最新初中北师版九年级数学上册6.1反比例函数公开课教案
北师大版数学九年级上册的第六章第一节《反比例函数》教学设计

北师大版数学九年级上册的第六章第一节《反比例函数》教学设计一. 教材分析北师大版数学九年级上册的第六章第一节《反比例函数》是初中学段反比例函数内容的第一课时,本节课主要让学生掌握反比例函数的定义、性质及其图象。
通过本节课的学习,学生能够理解反比例函数的概念,会判断一个函数是否为反比例函数,能够运用反比例函数的性质解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了函数、比例、坐标系等基础知识,具备了一定的逻辑思维能力和空间想象能力。
但反比例函数的概念和性质相对抽象,学生可能难以理解和接受。
因此,在教学过程中,要注重引导学生通过实例来理解反比例函数的概念,运用已有的知识和经验来探究反比例函数的性质。
三. 教学目标1.知识与技能:理解反比例函数的概念,掌握反比例函数的性质,能够判断一个函数是否为反比例函数,会用反比例函数解决实际问题。
2.过程与方法:通过观察、分析、归纳等方法,探究反比例函数的性质,提高学生的逻辑思维能力和科学研究方法。
3.情感态度与价值观:培养学生对数学的兴趣,使学生感受到数学在生活中的应用,增强学生对数学学科的信心。
四. 教学重难点1.反比例函数的概念及其性质。
2.如何判断一个函数是否为反比例函数。
3.反比例函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入反比例函数,使学生感受到数学与生活的紧密联系。
2.引导发现法:引导学生观察、分析、归纳反比例函数的性质,培养学生的自主学习能力。
3.小组合作学习:分组讨论,共同探究反比例函数的应用,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示反比例函数的定义、性质及其图象。
2.教学素材:准备一些实际问题,用于引导学生运用反比例函数解决实际问题。
3.坐标纸:用于画图,帮助学生更好地理解反比例函数的图象。
七. 教学过程1.导入(5分钟)利用生活实例,如商场打折、地图比例尺等,引导学生回顾比例的概念。
然后提出问题:“如果两个量的乘积为定值,它们之间的关系如何?”引发学生思考,引出反比例函数的概念。
九年级数学上册 6.1 反比例函数教案 (新版)北师大版

反比例函数【教学目标】知识与技能记住反比例函数的概念,会求比例系数,能够列出实际问题中的反比例函数关系. 过程与方法1.从现实情境和已有知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2.经历抽象反比例函数概念的进程,领会反比例函数的意义,理解反比例函数的概念。
情感、态度与价值观感受反比例函数是刻画世界数量关系的一种有效模型,函数与生活息息相关。
【教学重难点】教学重点:理解和领会反比例函数的概念教学难点:领悟反比例函数的概念【导学过程】【创设情景,引入新课】问题提出:电流I 、电阻R 、电压U 之间满足关系式U=IR ,当U =220V 时,(1)你能用含有R 的代数式表示I 吗?(2)利用写出的关系式完成下表:当R 越来越大时,I 怎样变化?当R 越来越小呢?(3)变量I 是R 的函数吗?为什么?学生小组合作讨论。
【自主探究】京沪高铁(全程约为1318km ),全程所用的时间t(h)随速度v(km/h)的变化而变化(1)完成下表:随着速度在逐渐增加,所用的时间发生怎样的变化?.(2)你能用含有v 的代数式表示t 吗?(3)速度v 是时间t 的函数吗?为什么?概念:如果两个变量x,y 之间的关系可以表示成)0(≠=k k xk y 为常数,的形式,那么y 是x 的反比例函数,反比例函数的自变量x 不能为零。
【课堂探究】做一做个矩形的面积为202cm ,相邻的两条边长分别为xcm 和ycm 。
那么变量y 是变量x 的函数吗?为什么?学生先独立思考,再进行全班交流。
2.某村有耕地346.2公顷,人数数量n 逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n 的函数吗?为什么?3.y 是x 的反比例函数,下表给出了x 与y 的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。
【当堂训练】1.xk y = (k ≠0)叫__________函数.,x 的取值范围是__________; 2.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;3.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成____ ______;4.如果函数222-+=k k kx y 是反比例函数,那么k =________,此函数的解析式是____ ____;5、若()2311m m y m x ++=+是反比例函数,求m 的值.6、已知y 与x 成反比例,当x=3时,y=7,求当y=2时,x 的值.7、已知函数k y x=(k ≠0)过点()1,3-,求函数解析式。
北师大版数学九年级上册6.1反比例 函数教案

