一元线性回归模型

合集下载

第三章 一元线性回归模型

第三章  一元线性回归模型

第三章 一元线性回归模型一、预备知识(一)相关概念对于一个双变量总体,若由基础理论,变量和变量之间存在因果),(i i x y x y 关系,或的变异可用来解释的变异。

为检验两变量间因果关系是否存在、x y 度量自变量对因变量影响的强弱与显著性以及利用解释变量去预测因变量x y x ,引入一元回归分析这一工具。

y 将给定条件下的均值i x i yi i i x x y E 10)|(ββ+=(3.1)定义为总体回归函数(PopulationRegressionFunction,PRF )。

定义为误差项(errorterm ),记为,即,这样)|(i i i x y E y -i μ)|(i i i i x y E y -=μ,或i i i i x y E y μ+=)|(i i i x y μββ++=10(3.2)(3.2)式称为总体回归模型或者随机总体回归函数。

其中,称为解释变量x (explanatory variable )或自变量(independent variable );称为被解释y 变量(explained variable )或因变量(dependent variable );误差项解释μ了因变量的变动中不能完全被自变量所解释的部分。

误差项的构成包括以下四个部分:(1)未纳入模型变量的影响(2)数据的测量误差(3)基础理论方程具有与回归方程不同的函数形式,比如自变量与因变量之间可能是非线性关系(4)纯随机和不可预料的事件。

在总体回归模型(3.2)中参数是未知的,是不可观察的,统计计10,ββi μ量分析的目标之一就是估计模型的未知参数。

给定一组随机样本,对(3.1)式进行估计,若的估计量分别记n i y x i i ,,2,1),,( =10,),|(ββi i x y E 为,则定义3.3式为样本回归函数^1^0^,,ββi y ()i i x y ^1^0^ββ+=n i ,,2,1 =(3.3)注意,样本回归函数随着样本的不同而不同,也就是说是随机变量,^1^0,ββ它们的随机性是由于的随机性(同一个可能对应不同的)与的变异共i y i x i y x 同引起的。

一元线性回归模型

一元线性回归模型
2
1 n ˆ xi )2 = 1 ( Lyy − bLxy ). ˆ ˆ 即 σ = ∑ ( yi − a − b ˆ n i =1 n
2
n σ 2. 而σ 的无偏估计是 ˆ n−2
2
∴σ ˆ
*2
n 1 2 ˆ σ = ( Lyy − bLxy ). = ˆ n−2 n−2
ex1. 设有一组观察值如下,求回归方程 设有一组观察值如下,求回归方程.
ˆ ˆ ˆ 对于x0可得 y0 = a + bx0 , 称其为 Y0的点预测.
( 2) Y0的区间估计 : 选取 T =
σ* ˆ
ˆ Y0 − y0 ~ t ( n − 2) 2 1 ( x0 − x ) 1+ + n Lxx
对于任意给定的 0 < α < 1, 有 P { T < tα ( n − 2)} = 1 − α .
研究变量间的相关关系,确定回归函数, 研究变量间的相关关系,确定回归函数,由此预测和控 制变量的变化范围等就是回归分析。 制变量的变化范围等就是回归分析。 研究两个变量间的相关关系,称为一元回归分析; 研究两个变量间的相关关系,称为一元回归分析; 研究多个变量间的相关关系,称为多元回归分析; 研究多个变量间的相关关系,称为多元回归分析; 若回归函数为线性函数,则称为线性回归分析。 若回归函数为线性函数,则称为线性回归分析。
所以y与 之间显著地存在线性关系 之间显著地存在线性关系. 所以 与x之间显著地存在线性关系
四、一元线性回归模型的应用—预测与控制 一元线性回归模型的应用 预测与控制 1. 预测问题
(根据 = a + bx + ε , 研究 = x0时如何估计 0 ) Y x Y
(1) Y0的点估计 :

一元线性回归模型(计量经济学)

