙开始追赶甲,结果两人同时完成任务.设甲、乙两人各自加工的零件数为y(个),甲加工零件的时间为x(时),y与x之间的函数图象如图所示.(1)在乙追赶甲的过程中,求乙每小时加工零件的个数.(2)求甲提高加工速度后甲加工的零件数y与x之间的函数关系式.(3)当甲、乙两人相差12 个零件时,直接写出甲加工零件的时间.22.教材呈现:如图是华师版八年级上册数学教材第96 页的部分内容.请根据教材中的分析,结合图①,写出“角平分线的性质定理”完整的证明过程.。

2019-2020学年吉林省中考数学模拟试题(有标准答案)(Word版)

2019-2020学年吉林省中考数学模拟试题(有标准答案)(Word版)

吉林省中考数学试卷一、单项选择题(每小题2分,共12分)1.计算(﹣1)2的正确结果是()A.1 B.2 C.﹣1 D.﹣2【答案】A.【解析】考点:有理数的乘方.2.如图是一个正六棱柱的茶叶盒,其俯视图为()A.B.C.D.【答案】B.【解析】试题解析:正六棱柱的俯视图为正六边形.故选B.考点:简单几何体的三视图.3.下列计算正确的是()A.a2+a3=a5B.a2•a3=a6C.(a2)3=a6D.(ab)2=ab2【答案】C.【解析】试题解析:A.a2与a3不是同类项,故A错误;B.原式=a5,故B错误;D.原式=a2b2,故D错误;故选C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.4.不等式x+1≥2的解集在数轴上表示正确的是()A.B. C. D.【答案】A.【解析】考点:解一元一次不等式;在数轴上表示不等式的解集.5.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70° B.44° C.34° D.24°【答案】C.【解析】试题解析:∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.考点:三角形内角和定理.6.如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为()A.5 B.6 C.7 D.8【答案】D.【解析】考点:切线的性质.二、填空题(每小题3分,共24分)7.2016年我国资助各类家庭困难学生超过84 000 000人次.将84 000 000这个数用科学记数法表示为.【答案】8.4×107【解析】试题解析:84 000 000=8.4×107考点:科学记数法—表示较大的数.8.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克元(用含x的代数式表示).【答案】0.8x.【解析】试题解析:依题意得:该苹果现价是每千克80%x=0.8x.考点:列代数式.9.分解因式:a2+4a+4= .【答案】(a+2)2.【解析】试题解析:a2+4a+4=(a+2)2.考点:因式分解﹣运用公式法.10.我们学过用直尺和三角尺画平行线的方法,如图所示,直线a∥b的根据是.【答案】同位角相等,两直线平行.【解析】∵∠1=∠2,∴a∥b(同位角相等,两直线平行);考点:平行线的判定.11.如图,在矩形ABCD 中,AB=5,AD=3.矩形ABCD 绕着点A 逆时针旋转一定角度得到矩形AB'C'D'.若点B 的对应点B'落在边CD 上,则B'C 的长为 .【答案】1. 【解析】试题解析:由旋转的性质得到AB=AB′=5, 在直角△AB′D 中,∠D=90°,AD=3,AB′=AB=5, 所以B′D=222254AB AD '-=-=4,所以B′C=5﹣B′D=1. 故答案是:1.考点:旋转的性质;矩形的性质.12.如图,数学活动小组为了测量学校旗杆AB 的高度,使用长为2m 的竹竿CD 作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O 处重合,测得OD=4m ,BD=14m ,则旗杆AB 的高为 m .【答案】9. 【解析】即旗杆AB 的高为9m .考点:相似三角形的应用.13.如图,分别以正五边形ABCDE 的顶点A ,D 为圆心,以AB 长为半径画»BE,ºCE .若AB=1,则阴影部分图形的周长为 (结果保留π).【答案】65π+1. 【解析】试题解析:∵五边形ABCDE 为正五边形,AB=1, ∴AB=BC=CD=DE=EA=1,∠A=∠D=108°,∴»BE=ºCE =10831805AB ππ︒⨯⨯=︒, ∴C 阴影=»BE+ºCE +BC=65π+1. 考点:正多边形和圆.14.我们规定:当k ,b 为常数,k ≠0,b ≠0,k ≠b 时,一次函数y=kx+b 与y=bx+k 互为交换函数.例如:y=4x+3的交换函数为y=3x+4.一次函数y=kx+2与它的交换函数图象的交点横坐标为 . 【答案】1. 【解析】考点:两条直线相交或平行问题.三、解答题(每小题5分,共20分)15.某学生化简分式21211x x ++-出现了错误,解答过程如下:原式=12(1)(1)(1)(1)x x x x ++-+-(第一步)=1+2(1)(1)x x +-(第二步)=231x -.(第三步) (1)该学生解答过程是从第 步开始出错的,其错误原因是 ; (2)请写出此题正确的解答过程.【答案】(1)一、分式的基本性质用错;(2)过程见解析. 【解析】试题分析:根据分式的运算法则即可求出答案. 试题解析:(1)一、分式的基本性质用错; (2)原式=12(1)(1)(1)(1)x x x x x -++-+-=x+1(1)(1)x x +-=11x -. 考点:分式的加减法.16.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km ,隧道累计长度的2倍比桥梁累计长度多36km .求隧道累计长度与桥梁累计长度. 【答案】隧道累计长度为126km ,桥梁累计长度为216km . 【解析】解得:126216x y ⎧=⎨=⎩.答:隧道累计长度为126km ,桥梁累计长度为216km . 考点:二元一次方程组的应用.17.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 【答案】49. 【解析】试题分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.试题解析:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.考点:列表法与树状图法.18.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【答案】证明见解析.【解析】考点:全等三角形的判定与性质.四、解答题(每小题7分,共28分)19.某商场甲、乙、丙三名业务员5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲7.2 9.6 9.6 7.8 9.3乙 5.8 9.7 9.8 5.8 9.9丙 4 6.2 8.5 9.9 9.9统计值平均数(万元)中位数(万元)众数(万元)数值人员甲9.3 9.6乙8.2 5.8丙7.7 8.5【答案】(1)8.7,9.7,9.9;(2)甲,理由见解析.【解析】(2)我赞同甲的说法.甲的平均销售额比乙、丙都高.考点:众数;加权平均数;中位数.20.图①、图②、图③都是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点称为格点.线段AB的端点在格点上.(1)在图①、图2中,以AB为边各画一个等腰三角形,且第三个顶点在格点上;(所画图形不全等)(2)在图③中,以AB为边画一个平行四边形,且另外两个顶点在格点上.【答案】(1)作图见解析;(2)作图见解析.【解析】(2)如图③所示,▱ABCD即为所求.考点:等腰三角形的判定;等边三角形的性质;平行四边形的判定.21.如图,一枚运载火箭从距雷达站C处5km的地面O处发射,当火箭到达点A,B时,在雷达站C处测得点A,B的仰角分别为34°,45°,其中点O,A,B在同一条直线上.求A,B两点间的距离(结果精确到0.1km).参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)【答案】求A,B两点间的距离约为1.7km.【解析】∴OA=OC•tan34°=5×0.67=3.35km,在Rt△BOC中,∠BCO=45°,∴OB=OC=5km,∴AB=5﹣3.35=1.65≈1.7km,答:求A,B两点间的距离约为1.7km.