第六章反比例函数6.1反比例函数课型:新授课教学目标:(1)经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
(2)体会数学从实践中来又到实际中去的研究、应用过程。
培养学生的观察能力,及数学地发现问题,解决问题的能力。
(3)领悟用函数观点解决某些实际问题的基本思路。
学习重点:理解反比例函数的概念,会求比例系数学习难点:正确列出实际问题中的反比例函数关系。
教法和学法:教师采用探索、发现法总结归纳本节的相关概念及其知识的应用。
学生经历探索--发现--总结--应用,达到学以致用的目的。
以师生合作,学生自主学习,小组讨论等学习形式呈现教学准备:多媒体课件教学过程:第一环节复习回顾,引入新课活动内容:1、什么是函数?一般地,在某个变化过程中,有个变量,如果给定一个x值,相应地就确定了一个y值,那么我们称的函数,其中是自变量,是因变量。
2、你学过哪些函数?活动目的:让学生回忆所学函数,为新课打下基础。
活动效果:学生可能说的不完整,教师补充。
第二环节:参与互动,探究新知活动内容:活动一:物理中的数学1、和学生欣赏一段灯光的视频,让学生感受电阻R和电流I的变化情况。
2、电流I,电压U,电阻R之间满足关系式U= 。
当U=220V时,(1)你能用含R的代数式表示I吗?(2)利用写出的关系式完成下表(3)当R越来越大时,I怎样变化?当R越来越小呢?(4)变量I是R的函数吗?为什么?活动二:(学生完成)运动中的数学银川到固原的高速公路全长约为400km,汽车沿高速公路从银川驶往固原,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?(1)请写出t与v 的关系式。
(2)根据关系式完成下表:(3)请描述t与v 的变化情况,它们是什么关系?(4)变量t是v的函数吗?为什么?活动三、归纳总结(师生合作)讨论:上述两个函数有什么共同特点?1、从表格中自变量和因变量的数据看,自变量和因变量是什么关系?2、从函数关系式的形式上看,有什么特征?反比例函数:一般地,如果两个变量x 、y 之间的关系式可以表示成的形式,那么称y 是x 的反比例函数。
北师大版初中数学九年级上册《第六章 反比例函数 1 反比例函数》 赛课教案_5

6.1反比例函数教学设计一、教材分析本课内容是北师大版九年数学级(上)第六章《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习产生积极的影响,为函数、方程、不等式间关系的处理奠定了基础。
函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
二、教学设想采用“先学后教,当堂训练”的五步自主教学法进行教学。
在教师的指导下通过学生复习旧知、自学、互学、当堂训练等环节,让学生自主探索和交流从而得出反比例函数的定义及其三种表达式,能根据反比例函数判断一个函数是否为反比例函数,会用待定系数法求反比例函数的表达式。
三、教学目标1、经历抽象反比例函数概念的过程进程,知道反比例函数的概念及三种表达式。
2、能判定一个函数是否为反比例函数。
3、会求反比例函数的解析式。
四、教学重点与难点1、反比例函数的概念及三种表达式。
2、求反比例函数的解析式。
五、教学过程设计:(一)温故知新1、什么是函数?2、我们学习过哪些函数?你能分别说出它们的表达式吗?(二)自学指导自学课本P149页上的内容,完成课本上的相关问题,知道反比例函数的定义。
1、练习一(1)反比例函数的定义一般地,如果两个变量x,y之间的关系可以表示成(k为常数,k ≠0)的形式,那么称y是x的。
(2)在下列函数表达式中,x表示自变量,哪些是反比例函数?每一个反比例函数的k值是多少?(1) (2) (3) (4)(5) (6) (7) (8)23x y =(三)反比例函数的表示形式(四)小试牛刀下列表达式中y 是x 的反比例函数的有哪些?(1) (2) (3) (4) (5) (6)(五)回味无穷★1、反比例函数 一般地,如果两个变量x ,y 之间的关系可以表示成 (k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数。
北师大版数学九年级上册6.1 反比例函数教案

(1)若果两个变量x、y之间的关系可以表示成y=________()的形式,那么y是x的反比例函数。
反比例函数中的自变量x的取值范围是()。
(2)反比例函数的几种等价形式:
(二)合作解疑
1.一个矩形的面积为20 cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?
2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m (公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?
3. y是x的反比例函数,下表给出了x与y的一些值:
x -2 -1 - 1 3
y 2 -1
(1)求出这个反比例函数的表达式;
(2)根据函数表达式完成上表.
二、拓展提升
1、已知y与x-1成反比例,并且当x=2时,y=3.
(1)写出y与x之间的函数解析式;
(2)求当x=1.5时y的值。
2、若反比例函数与一次函数y=2x-4的图像都过点A(m,2).
