一元线性回归方程的计算和检验
一元线性回归模型检验

对于所有样本点,则需考虑这些点与样本均值离 差的平方和,可以证明:
记:
总体平方和(Total Sum )2
回归平方和(Explained Sum of Squares)
三、一元线性回归模型的统计检验
1、拟合优度检验 2、变量的显著性检验 3、方差分析
回归分析是要通过样本所估计的参数来代替总体的真实 参数,或者说是用样本回归线代替总体回归线。
尽管从统计性质上已知,如果有足够多的重复抽样,参 数的估计值的期望(均值)就等于其总体的参数真值,但 在一次抽样中,估计值不一定就等于该真值。
R 2 ˆ12
xi2 (0.777)2 7425000 0.9766
yi2
4590020
注:可决系数是一个非负的统计量。它也是随着抽样 的不同而不同。为此,对可决系数的统计可靠性也应进行 检验,这将在第3章中进行。
2、变量的显著性检验
回归分析是要判断解释变量X 是否是被解释变量Y 的一个显著性的影响因素。
而Y 的第i个观测值与样本均值的离差 yt (Yt Y ) 可分解为两部分之和
yi Yi Y (Yi Yˆi ) (Yˆi Y ) ei yˆi
yˆt (Yˆt Y ) 是样本回归拟合值与观测值的平均值 之差,可认为是由回归直线解释的部分,称为可解释偏 差或回归偏差;
et (Yt Yˆi )是实际观测值与回归拟合值之差,是回 归直线不能解释的部分,称为残差或随机偏差;
那么,在一次抽样中,参数的估计值与真值的差异有多 大,是否显著,这就需要进一步进行统计检验。
主要包括拟合优度检验、变量的显著性检验及方差分析。
一元线性回归模型的统计检验

注意英文缩写的含义
TSS: Total Sum of Squares / 总离差平方和
RSS: Regression Sum of Squares / 回归平方和 Residual Sum of Squares / 残差平方和
ESS: Error Sum of Squares / 误差平方和(残差平方和) Explained Sum of Squares / 解释平方和(回归平方和)
(2)变量的显著性检验
对于最小二乘估计量ˆ1,已经知道它服从正态分布
ˆ1 ~ N(1,
2
xБайду номын сангаас2 )
由于真实的 2未知,在用它的无偏估计量ˆ 2
ei2 (n 2)替代时,可构造如下统计量
t ˆ1 1 ˆ1 1 ~ t(n 2)
ˆ 2 xi2
假设检验采用的是具有概率性质的反证法。先 假定原假设正确,然后根据样本信息,观察由此 假设而导致的结果是否合理,从而判断是否接受 原假设。判断结果合理与否,依据是小概率事件 原理。
假设检验的步骤: (1)提出原假设和备择假设; (2)根据已知条件选择检验统计量; (3)根据显著性水平确定拒绝域或临界值; (4)计算出统计量的样本值并作出判断。
其中X 和Y 分别是变量X与Y的样本均值。 r的取值范围是:[-1,1]
(4)样本可决系数与样本相关系数的关系 联系:
在数值上, 一元线性回归模型的样本可决系 数等于被解释变量与解释变量之间样本相关系数 的平方:
r2
yˆi2 yi2
ˆ12
xi2 yi2
( (
xi yi )2 xi2 )2
所以有
yi2 yˆi2 ei2
一元线性回归