考点:解直角三角形的应用﹣仰角俯角问题.22.如图,在平面直角坐标系中,直线AB与函数y=kx(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=12OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.【答案】(1)4;8;4;(2)4.3 【解析】∴OC=2,AC⊥y轴,∵OD=OC,∴OD=1,∴CD=3,∵△ACD的面积为6,∴12CD•AC=6,∴AC=4,即m=4,则点A的坐标为(4,2),将其代入y=kx可得k=8,∵点B(2,n)在y=8x的图象上,∴n=4;(2)如图,过点B作BE⊥AC于点E,则BE=2,∴S△ABC=12AC•BE=12×4×2=4,即△ABC的面积为4.考点:反比例函数与一次函数的交点问题.五、解答题(每小题8分,共16分)23.如图①,BD是矩形ABCD的对角线,∠ABD=30°,AD=1.将△BCD沿射线BD方向平移到△B'C'D'的位置,使B'为BD中点,连接AB',C'D,AD',BC',如图②.(1)求证:四边形AB'C'D是菱形;(2)四边形ABC'D′的周长为;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.【答案】(1)证明见解析;(2)43;(3)6+3或23+3.【解析】∴∠ADB=60°,由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,∴AD∥B'C'∴四边形AB'C'D是平行四边形,∵B'为BD中点,∴Rt△ABD中,AB'=12BD=DB',又∵∠ADB=60°,∴△ADB'是等边三角形,∴AD=AB',∴四边形AB'C'D是菱形;(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,∴AB∥C'D',∴四边形ABC'D'是平行四边形,由(1)可得,AC'⊥B'D,∴四边形ABC'D'是菱形,∵AB=3AD=3,∴四边形ABC'D′的周长为43,∴矩形周长为6+3或23+3.考点:菱形的判定与性质;矩形的性质;图形的剪拼;平移的性质.24.如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,28s时注满水槽.水槽内水面的高度y(cm)与注水时间x(s)之间的函数图象如图②所示.(1)正方体的棱长为cm;(2)求线段AB对应的函数解析式,并写出自变量x的取值范围;(3)如果将正方体铁块取出,又经过t(s)恰好将此水槽注满,直接写出t的值.【答案】(1)10;(2)y=58x+52(12≤x≤28);(3)4秒【解析】(2)设线段AB对应的函数解析式为:y=kx+b,∵图象过A(12,0),B(28,20),∴1202820k bk b⎧+=⎨+=⎩,解得:5852kb⎧=⎪⎪⎨⎪=⎪⎩,∴线段AB对应的解析式为:y=58x+52(12≤x≤28);(3)∵28﹣12=16(cm),∴没有立方体时,水面上升10cm,所用时间为:16秒,∵前12秒由立方体的存在,导致水面上升速度加快了4秒,∴将正方体铁块取出,经过4秒恰好将此水槽注满.考点:一次函数的应用.六、解答题(每小题10分,共20分)25.如图,在Rt△ABC中,∠ACB=90°,∠A=45°,AB=4cm.点P从点A出发,以2cm/s的速度沿边AB向终点B运动.过点P作PQ⊥AB交折线ACB于点Q,D为PQ中点,以DQ为边向右侧作正方形DEFQ.设正方形DEFQ与△ABC重叠部分图形的面积是y(cm2),点P的运动时间为x(s).(1)当点Q在边AC上时,正方形DEFQ的边长为cm(用含x的代数式表示);(2)当点P不与点B重合时,求点F落在边BC上时x的值;(3)当0<x<2时,求y关于x的函数解析式;(4)直接写出边BC的中点落在正方形DEFQ内部时x的取值范围.【答案】(1)x;(2)x=45;(3)见解析;(4)1<x<32.【解析】(3)如图②,当0<x≤45时,根据正方形的面积公式得到y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,根据正方形和三角形面积公式得到y=﹣232x2+20x﹣8;如图④,当1<x<2时,PQ=4﹣2x,根据三角形的面积公式得到结论;(4)当Q与C重合时,E为BC的中点,得到x=1,当Q为BC的中点时,BQ=2,得到x=32,于是得到结论.试题解析:(1)∵∠ACB=90°,∠A=45°,PQ⊥AB,∴∠AQP=45°,∴PQ=AP=2x,∵D为PQ中点,∴DQ=x,∵D为PQ中点,∴DQ=x,∴GP=2x,∴2x+x+2x=4,∴x=45;(3)如图②,当0<x≤45时,y=S正方形DEFQ=DQ2=x2,∴y=x2;如图③,当45<x≤1时,过C作CH⊥AB于H,交FQ于K,则CH=12AB=2,∵PQ=AP=2x,CK=2﹣2x,∴MQ=2CK=4﹣4x,FM=x﹣(4﹣4x)=5x﹣4,∴y=S正方形DEFQ﹣S△MNF=DQ2﹣12FM2,∴y=x2﹣12(5x﹣4)2=﹣232x2+20x﹣8,∴y=﹣232x2+20x﹣8;∴DQ=2﹣x,∴y=S△DEQ=12DQ2,∴y=12(2﹣x)2,∴y=12x2﹣2x+2;(4)当Q与C重合时,E为BC的中点,即2x=2,∴x=1,当Q为BC的中点时,BQ=2,PB=1,∴AP=3,∴2x=3,∴x=32,∴边BC的中点落在正方形DEFQ内部时x的取值范围为:1<x<32.考点:四边形综合题.26.《函数的图象与性质》拓展学习片段展示:【问题】如图①,在平面直角坐标系中,抛物线y=a(x﹣2)2﹣经过原点O,与x轴的另一个交点为A,则a= .【操作】将图①中抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,如图②.直接写出图象G对应的函数解析式.【探究】在图②中,过点B(0,1)作直线l平行于x轴,与图象G的交点从左至右依次为点C,D,E,F,如图③.求图象G在直线l上方的部分对应的函数y随x增大而增大时x的取值范围.【应用】P是图③中图象G上一点,其横坐标为m,连接PD,PE.直接写出△PDE的面积不小于1时m的取值范围.【答案】【问题】:a=13;【操作】:y=2214(2)(0或4)3314(2)(04)33xx x xx<<⎧--≤≥⎪⎪⎨⎪--+⎪⎩;【探究】:当1<x<2或x>2+7时,函数y随x增大而增大;【应用】:m=0或m=4或m≤2﹣或m≥2+.【解析】试题分析:【问题】:把(0,0)代入可求得a的值;【操作】:先写出沿x轴折叠后所得抛物线的解析式,根据图象可得对应取值的解析式;【探究】:令y=0,分别代入两个抛物线的解析式,分别求出四个点CDEF的坐标,根据图象呈上升趋势的部分,即y随x增大而增大,写出x的取值;【应用】:先求DE的长,根据三角形面积求高的取值h≥1;分三部分进行讨论:①当P 在C 的左侧或F 的右侧部分时,设P[m ,214(2)33m --],根据h ≥1,列不等式解出即可; ②如图③,作对称轴由最大面积小于1可知:点P 不可能在DE 的上方; ③P 与O 或A 重合时,符合条件,m=0或m=4. 试题解析:【问题】 ∵抛物线y=a (x ﹣2)2﹣43经过原点O , ∴0=a (0﹣2)2﹣43, a=13; 【操作】:如图①,抛物线:y=13(x ﹣2)2﹣43, 对称轴是:直线x=2,由对称性得:A (4,0), 沿x 轴折叠后所得抛物线为:y=﹣13(x ﹣2)2+43如图②,图象G 对应的函数解析式为:y=2214(2)(0或4)3314(2)(04)33x x x x x <<⎧--≤≥⎪⎪⎨⎪--+⎪⎩;解得:x 1=3,x 2=1, ∴D (1,1),E (3,1),由图象得:图象G 在直线l 上方的部分,当1<x <2或x >7时,函数y 随x 增大而增大; 【应用】:∵D (1,1),E (3,1), ∴DE=3﹣1=2, ∵S △PDE =12DE•h≥1, ∴h ≥1;②如图③,作对称轴交抛物线G于H,交直线CD于M,交x轴于N,∵H(2,43),∴HM=43﹣1=13<1,∴当点P不可能在DE的上方;③∵MN=1,且O(0,0),a(4,0),∴P与O或A重合时,符合条件,∴m=0或m=4;综上所述,△PDE的面积不小于1时,m的取值范围是:m=0或m=4或m≤210或m≥10.考点:二次函数综合题.。

2020年吉林省吉林市中考数学一模试卷(含答案解析)

2020年吉林省吉林市中考数学一模试卷(含答案解析)