(1)求点A的坐标;(2)求反比例函数的解析式。
三、当堂检测
1、已知一次函数y=(m+2)x+1经过点(1,2),则m=_________。
2、反比例函数中,系数k=___________.
3、已知函数是正比例函数时,则m=________;若是反比例函数时,则
m=________。
4、若点A(m,n)在反比例函数的图像上,则mn=().
5、已知函数是反比例函数。
(1)求m的值;(2)求当x=3时,y的值。
学习小结:。
2024-2025学年北师版初中数学九年级上册教案第六章反比例函数6.1反比例函数

第六章反比例函数1反比例函数教学目标1.理解反比例函数的概念;2.能判断一个函数是否为反比例函数;3.能根据实际问题中的条件确定反比例函数的表达式.教学重难点重点:理解反比例函数的概念;难点:领悟反比例函数的概念.教学过程旧知回顾1.回忆函数的定义;2.回忆一次函数与正比例函数的定义.导入新课1.反比例函数的定义思考:下列问题中,变量间的对应关系可以用怎样的函数关系表示?这些函数有什么共同特点?1、一铁路全程为1 463 km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化.2、某住宅小区要种植一块面积为1000 m2的矩形草坪,草坪的长y(单位:m)随宽x(单位:m)的变化而变化.3、已知某市的总面积约为1.68×104 km2,人均占有面积S(单位:km2/人)随全市总人口n(单位:人)的变化而变化.(教师组织学生讨论,提问学生,师生互动)学生讨论会发现:以上函数都具有y=kx的形式,其中k是非零常数.结论:反比例函数的定义教学反思一般地,如果两个变量x ,y 之间的对应关系可以表示成y =kx(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.表达式的三种形式: y =k x(k ≠0);xy =k (k ≠0);y =kx -1(k ≠0). 例题:下列函数中哪些是反比例函数?哪些是一次函数?(1)y = 8x -1; (2)y = x +42; (3)xy 54=;(4)x y 23=; (5)x y 1-=; (6)xy 4.0=;(7)x y 5=; (8)2xy =; (9)xy = -2; (10)-2xy = 7; (11)y = -6x +1. (教师引导,学生分析)学生通过听课已经对反比例函数有了一定的认识,让学生独立思考,通过回答规范他们对反比例函数及一次函数的认识.解:反比例函数:(3)(5)(6)(7)(9)(10); 一次函数:(1)(2)(4)(8)(11). 2.确定反比例函数的表达式例题:已知y 是x 的反比例函数,且当x =2时,y =6.(1)写出y 关于x 的函数表达式; (2)当x =4时,求y 的值. (教师引导,学生分析)因为y 是x 的反比例函数,所以可设y =kx ,再把x =2和y =6代入上式就可求出常数k 的值.——待定系数法解:(1)设y =k x ,因为x =2时,y =6,所以有6=2k , 教学反思解得k =12,因此y =12x. (2) 把x =4代入y =12x ,得y =124=3. 3.实际问题中的反比例函数例题:下列问题中,变量间的对应关系可用怎样的函数关系式表示? (1)一个游泳池的容积为2 000 m 3,注满游泳池所用的时间t 随注水速度v 的变化而变化;(2)某立方体的体积为1 000 cm 3,立方体的高h 随底面积S 的变化而变化; (3)一个物体重100 N ,物体对地面的压强p 随物体与地面的接触面积S 的变化而变化.(教师引导,学生分析)先找实际问题中的等量关系,根据等量关系写出关系式,再变形.解:(1)t =2000v ;(2)h =1000S ; (3)p =100S.课堂练习1.下列函数表达式中,y 是x 的反比例函数的是 ( )A.y =x2B.y =-32xC.y =1x+1D.y =1x 22.反比例函数y =kx (k ≠0),若x =√3时,y =4,则k 等于 ( ) A.√3 B.4C.4√3D.√33.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ) A.4 B.-4 C.3 D.-34.当a = 时,函数y =(a +2)x a 2-5是反比例函数.5.若函数y =11m x (m 是常数)是反比例函数,则m = ,表达式为y= .6.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别. (1)商场推出分期付款购电脑活动,每台电脑12 000元,首付4 000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为______,是______函数.教学反思(2)某种灯泡的使用寿命为1 000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为______,是______函数.(3)设三角形的底边、底边上的高、面积分别为a,h,S.当a=10时,S与h的关系式为______,是______函数;当S=18时,a与h的关系式为______,是______函数.(4)某工人承包运输粮食的总数是w吨,每天运输x吨,共运了y天,则y与x 的关系式为________,是______函数.参考答案1.B2.C3.A4.25.21 x6.解:(1)y=8000x反比例(2)y=1000x反比例(3)S=5h正比例a=36h反比例(4)y=wx反比例课堂小结1、反比例函数的定义一般地,如果两个变量x,y之间可以表示成y=kx(k为常数,k≠0)的形式,那么称y是x的反比例函数.2、表达式的三种形式:y=kx(k≠0);xy=k(k≠0);y=kx-1(k≠0).3、确定函数表达式待定系数法教学反思布置作业完成教材习题6.1板书设计第六章反比例函数1反比例函数。