12.9 一元线性回归以前我们所研究的函数关系是完全确定的,但在实际问题中,常常会遇到两个变量之间具有密切关系却又不能用一个确定的数学式子表达,这种非确定性的关系称为相关关系。
通过大量的试验和观察,用统计的方法找到试验结果的统计规律,这种方法称为回归分析。
一元回归分析是研究两个变量之间的相关关系的方法。
如果两个变量之间的关系是线性的,这就是一元线性回归问题。
一元线性回归问题主要分以下三个方面:(1)通过对大量试验数据的分析、处理,得到两个变量之间的经验公式即一元线性回归方程。
(2)对经验公式的可信程度进行检验,判断经验公式是否可信。
(3)利用已建立的经验公式,进行预测和控制。
12.9.1 一元线性回归方程 1.散点图与回归直线在一元线性回归分析里,主要是考察随机变量y 与普通变量x 之间的关系。
通过试验,可得到x 、y 的若干对实测数据,将这些数据在坐标系中描绘出来,所得到的图叫做散点图。
例1 在硝酸钠(NaNO 3)的溶解度试验中,测得在不同温度x (℃)下,溶解于100解 将每对观察值(x i ,y i )在直角坐标系中描出,得散点图如图12.11所示。
从图12.11可看出,这些点虽不在一条直线上,但都在一条直线附近。
于是,很自然会想到用一条直线来近似地表示x 与y 之间的关系,这条直线的方程就叫做y 对x 的一元线性回归方程。
设这条直线的方程为yˆ=a+bx 其中a 、b 叫做回归系数(y ˆ表示直线上y 的值与实际值y i 不同)。
图12.11下面是怎样确定a 和b ,使直线总的看来最靠近这几个点。
2.最小二乘法与回归方程在一次试验中,取得n 对数据(x i ,y i ),其中y i 是随机变量y 对应于x i 的观察值。
我们所要求的直线应该是使所有︱y i -yˆ︱之和最小的一条直线,其中i y ˆ=a+bx i 。
由于绝对值在处理上比较麻烦,所以用平方和来代替,即要求a 、b 的值使Q=21)ˆ(i ni iyy-∑=最小。
回归分析

回归系数,因此失去两个自由度。 回归系数,因此失去两个自由度。
♦
dfR=dfT-dfE=1
⑷.计算方差
♦ ♦
回归方差 残差方差
SS R MS R = df R
SS E MS E = df E
⑷.计算F ⑷.计算F值
MS R F= MS E
⑹.列回归方程的方差分析表
表21-1 回归方程方差分析表
变异 来源 回归 残差 总变异 平方和 自由度 方差 F 值 概率
♦
β=0 H0:β=0 H1:β≠0
♦
统计量计算
ΣX 2 − (ΣX ) / n bYX t= = bYX ⋅ SEb MS E
2
50520 − 710 2 / 10 = 1.22 × = 3.542 13.047
二.一元线性回归方程的评价── 二.一元线性回归方程的评价── 测定系数
♦
一元线性回归方程中, 一元线性回归方程中,总平方和等于回归平
2 2
SS R = SST
(21.5)
r2
X的变异
Y的变异
图21-1 21-
测定系数示意图
图21-2 21-
测定系数示意图
♦
例3:10名学生初一对初二年级数学成 10名学生初一对初二年级数学成
绩回归方程方差分析计算中得到: 绩回归方程方差分析计算中得到:
♦ SST=268.1
♦
2
SSR=163.724
数学成绩估计初二数学成绩的回归方程; 数学成绩估计初二数学成绩的回归方程;将另一 学生的初一数学成绩代入方程, 学生的初一数学成绩代入方程,估计其初二成绩
Y = 1.22 X − 14.32 = 1.22 × 76 − 14.32 = 78.4
一元线性回归

《土地利用规划学》一元线性回归分析学院:资源与环境学院班级:2013009姓名:x学号:201300926指导老师:x目录一、根据数据绘制散点图: (1)二、用最小二乘法确定回归直线方程的参数: (1)1)最小二乘法原理 (1)2)求回归直线方程的步骤 (3)三、回归模型的检验: (4)1)拟合优度检验(R2): (4)2)相关系数显著性检验: (5)3)回归方程的显著性检验(F 检验) (6)四、用excel进行回归分析 (7)五、总结 (15)一、根据数据绘制散点图:◎由上述数据,以销售额为y 轴(因变量),广告支出为X 轴(自变量)在EXCEL 可以绘制散点图如下图:◎从散点图的形态来看,广告支出与销售额之间似乎存在正的线性相关关系。
大致分布在某条直线附近。
所以假设回归方程为:x y βα+=二、用最小二乘法确定回归直线方程的参数: 1)最小二乘法原理年份 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 广告支出(万元)x 4.00 7.00 9.00 12.00 14.00 17.00 20.00 22.00 25.00 27.00销售额y7.00 12.00 17.00 20.00 23.00 26.00 29.00 32.00 35.00 40.00最小二乘法原理可以从一组测定的数据中寻求变量之间的依赖关系,这种函数关系称为经验公式。
考虑函数y=ax+b ,其中a,b 为待定常数。
如果Pi(xi,yi)(i=1,2,...,n )在一条直线上,则可以认为变量之间的关系为y=ax+b 。
但一般说来, 这些点不可能在同一直线上. 记Ei=yi-(axi+b),它反映了用直线y=ax+b 来描述x=xi ,y=yi 时,计算值y 与实际值yi 的偏差。
当然,要求偏差越小越好,但由于Ei 可正可负,所以不能认为当∑Ei=0时,函数y=ax+b 就好好地反应了变量之间的关系,因为可能每个偏差的绝对值都很大。
MATLAB一元线性回归方程的计算和检验