2020年吉林省吉林市中考数学⼀模试卷(含答案解析)2020年吉林省吉林市中考数学⼀模试卷⼀、选择题(本⼤题共6⼩题,共12.0分)1.下列计算错误的是()A. (?1)2018=1B. ?3?2=?1C. (?1)×3=?3D. 0×2017×(?2018)=02.下图是⼀个由4个相同的正⽅体组成的⽴体图形,它的左视图是()A. B. C. D.3.计算(x2)2的结果是()A. x2B. x4C. x6D. x84.如图,直线AB//CD,如果∠1=70°,那么∠BOF的度数是()A. 70°B. 100°C. 110°D. 120°5.如图,△ABC是⊙O的内接三⾓形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()A. 45°B. 85°C. 90°D. 95°6.如图,在菱形ABCD中,点E是AD的中点,连接CE,并延长CE与BA的延长线交于点F,若∠BCF=90°,则∠D的度数为()A. 30°B. 45°C. 60°D. 75°⼆、填空题(本⼤题共8⼩题,共24.0分)7.近年来,党和国家⾼度重视精准扶贫,收效显著,据不完全统计约有65000000⼈脱贫,65000000⽤科学记数法表⽰为_______.8.因式分解:2a3?32a=______.=______.9.计算:2√48÷√6?2√2?110.不等式组{x?2≤1x+3>2的解集为______.11.在墙壁上固定⼀根横放的⽊条,则⾄少需要2枚钉⼦,正确解释这⼀现象的数学知识是______.12.如图∠AOB=30°,点C在OB上,OC=8,以点C为圆⼼、R为半径的圆与OA相切,则R=______.13.已知点A(4,x),B(y,?3),若AB//x轴,且线段AB的长为5,则xy=______.14.如图,矩形纸⽚ABCD中,AB=6,BC=9,将矩形纸⽚ABCD折叠,使点C与点A重合,则折痕EF的长为________.三、解答题(本⼤题共12⼩题,共84.0分)15.先化简,再求值:(1a+2?1)÷a2?1a+2,其中a=√3+116.《孙⼦算经》是中国传统数学中最重要的著作,其中记载了这样⼀个问题:“今有⽊,不知长短.引绳度之,余绳四尺五,屈绳量之,不⾜⼀尺.问⽊长⼏何?”译⽂:“⽤⼀根绳⼦去量⼀根长⽊,绳⼦还剩余4.5尺,将绳⼦对折再量长⽊,长⽊还剩余1尺,问长⽊长多少尺?”17.⼀个不透明的⼝袋中有三个⼩球,上⾯分别标有数字1,2,3,每个⼩球除数字外其他都相同.甲先从袋中随机取出1个⼩球,记下数字后放回;⼄再从袋中随机取出1个⼩球记下数字.(1)⽤画树形图或列表的⽅法,求取出的两个⼩球上的数字之和为3的概率;(2)求取出的两个⼩球的数字之和⼤于4的概率.18.已知:如图,在Rt△ABC中,∠B=90°,AE⊥CA,且AE=BC,点D在AC上,且AD=AB,求证:DE//AB.19.如图所⽰,在边长为1个单位的正⽅形⽹格中建⽴平⾯直⾓坐标系,△ABC的顶点均在格点上.(1)△A1B1C1与△ABC关于y轴对称,画出△A1B1C1(2)将△A1B1C1绕点C1顺时针旋转90°,画出旋转后的△A2B2C1;并直接写出点A2、B2的坐标.20.每年11⽉9⽇为消防宣传⽇,今年“119”消防宣传⽉活动的主题是“全民参与,防治⽕灾”.为响应该主题,吴兴区消防⼤队到某中学进⾏消防演习.图1是⼀辆登⾼云梯消防车的实物图,图2是其⼯作⽰意图,AC是可以伸缩的起重臂,其转动点A离地⾯BD的⾼度AH为5.2m.当起重臂AC长度为16m,张⾓∠HAC为130°时,求操作平台C离地⾯的⾼度(结果精确到0.1m)(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)21.某校组织九年级的三个班级进⾏趣味数学竞赛活动,各班根据初赛成绩分别选拔了10名同学参加决赛,决赛成绩(满分:10分)如下表所⽰:班级决赛成绩(单位:分)⼀班55677888910⼆班46777999 10 10三班567789991010(1)把下表补充完整(单位:分),其中a=______,b=______,c=______;班级平均分中位数众数⼀班7.3a8⼆班7.88b三班c8.59(2)8统计量进⾏说明;(3)为了在全市竞赛中取得好成绩,你认为应选派哪个班级代表学校去参加全市的竞赛?为什么?22.如图1,直线y=kx?2k(k<0)与y轴交于点A,与x轴交于点B,AB=2√5.(1)求A、B两点的坐标.(2)如图2,以AB为边,在第⼀象限内画出正⽅形ABCD,并求直线CD的解析式.23.甲、⼄两组同时加⼯某种零件,⼄组⼯作中有⼀次停产更换设备,更换设备后,⼄组的⼯作效率是原来的2倍.两组各⾃加⼯零件的数量y(件)与时间x(时)的函数图象如图所⽰.(1)直接写出甲组加⼯零件的数量y与时间x之间的函数关系式______;(2)求⼄组加⼯零件总量a的值;(3)甲、⼄两组加⼯出的零件合在⼀起装箱,每满300件装⼀箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?24.如图1,直⾓三⾓形ABC中,∠C=90°,CB=1,∠BCA=30°.(1)求AB、AC的长;(2)如图2,将AB绕点A顺时针旋转60°得到线段AE,将AC绕点A逆时针旋转60°得到线段AD.①连接CE,BD.求证:BD=EC;②连接DE交AB于F,请你作出符合题意的图形并求出DE的长.25. 如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm.点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为t(s).(1)若点Q 的运动速度与点P 的运动速度相等,当t =1时,△ACP 与△BPQ 是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB ”为改“∠CAB =∠DBA =60°”,其他条件不变.设点Q 的运动速度为x cm/s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.26. 23.已知⼆次函数y =x 2+bx ?34的图像经过点(2,54).(1)求这个⼆次函数的函数解析式;(2)若抛物线交x 轴于A ,B 两点,交y 轴于C 点,顶点为D ,求以A 、B 、C 、D 为顶点的四边形⾯积.。

2020年吉林省中考数学试题及参考答案(word解析版)

2020年吉林省中考数学试题及参考答案(word解析版)