北师大版数 学九年级上册 6.1 反比例函数 教案

反比例函数一、目标:1、掌握反比例函数的三种表达式,并能根据定义识别反比例函数关系式,2、学会利用“变量积为非0的定值”来初步判断反比例函数及快速取值。
3、理解 (k ≠0) 与y 与x 成反比例说法等价。
二、重、难点:重点:掌握反比例函数的三种函数表达式。
难点:对这种式子的理解。
三、复习准备:函数概念:一般地,在某个变化过程中,有两个变量 x 和y,如果给定一个x值,相应地唯一确定了一个y 值,那么我们称y 是x 的函数.其中x 是自变量, y 是因变量。
过 程一、画一画,若图中方格的边长为1,你能画出一个面积为12的长方形吗?二、列一列1、若两地相距50km ,则汽车行驶的平均速度v (km/h )与行驶时间t (h )之间的关系式为 ;2、100元钱购买糖果的千克数y 与糖果单价x 之间的关系式为 ;3、体积为1000立方米的蓄水池的底面积S (平方米)与高h (米)之间的关系式为三、定义:反比例函数:一般地,若两个变量x 、y 之间的关系式可表示为 (k 为常数,k ≠0)的形式,那么称y 是x 的 。
也可以说: 。
本质是:注意事项:表达式四、认一认在下列函数中x 是自变量,哪些表示y 是x 的反比例函数,并指出其中的kx k y9、 (m 为常数)10、 (m 为常数)五、辩一辩◆ 是反比例函数吗?六、看一看若某函数两个变量x 、y 的几个取值如下你能判断y 与x 成什么函数关系吗?你判断的依据是什么?你还能举出其他学科中或是生活中类似的例子吗?七、聚焦考试你从哪里入手的?你能写出函数表达是吗?2、已知y=(m -1)x m2-2是反比例函数,求m 的值3、已知:y 与z 成正比例,z 与x 成反比例,试判断y 是x 的什么函数?并说明理由。
x m y 12+=x m y 2=31+=x y小结:九、测一测1、已知:y=(m-2)x∣m∣-3是反比例函数,则m的值= ,函数表达式为;2、= ,函数表达式为。
北师大版数学九年级上册的第六章第一节《反比例函数》教案

北师大版数学九年级上册的第六章第一节《反比例函数》教案一. 教材分析北师大版数学九年级上册的第六章第一节《反比例函数》是本章的第一节内容,也是学生继学习正比例函数后的又一函数类型。
本节课主要让学生了解反比例函数的概念、性质及其图象,培养学生运用函数观点解决实际问题的能力。
教材通过引入反比例函数的概念,让学生在已有的正比例函数知识基础上,进一步拓展对函数的理解。
二. 学情分析学生在学习本节课之前,已经学习了正比例函数的相关知识,对函数的概念、图象和性质有一定的了解。
但九年级学生的抽象思维能力仍需培养,对于反比例函数的理解可能仍存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知水平,通过合适的教学方法,帮助学生更好地理解和掌握反比例函数。
三. 教学目标1.理解反比例函数的概念,掌握反比例函数的性质。
2.能够绘制反比例函数的图象,并能分析实际问题中的反比例关系。
3.培养学生的抽象思维能力,提高学生运用函数观点解决问题的能力。
四. 教学重难点1.反比例函数的概念及其性质。
2.反比例函数图象的特点。
3.运用反比例函数解决实际问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,培养学生运用函数观点解决问题的能力。
2.启发式教学法:教师引导学生思考,通过提问、讨论等方式,帮助学生自主探索反比例函数的知识。
3.直观教学法:利用多媒体课件、板书等手段,展示反比例函数的图象和性质,增强学生的直观感受。
六. 教学准备1.多媒体课件:制作反比例函数的图象、性质等相关内容的多媒体课件。
2.教学板书:准备反比例函数的定义、性质等相关内容的板书。
3.练习题:准备适量的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用多媒体课件展示反比例函数在实际生活中的应用,如商场打折、比例尺等,引导学生关注反比例关系。
提问:这些实际问题中是否存在某种数学规律?2.呈现(10分钟)教师引导学生回顾正比例函数的知识,然后给出反比例函数的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章反比例函数
6.1反比例函数
【学习目标】
1.领会反比例函数的意义,理解反比例函数的概念,了解反比例函数三种表达式.