1. 从input 语句键盘输入一组数据(x i ,y i ),i=1,2,…n 。
2。
计算一元线性回归方程y=ax+b 的系数a 和b,用两种方法计算:一是公式:x a y b x x y y x x a iii -=---=∑∑,)())((2; 二是用最小二乘法的公式求出最小值点(a,b),使∑--=2)(min },(b ax y b a Q i i3。
检验回归方程是否有效(用F 分布检验)。
4. 把散列点(x i ,y i )和回归曲线y=ax+b 画在一个图上。
5. 每种计算法都要有计算框图,且每种计算法都要编成一个自定义函数。
function yiyuanclc;disp ('从键盘输入一组数据:');x=input ('please Input data x :’);y=input (’please Input data y:');disp(’一元线性回归的计算和检验:’);disp ('1。
公式法’);disp ('2.最小二乘');disp ('3.检验');disp(’0。
退出’);global a0 b0;while 3num=input ('选择求解的方法:');switch numcase 1[a0,b0]=huigui (x,y)case 2[a0,b0]=zxec (x ,y )case 3break;case 0return;otherwisedisp(’输入错误,请重先输入!');endendX=x';Y=y';X=[ones(size (X)),X ];alpha=0.5;[b ,bint ,e ,rint,stats ]=regress(Y ,X)if stats(3)〈alphadisp ('有效的x ’)endn=[min(x):0.1:max(x )];f=a0*n+b0;xlabel(’x','b');ylabel('y’,’r’);legend('散点’,’k');end%..。
一元线性回归分析

S xx xi2 nx 2 218500 10 1452 8250 S xy xi yi nx y 101570 10 145 67.3
i 1
3985 ˆ S xy 3985 0.483 b S xx 8250 ˆ ˆ a y xb 67.3 145 0.483 2.735
这里45.394>2.306,即|t|值在H0的拒绝域内,故 拒绝H0 ,说明回归效果是显著的。 b的置信度为0.95(=0.05)的置信区间为 0.934 0.934 (b, b ) 0.483 2.306 , 0.483 2.306 8250 8250
i 1 n 2 n
2
ˆ ˆ yi y yi yi
i 1 i 1
2
S回 Qe
18
线性回归的方差分析
回归平方和
残差平方和
ˆ S回 yi y
i 1 n
n
2
ˆ Qe yi yi
i 1
2
Syy自由度为n-1, Qe自由度为n-2, S回自由度为1
平方和 1924.6 7.5 1932.1
自由度
均方
F比
回归 残差 总和
1 8 9
1924.6 0.94
2047.4
30
对=0.01,查出F0.01(1,8)=11.26 因为2047.3 >>11.26,所以回归效果是 非常显著的。
六、利用回归方程进行预报(预测) 回归问题中Y是随机变量,x是普通 变量。回归方程 y a bx 是Y对x的依赖 ˆ ˆ ˆ 关系的一个估计。对给定的x值,用回归 方程确定Y的值,叫预报。
2.3 一元线性回归模型的统计检 ...