吉林省2020年初中毕业生学业水平考试数学试题(全卷满分120分,考试时间为120分钟)一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6 B.﹣6 C.D.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×1083.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.4.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°二、填空题(每小题3分,共24分)7.分解因式:a2﹣ab=.8.不等式3x+1>7的解集为.9.一元二次方程x2+3x﹣1=0根的判别式的值为.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.12.如图,AB∥CD∥EF.若=,BD=5,则DF=.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).第12题图第13题图第14题图三、解答题(每小题5分,共20分)15.先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.17.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.18.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.四、解答题(每小题7分,共28分)19.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)21.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.22.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式 A B C D E人数 4 6 37 8 5表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 2 1 3 3 1表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 6 5 26 13 10根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.五、解答题(每小题8分,共16分)23.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.24.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为.六、解答题(每小题10分,共20分)25.如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P 作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案与解析一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6 B.﹣6 C.D.【知识考点】相反数.【思路分析】根据相反数的定义,即可解答.【解题过程】解:﹣6的相反数是6,故选:A.【总结归纳】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:11090000=1.109×107,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从左边看得到的图形是左视图,可得答案.【解题过程】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.【总结归纳】本题考查了简单组合体的三视图.解题的关键是掌握简单组合体的三视图的定义,注意:从左边看得到的图形是左视图.4.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a【知识考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.【解题过程】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.【总结归纳】本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【知识考点】三角形的外角性质.【思路分析】先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【解题过程】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.【总结归纳】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°【知识考点】M5:圆周角定理;M6:圆内接四边形的性质.【思路分析】运用圆内接四边形对角互补计算即可.【解题过程】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.【总结归纳】本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.二、填空题(每小题3分,共24分)7.分解因式:a2﹣ab=.【知识考点】因式分解﹣提公因式法.【思路分析】直接把公因式a提出来即可.【解题过程】解:a2﹣ab=a(a﹣b).【总结归纳】本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.8.不等式3x+1>7的解集为.【知识考点】解一元一次不等式.【思路分析】移项、合并同类项、系数化为1即可得答案.【解题过程】解:3x+1>7,移项得:3x>7﹣1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.【总结归纳】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤.9.一元二次方程x2+3x﹣1=0根的判别式的值为.【知识考点】根的判别式.【思路分析】根据一元二次方程根的判别式△=b2﹣4ac即可求出值.【解题过程】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=9+4=13.所以一元二次方程x2+3x﹣1=0根的判别式的值为13.故答案为:13.【总结归纳】本题考查了根的判别式,解决本题的关键是掌握根的判别式.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为.【知识考点】数学常识;由实际问题抽象出一元一次方程.【思路分析】设快马x天可以追上慢马,根据两马的速度之差×快马出发的时间=慢马的速度×慢马提前出发的时间,即可得出关于x的一元一次方程,此题得解.【解题过程】解:设快马x天可以追上慢马,依题意,得:(240﹣150)x=150×12.故答案为:(240﹣150)x=150×12.【总结归纳】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.【知识考点】垂线段最短.【思路分析】根据垂线段的性质解答即可.【解题过程】解:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.【总结归纳】本题考查了垂线段的定义和性质.解题的关键是理解题意,灵活运用所学知识解决实际问题.12.如图,AB∥CD∥EF.若=,BD=5,则DF=.【知识考点】平行线分线段成比例.【思路分析】利用平行线分线段成比例定理得到=,然后根据比例性质求DF的长.【解题过程】解:∵AB∥CD∥EF,∴==,∴DF=2BD=2×5=10.故答案为10.【总结归纳】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE 的面积为.【知识考点】三角形的面积;三角形中位线定理.【思路分析】根据三角形中位线定理得到DE∥BC,DE=BC,证明△ADE∽△ABC,根据相似三角形的性质求出△ABC的面积,即可得到答案.【解题过程】解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为,∴△ABC的面积为2,∴四边形DBCE的面积=2﹣=,故答案为:.【总结归纳】本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).【知识考点】全等三角形的判定与性质;弧长的计算.【思路分析】利用SSS证明△ABD≌△CBD,根据全等三角形的对应角相等即可得出∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,即可求得∠ABC=60°,根据等腰三角形三线合一的性质得出BD⊥AC,且AO=CO,进一步求得∠ACB=60°,即可求得∠BCD=90°,根据含30°角的直角三角形的性质即可求得OB,然后根据弧长公式求得即可.【解题过程】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,∴∠ABC=60°,∵AD=CD,∠ADB=∠CDB,∴BD⊥AC,且AO=CO,∴∠ACB=90°﹣30°=60°,∴∠BCD=∠ACB+∠ACD=90°,在Rt△BCD中,∵∠CBD=30°,∴BD=2CD=2,在Rt△COD中,∵∠ACD=30°,∴OD=CD=,∴OB=BD﹣OD=2﹣=,∴的长为:=,故答案为.【总结归纳】本题考查了三角形全等的判定和性质,等腰三角形的性质,直角三角形的判定和性质,含30°角的直角三角形的性质,弧长的计算等,熟练掌握性质定理是解题的关键.三、解答题(每小题5分,共20分)15.先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.【知识考点】整式的混合运算—化简求值.【思路分析】根据整式的混合运算顺序进行化简,再代入值即可.【解题过程】解:原式=a2+2a+1+a﹣a2﹣1=3a.当a=时,原式=3.【总结归纳】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先进行整式的化简,再代入值.16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.【知识考点】列表法与树状图法.【思路分析】根据题意列出图表得出所有等情况数和两张卡片中含有A卡片的情况数,然后根据概率公式即可得出答案.【解题过程】解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A卡片的有5种情况,∴小吉同学抽出的两张卡片中含有A卡片的概率为.【总结归纳】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.17.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.【知识考点】分式方程的应用.【思路分析】设乙每小时做x个零件,甲每小时做(x+6)个零件,根据时间=总工作量÷工作效率,即可得出关于x的分式方程,解之并检验后即可得出结论.【解题过程】解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件.【总结归纳】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.【知识考点】全等三角形的判定.【思路分析】由DE∥AC,根据平行线的性质得出∠EDB=∠A,又BD=CA,DE=AB,利用SAS即可证明△DEB≌△ABC.【解题过程】证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).【总结归纳】本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.四、解答题(每小题7分,共28分)19.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.【知识考点】作图﹣轴对称变换.【思路分析】(1)根据对称性在图①中,画一条不与AB重合的线段MN与AB对称即可;(2)根据对称性即可在图②中,画一条不与AC重合的线段PQ与AC对称;(3)根据对称性在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称即可.【解题过程】解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.【总结归纳】本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称性质.20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD 测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】设AB与DE交于点F.在Rt△ADF中,利用三角函数定义求出AF,即可得出答案.【解题过程】解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BE=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.【总结归纳】本题考查了解直角三角形的应用,能借助仰角构造直角三角形并解直角三角形是解题的关键.21.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B 的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【思路分析】(1)将点A的坐标为(2,4)代入y=(x>0),可得结果;(2)利用反比例函数的解析式可得点B的坐标,利用三角形的面积公式和梯形的面积公式可得结果.【解题过程】解:(1)将点A的坐标为(2,4)代入y=(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=的解析式为y=,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC=S△AOD+S四边形ABCD==10.【总结归纳】本题主要考查了反比例函数的系数k的几何意义,运用数形结合思想是解答此题的关键.22.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式 A B C D E人数 4 6 37 8 5表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 2 1 3 3 1表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 6 5 26 13 10根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.【知识考点】抽样调查的可靠性;用样本估计总体;统计表.【思路分析】(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行;(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数.【解题过程】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.【总结归纳】本题考查样本估计总体的统计方法,理解选取样本的原则是正确判断的前提.五、解答题(每小题8分,共16分)23.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.【知识考点】一次函数的应用.【思路分析】(1)根据函数图象中的数据,可以得到机器每分钟加油量和机器工作的过程中每分钟耗油量;(2)根据函数图象中的数据,可以得到机器工作时y关于x的函数解析式,并写出自变量x的取值范围;(3)根据(2)中的函数解析式,令函数值为30÷2,即可得到相应的x的值.【解题过程】解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L),故答案为:3,0.5;(2)当0≤x≤10时,设y关于x的函数解析式为y=kx,10k=30,得k=3,即当0≤x≤10时,y关于x的函数解析式为y=3x,当10<x≤60时,设y关于x的函数解析式为y=ax+b,,解得,,即当10<x≤60时,y关于x的函数解析式为y=﹣0.5x+35,由上可得,y关于x的函数解析式为y=;(3)当3x=30÷2时,得x=5,当﹣0.5x+35=30÷2时,得x=40,即油箱中油量为油箱容积的一半时x的值是5或40.【总结归纳】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为.【知识考点】四边形综合题.【思路分析】【探究】先由平行四边形的性质得AE∥GF,DC∥AB,进而得四边形AGHD是平行四边形,再结合邻边相等,得四边形AGHD是菱形;【操作一】这两张平行四边形纸片未重叠部分图形的周长和实际为平行四边形ABCD和平行四边形AEFG的周长和,由此求得结果便可;【操作二】证明△AMD≌△AMG得∠AMD=∠AMG=90°,解Rt△ADM得DM,再证明四边形DCFG为矩形,由矩形面积公式求得结果.【解题过程】解:【探究】∵四边形ABCD和AEFG都是平行四边形,∴AE∥GF,DC∥AB,∴四边形AGHD是平行四边形,∵AD=AG,∴四边形AGHD是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,又AM=AM,∴△AMD≌△AMG(SAS),∴DM=GM,∠AMD=∠AMG,∵∠AMD+∠AMG=180°,∴∠AMD=∠AMG=90°,∵sin∠BAD=,∴,∴DM=AD=,∴DG=,∵四边形ABCD和四边形AEFG是平行四边形,∴DC∥AB∥GF,DC=AB=GF=9,∴四边形CDGF是平行四边形,∵∠AMD=90°,∴∠CDG=∠AMD=90°,。