2.能根据现实情境确定反比例函数的解析式.
【学习重点】
反比例函数的概念及应用.
【学习难点】
正确理解反比例函数的含义.
情景导入生成问题
我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b(其中k,b为常数且k≠0),正比例函数的表达式为y=kx(k为常数且k≠0),在现实生活中,并不是只有这两种类型的表达式,如从A到B地的路程为1200km,某人开车从A地到B地,汽车的速度v(km/h)和时间
t(h)之间的关系式为vt=1200,则t=1200
v
中,t和v之间肯定不是正比例函数和一次函数关系,
那么它们之间究竟是什么关系呢?这就是本节课我们要揭开的奥秘.
教学说明:通过对一次函数和正比例函数的概念、解析式的复习,引出本节课的内容.
自学互研生成能力
知识模块反比例函数的概念及应用
先阅读教材P149页的内容,然后完成下面的填空:
1.如果两个变量x、y之间的关系可以表示成y=k
x
(k为常数,k≠0)的形式,那么就把y叫做
x的反比例函数,其中自变量x的取值范围是x≠0.2.一般地,反比例函数有以下三种表达式:
①y=k
x
(k≠0),②y=kx-1(k≠0),③xy=k(k≠0).
问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?
(1)京沪铁路全程为1318km ,乘坐某次列车所用时间t(单位:h )随该列车平均速度v(单位:
km /h )的变化而变化;
(2)某住宅小区要种值一个面积为1000m 2的矩形草坪,草坪的长y 随宽x 的变化而变化; (3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.
解:(1)t =1318v ;(2)y =1000x ;(3)S =1.68×104
n ,其中v 是自变量,t 是v 的函数;x 是自变
量,y 是x 的函数;n 是自变量,S 是n 的函数.
上面的函数关系式,都具有y =k
x
的形式,其中k 是常数.
归纳结论:一般地,如果两个变量x ,y 之间可以表示成y =k
x (k 为常数且k≠0)的形式,那么
称y 是x 的反比例函数.
典例讲解:
已知y 是x 的反比例函数,当x =2时,y =6.
(1)写出y 与x 的函数关系式;(2)求当x =4时,y 的值.
分析:因为y 是x 的反比例函数,所以可设y =k
x ,再把x =2和y =6代入上式就可求出常数k
的值.
解:(1)设y =k x ,因为x =2时,y =6,所以有6=k 2,解得k =12,因此y =12
x .(2)把x =4代
入y =
12x ,得y =12
4
=3. 对应练习:
1.已知函数y =k
x
,当x =1时,y =-3,那么这个函数的解析式是( B )
A .y =3x
B .y =-3x
C .y =13x
D .y =-13x
2.已知y 与x 成反比,当x =3时,y =4,那么y =3时,x 的值等于( A )
A .4
B .-4
C .3
D .-3
3.若函数y =(m -1)xm 2-2是关于x 的反比例函数,则m 的值是-1.
4.已知y+1与x成反比例,当y=1时,x=1
2
.(1)求y与x的函数关系式;(2)当x=3时,
求y的值.
解:(1)∵y+1与x成反比例,∴设y+1=k
x
,∴y=
k
x
-1,把x=
1
2
,y=1代入上式中,得1=
k 1 2-1,∴k=1,∴y与x的函数关系式为y=
1
x
-1;(2)当x=3时,y=
1
3
-1=-
2
3
.
交流展示生成新知
1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小
组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.
知识模块反比例函数的概念及应用
检测反馈达成目标
1.下面的函数是反比例函数的是( D)
A.y=3x+1 B.y=x2+2x C.y=x
2
D.y=
2
x
2.当路程s一定时,速度v与时间t之间的函数关系是( B)
A.正比例函数B.反比例函数
C.一次函数D.无法确定
3.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为( C)
A.y=400
x
B.y=
1
4x
C.y=100
x
D.y=
1
400x
4.某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则y与x的关系式为y=
w
x
,是反比例函数.
5.已知y=y
1+y
2
,且y
1
与x成正比例,y
2
与x成反比例,当x=1时,y=4;当x=2时,y=
5.
(1)求y与x之间的函数关系式;
(2)求当x=4时,y的值.
解:(1)y=2x+2
x
;(2)8
1
2
.
课后反思查漏补缺
1.收获:________________________________________________________________________ 2.存在困惑:
________________________________________________________________________。