2、度量拟合优度的指标—可决系数R2统计量
根据上述的关系,可以用 R 2 = ESS = 1 RSS TSS TSS (2.3.3)
称 R2 为(样本)可决系数/判定系数(coefficient of determination)。 可决系数的特点: • 取值范围:[0,1] • 随抽样波动,样本可决系数是随抽样而变动的随
2 2 2 i
X )(Yi Y )
估计标准误差的评价标准:s越大,回归直线精度越 低;s越小,则回归直线精度越高,代表性越好。当 s=0时,表示所有的样本点都落在回归直线上,解释 变量与被解释变量之间表现为函数关系。
ˆi = 1.7568 + 0.7574 X i 的估计标准误差 例3 计算回归直线 Y
合程度?
因为在一个特定的条件下做的最好的并不一定就 是高质量的,普通最小二乘法所保证的最好拟合是同 一个问题内部的比较,拟合优度检验结果所表示的优 劣是不同问题之间的比较。如前页图是由散点表示的 样本观测值的最小二乘估计结果,对于每个问题它们 都满足残差的平方和最小,但是二者对样本观测值的 拟合程度显然是不同的。 拟合优度的度量建立在对总离差分解的基础
反映由模型中解释变量所解释的那部分离差的大小;
RSS = ei 2 = (Yi ˆYi ) 2
残差平方和(Residual Sum of Squares )
反映样本观测值与估计值偏离的大小,也是模型中解 释变量未解释的那部分离差的大小;
则(2.3.2)式可以表示成为: TSS=ESS+RSS Y的观测值围绕其均值的总离差(total variation) 可分解为两部分:一部分来自回归线(ESS),另一部 分则来自随机势力(RSS)。 在给定样本中,TSS不变, 如果实际观测点离样本回归线越近,则ESS在TSS 中占的比重越大,因此 拟合优度:回归平方和ESS/Y的总离差TSS
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元线性回归方程的计算和检验
(1) 从键盘输入一组数据(x i ,y i ),i=1,2,…n 。
(2) 计算一元线性回归方程y=ax+b 的系数a 和b ,用两种方法计算: 一是公式:x a y b x x y y x x a i
i
i -=---=∑∑,)())((2
; 二是用最小二乘法的公式求出最小值点(a,b ),使
∑--=2)(min },(b ax y b a Q i i .
(3) 检验回归方程是否有效(用F 分布检验)。
(4) 把散列点(x i ,y i )和回归曲线y=ax+b 画在一个图上。
(5) 每种计算法都要有计算框图,且每种计算法都要编成一个自定义函数。
程序:
function yiyuanhuigui
clc;
disp('从键盘输入一组数据:');
x=input('X 的数(以向量形式输入):');
y=input('Y 的数(以向量形式输入):');
disp('一元线性回归方程的计算和检验:');
disp('1、公式法');
disp('2、最小二乘法');
disp('3、检验并画图');
disp('0、退出');
global a0 b0;
while 3
num=input('选择求解一元回归方程的方法:');
switch num
case 1
[a0,b0]=huigui(x,y)
case 2
[a0,b0]=zxec(x,y)
case 3
break;
case 0
return;
otherwise
disp('输入错误,请重新输入!');
end
end
X=x';Y=y';
X=[ones(size(X)),X];alpha=0.5;
%输出向量b ,bint 为回归系数估计值和它们的置信区间;
%r1,rint 为残差及其置信区间,stats 是用于检验回归模型的统计量,第一个是R^2,其中R %是相关系数,第二个是F 统计量值,第三个是与统计量F 对应的概率P ,第四个是估计误
差方差
[b,bint,e,rint,stats]=regress(Y,X)
if stats(3)<alpha %当P<α时拒绝H0,回归模型成立disp('一元回归方程有效!');
end
n=[min(x):0.1:max(x)];
f=a0*n+b0;
plot(x,y,'b.',n,f,'r'),grid on,hold on; %画出散列点和一元线性回归图像xlabel('x');ylabel('y');legend('散列点','一元线性回归图像');
title('散列点和一元线性回归图像');
end
%*****************************公式法
function [a0,b0]=huigui(x,y)
n=length(x);
x1=0;y1=0;
for i=1:n
x1=x1+x(i);
y1=y1+y(i);
end
x0=x1/n; %求得平均
y0=y1/n;
a1=0;a2=0;
for j=1:n
a1=a1+(x(j)-x0)*(y(j)-y0);
a2=a2+(x(j)-x0)*(x(j)-x0);
end
a0=a1/a2;
b0=y0-a0*x0;
x2=min(x):0.05:max(x);
y2=a0*x2+b0;
end
%***************************** 最小二乘法
function [a0,b0]=zxec(x,y)
m=length(x);
R=[x' ones(m,1)];a=R\y';
a0=a(1);b0=a(2);
end。