2020年吉林省吉林市中考数学模拟试卷及答案解析

2020年吉林省吉林市中考数学模拟试卷及答案解析

2020年吉林省吉林市中考数学模拟试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)下列各对数中,互为相反数的是()A.﹣2与3B.﹣(+3)与+(﹣3)C.4与﹣4D.5与2.(3分)华为Mate 30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A.1.03×109B.10.3×109C.1.03×1010D.1.03×1011 3.(3分)如图是一个由正方体和一个正四棱锥组成的立体图形,它的俯视图是()A.B.C.D.4.(3分)解不等式组时,不等式①②的解集在同一条数轴上表示正确的是()A.B.C.D.5.(3分)一元二次方程x2﹣2kx+k2﹣k+2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣2B.k<﹣2C.k<2D.k>26.(3分)甲,乙两位同学用尺规作“过直线l外一点C作直线l的垂线”时,第一步两位同学都以C为圆心,适当长度为半径画弧,交直线l于D,E两点(如图);第二步甲同学作∠DCE的平分线所在的直线,乙同学作DE的中垂线.则下列说法正确的是()A.只有甲的画法正确B.只有乙的画法正确C.甲,乙的画法都正确D.甲,乙的画法都不正确7.(3分)我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20B.24C.D.8.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴,函数y=(k>0,x>0)交BC于点D,交AB于点E.若BD=2CD,S四边形ODBE =4,则k的值为()A.1B.2C.4D.二.填空题(共6小题,满分18分,每小题3分)。