一元线性回归模型(计量经济学)

总体回归函数说明被解释变量Y的平均状 态(总体条件期望)随解释变量X变化的 规律。至于具体的函数形式,则由所考 察的总体的特征和经济理论来决定。
在例2.1中,将居民消费支出看成是其可 支配收入的线性函数时,该总体回归函
数为: E (Y |X i)01 X i
它是一个线性函数。其中,0,1是未知
第二章 经典单方程计量经济学模型: 一元线性回归模型
§2.1 回归分析概述 §2.2 一元线性回归模型的基本假设 §2.3 一元线性回归模型的参数估计 §2.4 一元线性回归模型的统计检验 §2.5 一元线性回归模型的预测 §2.6 一元线性回归建模实例
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数 三、随机扰动项 四、样本回归函数
1430 1650 1870 2112
1485 1716 1947 2200
2002
2420 4950 11495 16445 19305 23870 25025 21450 21285 15510
一个抽样
由于调查的完备性,给定收入水平X的消费 支出Y的分布是确定的。即以X的给定值为条 件的Y的分布是已知的,如 P(Y=561 | X = 800) =1/4。 进而,给定某收入Xi,可得消费支出Y的条 件均值,如 E(Y | X = 800) =605。 这样,可依次求出所有不同可支配收入水平 下相应家庭消费支出的条件概率和条件均值 ,见表2.1.2.
相关分析主要研究随机变量间的相关形式 及相关程度。变量间的相关程度可通过计 算相关系数来考察。
具有相关关系的变量有时存在因果关系,
这时,我们可以通过回归分析来研究它们
之间的具体依存关系。
课堂思考题

21一元线性回归模型.ppt

21一元线性回归模型.ppt

同理,p(Y= ? /X=260)=1/7
条件均值(条件期望 ) :
对Y的每一条件概率分布,我们能算出它 的均值 :
记做E(Y/X=Xi)
[简写为E(Y/Xi) ]
并读为“在X取特定Xi值时的Y的期望值”。
计算方法:
将表2.1中的有关列乘以表2.2中的相应列 的条件概率,然后对这些乘积求和便是。
第二章 一元线性回归模型
§2.1 一元线性回归模型概念基础 回归是计量经济学的主要工具 一、“回归”一词的历史渊源
Francis Galton F.加尔顿
回归一词最先由F.加尔顿 (FrancisC,alton)引入
加尔顿的普遍回归定律还被他的朋友 K.皮尔逊(KartPearson)证实
Karl Pearson K.皮尔逊
综合来看,回归分析一般可以用来:
(1) 通过已知变量的值来估计因变量的均值。
(2)对独立性进行假设检验―――根据经济理 论建立适当的假设。
例如,对于需求函数,你可以检验假设:需求的 价格弹性为-1.0;即需求曲线具有单一的价格 弹性。也就是说,在其他影响需求的因素保持 不变的情况下,如果商品的价格上涨1%,平 均而言,商品的需求量将减少1%。
P (
1/7 1/5 1/5 1/6 1/5 1/7 1/5 1/7 1/5
Y/ 1/7 1/5 1/5 1/6 1/5 1/7 1/5 1/7 1/5
Xi ) 1/7
1/6
1/7
1/7
1/7
1/7
1/7
Y的条 48 46 44 42 40 38 36 34 32 30
件均值
E(Y/X=Xi) Y的条件均值
·
·
·
· ·

计量经济学第二篇一元线性回归模型

计量经济学第二篇一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。

其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。

所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

“线性”一词在这里有两重含义。

它一方面指被解释变量Y 与解释变量X 之间为线性关系,即另一方面也指被解释变量与参数0β、1β之间的线性关系,即。

1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。

回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略,(2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。

2.1.3 一元线性回归模型的基本假定通常线性回归函数E(y t ) = β0 + β1 x t 是观察不到的,利用样本得到的只是对E(y t ) =β0 + β1 x t 的估计,即对β0和β1的估计。