2020年吉林省长春中考数学模拟试卷含答案

2020年吉林省长春中考数学模拟试卷含答案

中考数学模拟试卷题号一二三总分得分一、选择题(本大题共8小题,共24.0分)1.3的相反数是( )A. -B.C. -3D. 32.2011年某市居民人均收入达到36 200元.将36 200这个数字用科学记数法表示为( )A. 362×102B. 3.62×104C. 3.62×105D. 0.362×1053.如图是由5个完全相同的小正方体组成的几何体,其左视图是( )A.B.C.D.4.不等式3x≥-6的解集在数轴上表示为( )A. B.C. D.5.如图,一束平行太阳光线FA、GB照射到正五边形ABCDE上,∠ABG=46°,则∠FAE的度数是( )A. 26°.B. 44°.C. 46°.D. 72°6.河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),则AC的长是( )A. 5米B. 10米C. 15米D. 10米7.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是( )A. B. C. D.8.如图,双曲线(x>0),(x>0)将第一象限分成了A、B、C三个部分.点Q(a,2)在B部分,则a的取值范围是()A. 2<a<4B. 1<a<3C. 1<a<2D. 2<a<3二、填空题(本大题共6小题,共18.0分)9.比较大小:3______(填“>”、“<”或“=”).10.一元二次方程x2-4x+4=0的解是______.11.计算:(a2b)3=______.12.直线y=k1x+3与直线y=k2x-4在平面直角坐标系中的位置如图所示,它们与y轴的交点分别为点A、B.以AB为边向左作正方形ABCD,则正方形ABCD的周长为______.13.如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=______.14.如图,抛物线y=ax2+bx+c与x轴相交于点A、B(m+2,0)与y轴相交于点C,点D在该抛物线上,坐标为(m,c),则点A的坐标是______.三、解答题(本大题共10小题,共78.0分)15.先化简,再求值:(1+)•,其中x=3.16.小丹有3张扑克牌,小林有2张扑克牌,扑克牌上的数字如图所示.两人用这些扑克牌做游戏,他们分别从自己的扑克牌中随机抽取一张,比较这两张扑克牌上的数字大小,数字大的一方获胜.请用画树状图(或列表)的方法,求小丹获胜的概率.17.甲队有50辆汽车,乙队有41辆汽车,将甲队一部分汽车调到乙队,使乙队的车数比甲队车数的2倍还多1辆,求从甲队调到乙队汽车的辆数.18.图①、图②均是边长为1的小方形组成的5×5的网格,每个小方形的顶点称为格点.线段AB的端点均在格点上.在图①、图②分别找到两个格点P、Q,连结PQ,交AB于点O.(1)在图①中,线段PQ垂直平分AB;(2)在图②中,使得BO=,要求保留画图痕迹,标好字母.19.如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.20.校文学社在全校范围内随机抽取一部分读者对社刊中最感兴趣的文学栏目进行了投票.每人一张选票,每张选票只能投给一个栏目,经统计无弃权票,根据投票结果绘制的条形统计图如下:(1)这次参加投票的总人数为______.(2)若全校有3000名读者,估计其中对“写作指导”最感兴趣的人数.(3)在全校3000名读者中,若对某个栏目最感兴趣的人数少于300人将会影响社刊的销售,这个栏目就需要被撤换.请通过计算判断,“新书上架”栏目是否需要被撤换.21.甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如图所示.(1)甲的速度为______千米/分,甲乙相遇时,乙走了______分钟.乙的速度为______千米/分.(2)求从乙出发到甲乙相遇时,y与x的函数关系式.(3)乙到达A地时,甲还需______分钟到达终B地.22.【探究】如图①,在等边△ABC中,AB=4,点D、E分别为边BC、AB上的点,连结AD、DE,若∠ADE=60°,BD=3,求BE的长.【拓展】如图②,在△ABD中,AB=4,点E为边AB上的点,连结DE,若∠ADE=∠ABD=45°,若DB=3,=______.23.在△ABC中,∠C=90°,AC=BC=8,动点P自A出发,沿线段AB,以每秒个单位的速度向点B运动,同时,动点Q自B出发,沿折线B-C-A,以每秒2个单位的速度向点A运动,连结PQ,以PQ、CQ邻边作平行四边形CQPE,设点P运动时间为t(秒),平行四边形CQPE与△ABC的重合部分图形面积为S.(1)用含有t的代数式表示线段QC的长度.(2)当点E落在△ABC的边上时,求t的值.(3)当四边形CQPE与△ABC的重合部分图形不是平行四边形时,求S与t之间的函数关系式.(4)连结CP,过点B作BM⊥CP点,交直线CP于点M,直接写出点M经过的路径的长度.24.如图,抛物线L:y=-(x-t)(x-t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(x>0,k>0)于点P.(1)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;(2)当直线MP与L对称轴之间的距离为1时,求t的值.(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.答案和解析1.【答案】C【解析】解:3的相反数是-3.故选:C.只有符号不同的两个数叫做互为相反数.本题主要考查的是相反数的定义,熟练掌握相反数的定义是解题的关键.2.【答案】B【解析】解:36 200=3.62×104.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于36 200有5位,所以可以确定n=5-1=4.此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.【答案】B【解析】解:从左面看易得有一列有2个正方形.故选:B.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.【答案】A【解析】解;3x≥-6,x≥-2,故选:A.根据解不等式的步骤,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.本题考查了不等式的解集,从-2向右的方向,包括-2点,注意-2点用实心点表示.5.【答案】A【解析】解:∵图中是正五边形.∴∠EAB=108°.∵太阳光线互相平行,∠ABG=46°,∴∠FAE=180°-∠ABG-∠EAB=180°-46°-108°=26°.故选:A.先根据正五边形的性质求出∠EAB的度数,再由平行线的性质即可得出结论.本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补,解题的关键是:根据正五边形的性质求出∠EAB的度数.6.【答案】A【解析】解:Rt△ABC中,BC=5米,tan A=1:;∴AC=BC÷tan A=5米;故选:A.Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.7.【答案】C【解析】解:根据勾股定理,AC==2,BC=,所以,夹直角的两边的比为=2,观各选项,只有C选项三角形符合,与所给图形的三角形相似.故选:C.可利用正方形的边把对应的线段表示出来,利用三边对应成比例两个三角形相似,分别计算各边的长度即可解题.此题考查了勾股定理在直角三角形中的运用,三角形对应边比值相等判定三角形相似的方法,本题中根据勾股定理计算三角形的三边长是解题的关键.8.【答案】B【解析】解:把y=2分别代入y=(x>0)、y=(x>0)中,得:x=1和x=3,∵点Q(a,2)在B部分,∴1<a<3,故选:B.首先将y=2代入两个反比例函数的解析式求得x的值,然后根据点Q(a,2)在B部分,确定a的取值范围即可.考查了反比例函数的图象的知识,解题的关键是了解点Q在B部分的意义,难度不大.9.【答案】<【解析】解:32=9,=10,∴3<.首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法等.10.【答案】x1=x2=2【解析】解:x2-4x+4=0,(x-2)2=0,x-2=0,x=2,即x1=x2=2,故答案为:x1=x2=2.先根据完全平方公式进行变形,再开方,即可求出答案.本题考查了解一元二次方程的应用,能正确配方是解此题的关键.11.【答案】a6b3【解析】解:(a2b)3=(a2)3b3=a6b3.故答案为:a6b3.根据积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘计算.本题主要考查积的乘方的性质,幂的乘方的性质,熟练掌握运算性质是解题的关键.12.【答案】28【解析】解:当x=0时,y=k1x+3=3,∴点A的坐标为(0,3);当x=0时,y=k2x-4=-4,∴点B的坐标为(0,-4),∴AB=3-(-4)=7,∴C正方形ABCD=4AB=4×7=28.故答案为:28.将x=0分别代入两直线解析式中求出y值,由此可得出点A、B的坐标,进而可得出线段AB的长度,再根据正方形的周长公式即可求出正方形ABCD的周长.本题考查了一次函数图象上点的坐标特征以及正方形的性质,利用一次函数图象上点的坐标特征求出点A、B的坐标是解题的关键.13.【答案】55°【解析】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D1AE=∠BAD是解决问题的关键.14.【答案】(-2,0)【解析】解:由C(0,c),D(m,c),得函数图象的对称轴是x=,设A点坐标为(x,0),由A、B关于对称轴x=,得=,解得x=-2,即A点坐标为(-2,0),故答案为:(-2,0).根据函数值相等两点关于对称轴对称,可得对称轴,根据A、B关于对称轴对称,可得A点坐标.本题考查了抛物线与x轴的交点,利用函数值相等的点关于对称轴对称是解题关键.15.【答案】解:原式=•=,当x=3时,原式==.【解析】先化简分式,然后将x的值代入求值.本题考查了分式的化简求值,熟练分解因式是解题的关键.16.【答案】解:画树状图得:∵共有6种等可能的结果,小丹获胜的情况有3种,∴P(小丹获胜)==.【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,再利用概率公式求解即可求得答案.此题考查的是用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.17.【答案】解:设应从甲车队调x辆车到乙车队,根据题意,得方程41+x=2(50-x)+1解得:x=20.答:应从甲车队调20辆车到乙车队.【解析】若设从甲车队调x辆车到乙车队,注意两个车队的同时变化.本题考查了一元一次方程的应用,解题的关键是仔细读题并找到灯亮关系,难度不大.18.【答案】解:(1)如图,线段PQ垂直平分线段AB,点O即为所求.(2)如图,点O即为所求.【解析】(1)取格点P,Q,使得A,P,B,Q四点构成正方形,对角线的交点O即为所求.(2)取格点E,F,G,使得AEFG是平行四边形,可得格点M,N,连接MN交AB 于点O,点O即为所求.本题考查作图-应用与设计,线段的垂直平分线的性质,平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】解:∵CD切⊙O于点D,∴∠ODC=90°;又∵OA⊥OC,即∠AOc=90°,∴∠A+∠AEO=90°,∠ADO+∠ADC=90°;∵OA=OD,∴∠A=∠ADO,∴∠ADC=∠AEO;又∵∠AEO=∠DEC,∴∠DEC=∠ADC,∴CD=CE,∵CE=5,∴CD=5.【解析】根据切线的性质,以及直角三角形的性质,直角三角形的两锐角互余,即可证明∠ADC=∠AEO,从而得到∠DEC=∠ADC,根据三角形中,等角对等边即可证明△CDE 是等腰三角形,即CD=CE.本题主要考查了等腰三角形的判定定理,等角对等边,以及切线的性质定理,已知圆的切线时,常用的辅助线是连接圆心与切点构造垂直.20.【答案】500【解析】解:(1)投票总人数=76+88+97+42+60+111+26=500人;(2)3000×=360人;(3)∵3000×=252<300∴这个栏目将被撤换.(1)将统计图中所有数据相加即可得到总人数;(2)用总人数乘以写作感兴趣的比例即可得到答案;(3)求出新书上架的人数与300比较即可得到答案.本题考查了条形统计图的知识,难度不是很大,解题的关键是正确的识图.21.【答案】 10 78【解析】解:(1)观察图象知A、B两地相距为16km,∵甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,∴甲的速度是千米/分钟;由纵坐标看出乙走了:16-6=10(分),设乙的速度是x千米/分钟,由题意,得10x+16×=16,解得x=,∴乙的速度为千米/分钟.故答案为:24,10;;(2)设y与x的函数关系式为y=kx+b,根据题意得,,解得,∴y=;(3)相遇后乙到达A站还需(16×)÷=(千米)相遇后乙到达A站还需(16×)÷=2(分钟),相遇后甲到达B站还需(10×)÷=80分钟,当乙到达终点A时,甲还需80-2=78分钟到达终点B.故答案为:78.(1)观察图象知A、B两地相距为16km,由纵坐标看出甲先行驶了1千米,由横坐标看出甲行驶1千米用了6分钟,则甲的速度是千米/分钟;(2)再运用待定系数法解答即可;(3)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.注意求出相遇后甲、乙各自的路程和时间.22.【答案】【解析】【探究】解:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC=4,过点A作AF⊥BC于F,如图①所示:则BF=CF=BC=2,AF===2,∴DF=BD-BF=3-2=1,∴AD===,根据三角形的内角和定理得,∠ADB+∠BAD=120°,∵∠ADE=60°,∴∠BAD+∠AED=120°,∴∠ADB=∠AED,∵∠B=∠ADE=60°,∴△ABD∽△ADE,∴=,即:=,解得:AE=,∴BE=AB-AE=4-=;【拓展】解:过点A作AF⊥BC于F,如图②所示:∵∠ABD=45°,∴△ABF是等腰直角三角形,∴AF=BF=AB=2,∴DF=DB-BF=3-2=,∴AD===,∵∠ADE=∠ABD=45°,∠A=∠A,∴△ADE∽△ABD,∴=,∴AE===,∴BD=AB-AE=4-=,∴===;故答案为:.【探究】过点A作AF⊥BC于F,由等边三角形的性质得出BF=CF=BC=2,由勾股定理求出AF==2,则DF=BD-BF=1,由勾股定理求出AD==,证得△ABD∽△ADE,得出=,解得AE=,即可得出结果;【拓展】过点A作AF⊥BC于F,易证△ABF是等腰直角三角形,则AF=BF=AB=2,DF=DB-BF=,由勾股定理求出AD==,证得△ADE∽△ABD,得出=,求出AE=,BD=AB-AE=,则=即可得出结果.本题考查了相似三角形的判定与性质、等腰直角三角形的判定与性质、等边三角形的性质、勾股定理、三角形面积的计算等知识,熟练掌握相似三角形的判定是解题的关键.23.【答案】解:(1)由题意当0<t≤4时,CQ=8-2t,当4<t≤8时,CQ=2t-8.(2)如图1中,当点E在AC上时,在Rt△ABC中,∵∠C=90°,AC=BC=8,∴AB===8,∵PQ∥AC,∴=,∴=,解得t=.如图2中,当点E落在BC上时,∵PQ∥BC,∴=,∴=,解得t=.综上所述,满足条件的t的值为s或s.(3)如图3中,当0<t<时,S=•CM=•(8-t)=t2-20t+64.如图4中,当<t≤8时,S=•CM=•t=t2.综上所述,S=.(4)如图5中,取AC,BC的中点G,H,连接GH交PC于M.∵AG=CG,CH=HB,∴GH=AB=4,GH∥AB,∴CM=PM,∴点M的运动轨迹是线段GH,∴点M经过的路径的长度为4.【解析】(1)分两种情形分别求解即可.(2)分两种情形:如图1中,当点E在AC上时,如图2中,当点E落在BC上时,利用平行线分线段成比例定理,构建方程即可解决问题.(3)分两种情形:如图3中,当0<t<时,根据S=•CM求解即可.如图4中,当<t≤8时,根据S=•CM求解即可.(4)如图5中,取AC,BC的中点G,H,连接GH交PC于M.利用三角形的中位线定理即可解决问题.本题属于四边形综合题,考查了等腰直角三角形的性质,解直角三角形,平行线分线段成比例定理,三角形的中位线定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.24.【答案】解:(1)当t=1时,令y=0,得:-(x-1)(x-1+4)=0,解得:x1=1,x2=-3,∴A(1,0),B(-3,0),∴AB=4;∵M为OA中点,∴M(,0)∵抛物线L:y=-(x-1)(x+3)=-(x+1)2+2,∴抛物线L的对称轴为直线x=-1,∴直线MP与L对称轴之间的距离为;(2)∵抛物线L:y=-(x-t)(x-t+4)的对称轴为:直线x=t-2,抛物线L与x轴交点为A(t,0),B(t-4,0)∴线段OA的中点M(,0)由题意得:-(t-2)=1,解得:t=2,∴t=2;(3)∵y=-(x-t)(x-t+4)=-[x-(t-2)]2+2∴当t-2≤,即t≤4时,图象G最高点的坐标为顶点(t-2,2)当t-2>,即t>4时,图象G最高点的坐标为直线MP与抛物线L的交点(,-+t);(4)如图,∵4≤x0≤6,x0=,∴4≤≤6,∴1≤y0≤,即抛物线L与双曲线在C(4,),D(6,1)之间的一段有一个交点①由=(4-t)(4-t+4),解得:t=5或7,②由1=-(6-t)(6-t+4),解得:t=8-或8+,随着t的逐渐增加,抛物线L的位置随着A(t,0)向右平移,当t=5时,L右侧过点C;当t=8-<7时,L右侧过点D,即5≤t≤8-;当8-<t<7时,L右侧离开了点D,而左侧未到达点C,即L与该段无交点,舍去;当t=7时,L左侧过点C,当t=8+时,L左侧过点D,即7≤t≤8+.综上所述,t的取值范围为:5≤t≤8-或7≤t≤8+.【解析】(1)当t=1时,令y=0,可求得A(1,0),B(-3,0),再由M为OA中点,可求得M(,0),配方法可得到抛物线L的对称轴为直线x=-1,即可得到结论;(2)配方法可得对称轴为:直线x=t-2,再求得线段OA的中点M(,0),即可求得结论;(3)根据对称轴位于直线MP左侧或右侧两种情形讨论即可;(4)先根据反比例函数由4≤x0≤6,可得1≤y0≤,再由抛物线L可得1≤(4-t)(4-t+4)≤或1≤-(6-t)(6-t+4)≤,即可求得t的范围.本题考查了二次函数的图象和性质,二次函数最值应用,反比例函数图象和性质,解不等式组等;属于代数综合题.解题时要注意运用数形结合进行分析,运用方程思想解决问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年吉林省中考数学模拟试题含答案数学试题共6页,包括六道大题,共26道小题。