一元回归线性模型

一元回归线性模型

一元回归线性模型
一元线性回归模型,又称为简单线性回归模型,是机器学习中常
用的回归模型,它是利用一个自变量X来预测因变量Y的结果。

一元
线性回归模型将样本数据映射为一条直线,如y=ax+b,其中a是斜率,b是截距,也就是说,一元线性回归模型中的参数是斜率和截距,而拟
合的直线就是根据样本数据估计出来的最佳拟合直线。

目标函数是求解参数 a 和 b,使得误差平方和最小,具体来说,
目标函数的表达式为:J(a,b)=Σi(yi-f(xi))^2,其中f(x)=ax+b,yi为观测值,xi为观测值对应的自变量。

对于一元线性回归模型,求解参数 a 和 b 的最优方法要么是直
接用梯度下降法求解,要么是用最小二乘法求解。

梯度下降法求解时,需构造损失函数,使用梯度下降法迭代更新参数,直到获得最优结果;而最小二乘法求解时,通过求解参数关于损失函数的导数,便可解出
模型参数,从而得到最优结果。

一元线性回归模型在实际应用中有很多优点,其中最重要的就是
它易于拟合和解释,它求解简单,可以很大程度上减少了计算复杂度,而且可以很好地预测因变量的值,也可以用来检验变量之间的关系。

第2章一元线性回归模型

第2章一元线性回归模型
第二章
一元线性回归模型
回归分析是计量经济学的基础内容!
本章介绍一元线性回归模型,最小二乘估计方法及 其性质,参数估计的假设检验、预测等。
浙江财经大学 倪伟才
1
本章主要内容
2 .1 一元线性回归模型
2 .2 参数β0、β1的估计
2 .3 最小二乘估计的性质
2 .4 回归方程的显著性检验 2 .5 残差分析 2 .6 回归系数的区间估计
浙江财经大学 倪伟才 10
回归的术语
y的各种名称: 因变量(dependent variable)或被解释变量 (explained variable)或回归子(regressand)或内 生(endogenous); X的各种名称: 自变量(independent variable)或解释变量 (explanatory variable)或回归元(regressor)或外 生(exogenous) U的各种名称: 随机误差项或随机扰动项(stochastic error term, random disturbance term ): 表示其它因素的影响,是不可观测的随机误差!
浙江财经大学 倪伟才
9
2.1一元线性回归模型
由于两个变量y, x具有明显的线性关系,故考虑直 线方程y=0+1x(函数表达的是确定性关系,有缺 陷!) y=0+1x+u, 其中u表示除x外,影响y的其它一切 因素。 将y与x之间的关系用两部分来描述: a. 一部分0+1x ,由x的变化引起y变化; b.另一部分u ,除x外的其它一切因素引起y变化。 参数(parameters) 0 , 1 ; 0 称为回归常数(截距)(intercept, constant), 1称为回归斜率(slope)