全卷满分120分,考试时间为120分钟.考试结束后,将本试题和答题卡一并交回. 注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘 贴在条形码区域内.2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试卷 上答题无效.一、单项选择题(每小题2分,共12分) 1.下列各数中最小的数是(A) 0 (B) -3 (C) 3- (D) 12.2016年10月17日,神州十一号飞船成功发射升空.发射当天约有161000个相关精彩栏目的热门视频在网络上热播.将数据161000用科学记数法表示为(A) 1.61×103(B) 0.161×105(C) 1.61×105(D) 16.1×1043.用4个完全相同的小正方体组合成如图所示的立体图形,它的左视图为(第3题) (A)(B) (C) (D) 4.下列计算正确的是(A)2a 2· a =3a3(B) (2a )2 ÷a =4a(C) (-3a )2=3a 2(D) (a -b )2=a 2-b 25.将一副三角板如图方式放置,则∠1的度数是 (A) 15° (B) 20° (C) 25° (D) 30°6.A 、B 两地相距180km ,新修的高速公路开通后,在A 、B 两地间行驶的长途客车 平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为x km/h ,则根据题意可列方程为145°30°(第5题)(A)1%)501(180180=+-x x (B) 1180%)501(180=-+x x (C) 1%)501(180180=--x x (D) 1180%)501(180=--xx二、填空题(每小题3分,共24分)7. 计算:312+= . 8. 因式分解:a 2-4b 2= . 9. 不等式x 5>62-x 的解集是 . 10. 若n x x x +-=+-22)3(76,则n =________.11. 若两个连续整数x 、y 满足x <5+1<y , 则x +y =_____________.12. 夏天某地区一周最高气温的走势图如图所示,这组数据的众数 是 ℃.13.如图,某数学兴趣小组将边长为6的正方形铁丝框ABCD 变形为以A 为圆心, AB 为半径的扇形,则扇形的圆心角∠DAB 的度数是 度.(结果保留π)14. 如图,线段OA =4,点C 是OA 的中点,以线段CA 为对角线作正方形ABCD . 将 线段OA 绕点O 向逆时针方向旋转60°,得到线段OA ′和正方形A ′B ′C ′D ′. 在 旋转过程中,正方形ABCD 扫过的面积是 .(结果保留π) 三、解答题 (每小题5分,共20分)(第12题)ABCD(第13题)(第14题)AB CDA ′B ′C ′D ′O15. 先化简,再求值:1)2()1)(1(-++-+x x x x ,其中21=x .16.如图所示的两台天平保持平衡,已知每块巧克力的质量相等,且每个果冻的质量 也相等.求每块巧克力和每个果冻的质量.(第16题)17. 在一个不透明的袋子中,装有2个红球和1个白球,这些球除了颜色外都相同.如果第一次随机摸出一个小球(不放回),充分搅匀后,第二次再从剩余的两球中随机摸出一个小球,求两次都摸到红球的概率.(用树状图或列表法求解)(第17题)18.如图,已知△ABC 中,AB=AC ,把△ABC 绕A 点沿顺时针方向旋转得到△ADE , 连接BD 、CE .求证:△AEC ≌△ADB .(第18题)四、解答题 (每小题7分,共28分)19.如下图所示,网格中每个小正方形的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案,解答下列问题:图(1)图(2)(第19题)(1)图(1)中的三个图案都具有以下共同特征:都是______对称图形,都不是____对称图形. (填“中心”或“轴”)(2)请在图(2)中设计出一个面积为4,且具备上述特征的图案,要求所画图案不能与图(1)中所给出的图案相同.20.为了解某市12000名初中学生的视力情况,该校数学兴趣小组从该市七、八、九年级各随机抽取了100名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.(1)由统计图可以看出年级越高视力不良率越(填“高”或“低”);(2)抽取的八年级学生中,视力不良的学生有名;(3)请你根据抽样调查的结果,估计该市12000名初中学生中视力不良的人数是多少?21.人写字时眼睛和笔端的距离超过30cm 时则符合保护视力的要求.图1是一位同学的 坐姿,把她的眼睛B 、肘关节C 和笔端A 的位置关系抽象成图2的△ABC ,BC =30cm,AC =22cm,∠ACB =530,她的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin530≈0.8,cos530≈0.6,tan530≈1.3)图1 图2(第21题)22.如图,在平面直角坐标系中有Rt △ABC ,已知∠CAB =90°,AB =AC ,A (-2,0),B (0,1).(1)点C 的坐标是 ;(2)将△ABC 沿x 轴正方向平移得到△A ′ B ′C ′,且B ,C 两点的对应点B ′,C ′恰好落在反比例函数xky 的图象上,求该反比例函数的解析式.五、解答题 (每小题8分,共16分)(第20题) AB COC ′B ′A ′ y(第22题)23. 如图,⊙O 的直径AB =4,C 是⊙O 上一点,连接OC .过点C 作CD ⊥AB ,垂足为D , 过点B 作BM ∥OC ,在射线BM 上取点E , 使BE =BD ,连接CE . (1) 当∠COB =60° 时,直接写出阴影部分的面积;(2) 求证:CE 是 ⊙O 的切线.24. 某商场为了迎接"6.1儿童节",以调低价格的方式促销n 个不同的玩具,调整后的单价y (元)与调整前的单价x (元)满足一次函数关系,如下表:当这些玩具调整后的单价都大于2元时,解答下列问题:(1) y 与x 的函数关系式为 ,x 的取值范围为 ; (2) 某个玩具调整前单价是108元,顾客购买这个玩具省了 元;(3) 这n 个玩具调整前、后的平均单价分别为x (元)、y (元),猜想y 与x 的关系式, 并写出推导过程.第1个 第2个 第3个 第4个 … 第n 个调整前单价x (元)x 1 x 2=6 x 3=72 x 4 … x n调整后单价y (元)y 1 y 2=4 y 3=59 y 4 … y nABO CDE (第23题)六、解答题 (每小题10分,共20分)25.如图,点A、B坐标分别为(4,0)、(0,8),点C是线段OB上一动点,点E在x轴正半轴上,四边形OEDC是矩形,且OE=2OC.设OE=t(t>0),矩形OEDC与△AOB重合部分的面积为S.根据上述条件,回答下列问题:(1)当矩形OEDC的顶点D在直线AB上时,t= ;(2)当t=4时,直接写出S的值;(3)求出S与t的函数关系式;(4)若S=12,则t= .(第25题)26.问题情景:如图,在直角坐标系xOy中,点A、B为二次函数y=ax2(a>0)图象上的两点,且点A、B的横坐标分别为m、n(m>n>0),连接OA、AB、OB.设△AOB的面积为S时,解答下列问题: 探究:当a=1时,mn m n Sm=3,n=1 3 2m=5,n=210 3当a=2时,2mn m n Sm=3,n=1 6 2m=5,n=220 3归纳证明:对任意m、n(m>n>0),猜想S=_________________(用a,m,n表示),并证明你的猜想.(第26题)拓展应用:若点A、B的横坐标分别为m、n(m>0>n),其它条件不变时,△AOB的面积S=_______________(用a, m,n表示).参考答案及评分标准阅卷说明:1.评卷采用最小单位为1分,每步标出的是累积分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分. 一、单项选择题(每小题2分,共12分)1.B2.C3.A4.B5.A6.A 二、填空题(每小题3分,共24分)7. 33 8. 8 (a +2b )(a -2b ) 9.x >-2 10. -2 11. 7 12. 15 13.π36014.2π+2三、解答题(每小题5分,共20分)15.解:原式=1-x 2+x 2+2x -1, ………………………………………………………………3分=2 x .……………………………………………………………………………4分 当x =21时,原式=2×21=1. ………………………………………………………5分16.解:设每块巧克力质量为x 克,每个果冻的质量为y 克,…………………………1分依题意得:⎩⎨⎧=+=5023y x yx .……………………………………………………3分解得⎩⎨⎧==3020y x .…………………………………………………………5分答:每块巧克力质量为20克,每个果冻的质量为30克. 17 解:树状图如下;.或根据题意,列表如下:………3分总共有6种结果,每种结果出现的可能性相同,其中两次都摸到红球的有2种, ∴P(两次都摸到红球)=2163=.………………………………………………5分18.证明:由旋转的性质得:△ABC ≌△ADE ,………………………………1分∴∠BAC=∠DAE ,…………………………………………2分∴∠BAC+∠BAE=∠DAE+∠BAE ,即∠CAE=∠DAB ,………………………3分 ∵AC=AB ,∴AE=AD ,………………………………………………4分在△AEC 和△ADB 中,⎪⎩⎪⎨⎧=∠=∠=AB AC DAB CAE AD AE , ∴△AEC ≌△ADB (SAS ). ………………………………………………………5分四、解答题(每小题7分,共28分)19.解:(1)中心,轴;………………………………………4分(2)答案不唯一,只要符合条件即可.……………7分 (说明:第(1)中,“中心”和“轴”各2分)20.解: (1) 高 ………………………………… 1分 (2) 63 ………………………………… 3分 (3)720010010010068%10063%100%4910012000=++⨯+⨯+⨯⨯…… 7分答:视力不良的学生共有7200名.21.答:她的这种坐姿不符合保护视力的要求.………………1分 理由:如图所示:过点B 作BD ⊥AC 于点D , ∵BC=30cm,∠ACB =530,∴sin530=BC BD =30BD ≈0.8,解得BD =24.…………3分又cos530=BC DC =30DC ≈0.6,解得DC =18.…………5分∴AD =AC -DC =22-18=4(cm),…………………………6分∴AB =22BD AD +=22244+=592<900=30.…………………7分∴她的这种坐姿不符合保护视力的要求.说明:(1)没写答,直接写理由正确即给满分,(2)其他方法也只要正确即给满分.22.解:(1) (-3, 2) ………………………………… 2分(2) 解:设平移距离为a , 则点C ′(-3+a ,2),点B ′(a ,1) …………… 3分∴a k +-=32, ak =1 ∴2(-3+a )=a 解得a =6∴k =a =6 ………………………………… 6分∴xy 6= ………………………………… 7分 五、解答题(每小题8分,共16分)23.解: 解:(1) 332-π …………… 4分 (2)证明:∵BM ∥OC∴∠OCB =∠CBE ………………………………… 5分∵OC =OB∴∠OCB =∠OBC∴∠OBC =∠CBE又BD =BE , BC =BC△CBD ≌△CBE∴∠CEB =∠CDB =90° ………………………………… 7分 ∵BM ∥OC∴ ∠OCE +∠CEB=E 180°B∴∠OCE =180°-∠CEB =180°-90°=90°即OC ⊥CE ∴CE 是 ⊙O 的切线. ……………………… 8分24.解:解:(1)y =65x -1 ……………………………………………… 2分 x >518 ……………………………………………… 3分 (2) 19元 ……………………………………………… 5分(3) 猜想: y =65x -1 ………………………………… 6分 证明:y 1=65x 1-1, y 2=65x 2-1, ……, y n =65x n -1.∴y =n 1(y 1 +y 2 +…+y n )=n 1(65x 1-1+65x 2-1+…+65x n -1) =n1⎥⎦⎤⎢⎣⎡-+++n x x x n )6521 ( =n 1⎥⎦⎤⎢⎣⎡-n x n 65=65x -1. …………………………… 8分 六、解答题(每小题10分,共20分)25.解:(1)t =516…………………………………………2分(2) 7 …………………………………………4分(3)①当0<t ≤516时,S=21t 2,…………………5分 ②当516<t ≤4时,如图(2),∵A (4,0),B (0,8) ∴直线AB 的解析式为y =-2x +8,∴G (t , -2t +8),F (4-4t ,2t ), ∴DF =45t -4,DG =25t -8, ∴S =S 矩形COED -S △DFG =t ×2t -21(45t -4)(25t -8) =-1617t 2+10t -16.……………………………………7分 ③当416t <≤时,如图(3)由∠BFC =∠BAO tan ∠BAO =tan ∠BFCCF t28-=2 44t CF ∴=-∴S=S △BOA -S △BCF =21×4×8-21×(4--4t )(8-2t )=-161t 2+2t .…………………8分 B CO E FA G D综上)4)164(2161516(16101617)5160(21222≤〈⎪⎪⎪⎩⎪⎪⎪⎨⎧≤〈+--+-≤〈=t t t t t t t t s …………………………9分 (4)8…………………………………………………………………………………10分 (提示:由题意可知把S =12代入S =-161t 2+2t 中, -161t 2+2t =12,整理, 得t 2-32t+192=0.解得 t 1=8,t 2=24>16(舍去)∴当S=12时,t=8.)说明:自变量范围写成“<”或“≤”均不扣分26.解:探究:3,15,6,30;……………………………………………………4分 归纳证明:猜想:S =21amn (m-n ); ………………………………………………6分 证明:过点A ,B 作AD ⊥x 轴,BC ⊥x 轴于点D ,C .∵点A ,B 的横坐标分别为m ,n (m>n>0)∴A (m ,a 2m ),B (n , a 2n )∴OC =n ,BC =a 2n ,OD =m ,AD =a 2m∴S=S △AOB =S △AOD -S △OBC -S 梯形ABCD=21m ×a 2m -21n ×a 2n -21(a 2m +a 2n )(m-n ) =21a 2m ⋅n -21a 2n ⋅m = S=21amn (m-n ),…………………………9分 拓展应用:S=21amn (n-m ), …………………………………………………………10分。

相关文档
最新文档