第二章 一元线性回归模型

第二章  一元线性回归模型
0 1
∂Q ˆ ˆ = −2∑ (Yi − β 0 − β1 X i ) = 0 ∂β ˆ0 ˆ ˆ ∂Q = −2∑ (Y − β − β X )X = 0 i 0 1 i i ˆ ∂β1
化简得: 化简得:
ˆ ˆ ∑ (Yi − β 0 − β1 X i ) = 0 ˆ ˆ ∑ (Yi − β 0 − β1 X i )X i = 0
2.总体回归方程(线)或回归函数 总体回归方程( 总体回归方程 即对( )式两端取数学期望: 即对(2.8)式两端取数学期望:
E y i)= β 0 + β 1 x i (
(2.9)
(2.9)为总体回归方程。由于随机项的影响,所 )为总体回归方程。由于随机项的影响, 有的点( )一般不在一条直线上; 有的点(x,y)一般不在一条直线上;但所有的点 (x,Ey)在一条直线上。总体回归线描述了 与y )在一条直线上。总体回归线描述了x与 之间近似的线性关系。 之间近似的线性关系。
Yi = β X i + ui
需要估计, 这个模型只有一个参数 需要估计,其最 小二乘估计量的表达式为: 小二乘估计量的表达式为:
∑XY ˆ β= ∑X
i i 2 i
例2.2.1:在上述家庭可支配收入-消费支出例中,对 :在上述家庭可支配收入-消费支出例中, 于所抽出的一组样本数据, 于所抽出的一组样本数据,参数估计的计算可通过下面 的表2.2.1进行。 进行。 的表 进行
二、一元线性回归模型 上述模型中, 为线性的, 上述模型中, 若f(Xi)为线性的,这时的模型 为线性的 一元线性回归模型: 即为 一元线性回归模型:
yi = β 0 + β1 xi + ui 其中:yi为被解释变量,xi为解释变量,ui为随机误 差项,β 0、β1为回归系数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元线性回归模型1.一元线性回归模型有一元线性回归模型(统计模型)如下,y t = β0 + β1 x t + u t上式表示变量y t 和x t之间的真实关系。

其中y t 称被解释变量(因变量),x t称解释变量(自变量),u t称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t) = β0 + β1 x t,(2)随机部分,u t。

图2.1 真实的回归直线这种模型可以赋予各种实际意义,收入与支出的关系;如脉搏与血压的关系;商品价格与供给量的关系;文件容量与保存时间的关系;林区木材采伐量与木材剩余物的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自各个不同收入水平,使其他条件不变成为不可能,所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

随机误差项u t中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以在经济问题上“控制其他因素不变”是不可能的。

回归模型的随机误差项中一般包括如下几项内容,(1)非重要解释变量的省略,(2)人的随机行为,(3)数学模型形式欠妥,(4)归并误差(粮食的归并)(5)测量误差等。

回归模型存在两个特点。

(1)建立在某些假定条件不变前提下抽象出来的回归函数不能百分之百地再现所研究的经济过程。

(2)也正是由于这些假定与抽象,才使我们能够透过复杂的经济现象,深刻认识到该经济过程的本质。

通常线性回归函数E(y t) = β0 + β1 x t是观察不到的,利用样本得到的只是对E(y t) = β0 + β1 x t 的估计,即对β0和β1的估计。

在对回归函数进行估计之前应该对随机误差项u t做出如下假定。

(1) u t 是一个随机变量,u t 的取值服从概率分布。

(2) E(u t) = 0。

(3) D(u t) = E[u t - E(u t) ]2 = E(u t)2 = σ2。

称u i 具有同方差性。

(4) u t 为正态分布(根据中心极限定理)。

以上四个假定可作如下表达。

u t~ N (0,σ2)。

(5) Cov(u i, u j) = E[(u i - E(u i) ) ( u j - E(u j) )] = E(u i, u j) = 0, (i≠j )。

含义是不同观测值所对应的随机项相互独立。

称为u i 的非自相关性。

(6) x i是非随机的。

(7) Cov(u i, x i) = E[(u i - E(u i) ) (x i - E(x i) )] = E[u i (x i - E(x i) ] = E[u i x i - u i E(x i) ] = E(u i x i)= 0.u i 与x i 相互独立。

否则,分不清是谁对y t 的贡献。

(8) 对于多元线性回归模型,解释变量之间不能完全相关或高度相关(非多重共线性)。

在假定(1),(2)成立条件下有E(y t ) = E(β0 + β1 x t + u t ) = β0 + β1 x t 。

2.最小二乘估计(OLS ) 对于所研究的经济问题,通常真实的回归直线是观测不到的。

收集样本的目的就是要对这条真实的回归直线做出估计。

怎样估计这条直线呢?显然综合起来看,这条直线处于样本数据的中心位置最合理。

怎样用数学语言描述“处于样本数据的中心位置”?设估计的直线用t y ˆ =0ˆβ+1ˆβ x t 表示。

其中t y ˆ称y t 的拟合值(fitted value ),0ˆβ和1ˆβ分别是 β0 和β1的估计量。

观测值到这条直线的纵向距离用t uˆ表示,称为 残差。

y t =t y ˆ+t u ˆ=0ˆβ+1ˆβ x t +t u ˆ 称为估计的模型。

假定样本容量为T 。

(1)用“残差和最小”确定直线位置是一个途径。

但很快发现计算“残差和”存在相互抵消的问题。

(2)用“残差绝对值和最小”确定直线位置也是一个途径。

但绝对值的计算比较麻烦。

(3)最小二乘法的原则是以“残差平方和最小”确定直线位置。

用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性。

(这种方法对异常值非常敏感)设残差平方和用Q 表示, Q =∑=Ti tu12ˆ=∑=-Ti t t yy 12)ˆ(=∑=--Ti t t x y 1210)ˆˆ(ββ,则通过Q 最小确定这条直线,即确定0ˆβ和1ˆβ的估计值。

以0ˆβ和1ˆβ为变量,把Q 看作是0ˆβ和1ˆβ的函数,这是一个求极值的问题。

求Q 对0ˆβ和1ˆβ的偏导数并令其为零,得正规方程,ˆβ∂∂Q = 2∑=--Ti t t x y 110)ˆˆ(ββ(-1) = 0 (1)1ˆβ∂∂Q = 2∑=--T i t t x y 110)ˆˆ(ββ(- x t ) = 0 (2) 下面用代数和矩阵两种形式推导计算结果。

首先用代数形式推导。

由(1)、(2)式得,∑=--Ti t t x y 110)ˆˆ(ββ= 0 (3)∑=--Ti t t x y 110)ˆˆ(ββx t = 0 (4)(3)式两侧用除T ,并整理得,0ˆβ= x y 1ˆβ- (5) 把(5)式代入(4)式并整理,得,])(ˆ)[(11∑=---Ti ttx x y yβx t = 0 (6) ∑∑==---Ti t tTi t tx x xx y y111)(ˆ)(β= 0 (7)1ˆβ= ∑∑--ttt txx x y y x )()( (8)因为∑=-Ti ty yx 1)(= 0,∑=-Ti tx xx 1)(= 0,分别在(8)式的分子和分母上减∑=-Ti ty yx 1)(和∑=-Ti tx xx 1)(得,1ˆβ= ∑∑∑∑------)()()()(x xx x x x y yx y y x ttttt t(9)=∑∑---2)())((x x y y x x tt t(10) 下面用矩阵形式推导 0ˆβT +1ˆβ (∑=Ti t x 1) = ∑=Ti t y 1ˆβ∑=Ti t x 1+1ˆβ(∑=Ti tx 12) = ∑=Ti t t y x 1⎥⎥⎦⎤⎢⎢⎣⎡∑∑∑2t tt x x x T⎥⎥⎦⎤⎢⎢⎣⎡10ˆˆββ=⎥⎥⎦⎤⎢⎢⎣⎡∑∑t t t y x y ⎥⎥⎦⎤⎢⎢⎣⎡10ˆˆββ=12-⎥⎥⎦⎤⎢⎢⎣⎡∑∑∑t t t x x x T ⎥⎥⎦⎤⎢⎢⎣⎡∑∑t t t y x y =22)(1∑∑-t t x x T ⎥⎥⎦⎤⎢⎢⎣⎡--∑∑∑T x x x t t t 2⎥⎥⎦⎤⎢⎢⎣⎡∑∑t t t y x y这种形式在单位根检验的理论分析中非常有用。

3.最小二乘估计量0ˆβ和1ˆβ的特性(1) 线性特性这里指0ˆβ和1ˆβ分别是y t 的线性函数。

1ˆβ= ∑∑---2)())((x x y y x x ttt=∑∑∑----2)()()(x x x xy y x x tttt=∑∑--2)()(x x y x x ttt令 k t =∑--2)()(x x x x t t ,代入上式得1ˆβ= ∑ k t y t 可见1ˆβ是y t 的线性函数,是β1的线性估计量。

同理β0也具有线性特性。

(2) 无偏性 利用上式E(1ˆβ) = E(∑ k t y t ) = E[ ∑ k t (β0 + β1 x t + u t ) ] = E ( β0 ∑ k t + β1 ∑ k t x t + ∑ k t u t ) = E[β1 ∑ k t (x t -x ) + ∑ k t u t ] = β1 + E(∑ k t u t ) = β1(3) 有效性β0, β1的OLS 估计量的方差比其他估计量的方差小。

Gauss-Marcov 定理:若u t 满足E(u t ) = 0,D(u t ) = σ 2,那么用OLS 法得到的估计量就具有最佳线性无偏性。

估计量称最佳线性无偏估计量。

最佳线性无偏估计特性保证估计值最大限度的集中在真值周围,估计值的置信区间最小。

上面的评价是对小样本而言,若是对大样本而言还应讨论估计量的渐近无偏性,一致性和渐近有效性。

先给出渐近分布的概念。

注意:分清4个式子的关系。

(1) 真实的统计模型,y t = β0 + β1 x t + u t (2) 估计的统计模型, y t =0ˆβ+1ˆβ x t +t u ˆ (3) 真实的回归直线,E(y t ) = β0 +β1 x t (4) 估计的回归直线,t y ˆ=0ˆβ+1ˆβ x t4.OLS 回归直线的性质(1) 残差和等于零,∑t uˆ= 0 由正规方程2∑ (y t -0ˆβ-1ˆβ x t ) (-1) = 0得 ∑ (y t -0ˆβ-1ˆβ x t ) = ∑ (y t -t y ˆ) = ∑ (t u ˆ) = 0 (2) 估计的回归直线 t y ˆ =0ˆβ+1ˆβ x t 过(x ,y )点。

正规方程 ∑ (y t -0ˆβ-1ˆβ x t ) = 0两侧同除样本容量T ,得y =0ˆβ+1ˆβx 。

得证。

(3) y t 的拟合值的平均数等于其样本观测值的平均数,t yˆ=y 。

t yˆ=T 1∑t y ˆ= T 1∑ (0ˆβ+1ˆβ x t ) = 0ˆβ+1ˆβx = y 。

得证。

(4) Cov(t uˆ, x t ) = 0 只需证明 ∑ ( x t -x )t u ˆ= ∑ x t t u ˆ- ∑x t u ˆ= ∑ x t t u ˆ= ∑ x t (t y ˆ-0ˆβ-1ˆβ x t ) = 0。

上式为正规方程之一。

(5) Cov(t uˆ,t y ˆ) = 0 只需证明 ∑ (t y ˆ-y )t u ˆ= ∑t y ˆt u ˆ- ∑y t u ˆ= ∑t y ˆt u ˆ= ∑t u ˆ(0ˆβ+1ˆβ x t ) = 0ˆβ∑t u ˆ+1ˆβ∑t u ˆx t = 0 5.y t 的分布和1ˆβ的分布 根据假定条件u t ~ N (0, σ 2 ),E(y t ) = E(β0 + β1 x t + u t ) = β0 + β1 x t + E(u t ) = β0 + β1 x t 。

Var(y t ) = Var (β0 + β1 x t + u t ) = Var (β0 + β1 x t ) + Var (u t ) = σ 2 y t 是u t 的线性函数,所以y t ~ N (β0 + β1 x t , σ 2 )。

可以证明E(1ˆβ) = β1, Var (1ˆβ) = -2)(1x x t σ 2,1ˆβ是y t 的线性函数(1ˆβ= ∑ k t y t ),所以 1ˆβ ~ N (β1, -2)(1x x t σ 2 )。

相关文档
最新文档