计量经济学第二章 一元线性回归方程
计量经济学 第二章

二、典型例题分析
例 1、令 kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。生 育率对教育年数的简单回归模型为
kids = β0 + β1educ + μ
1
(1)随机扰动项 μ 包含什么样的因素?它们可能与教育水平相关吗?
(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
关于 βˆ1 求偏导得
∑ ∂RSS = 2
∂βˆ1
(Yt − βˆ1 X t )(− X t ) = 0
即
∑ X t (Yt − βˆ1 X t ) = 0
βˆ1
=
(∑ X iYi )
(∑
) X
2 i
4
可见 βˆ1 是 OLS 估计量。
例 5.假设模型为 Yt = α + βX t + μt 。给定 n 个观察值 ( X1,Y1 ) , ( X 2 ,Y2 ) ,…,
5
例 6.对于人均存款与人均收入之间的关系式 St = α + βYt + μt 使用美国 36 年的年度数
据得如下估计模型,括号内为标准差:
Sˆt = 384.105 + 0.067Yt (151.105) (0.011)
第二章2.2一元线性回归分析

ˆ β1 ~ N ( β1 ,
∑x
σ2
2 i
)
ˆ β 0 ~ N (β 0 ,
∑ n∑ x
X i2
2 i
σ 2)
22
随机误差项u的方差σ 随机误差项 的方差σ2的估计 的方差
σ2又称为总体方差 总体方差。 总体方差
23
由于随机项ui不可观测,只能利用残差ei (ui的 估计)的样本方差,来估计ui的总体方差σ2 。 样本方差? 样本方差? 可以证明,σ2的最小二乘估计量 最小二乘估计量为: 可以证明 最小二乘估计量
= β1 + P lim(∑ xi µ i / n) P lim(∑ xi2 / n)
xi µ i
2 i
∑x
)
样本协方差? 样本协方差?
Cov ( X , µ ) 0 = β1 + = β1 + = β1 Q Q
21
四、参数估计量的抽样分布及随机项方 差的估计
ˆ ˆ 、 1、参数估计量 β 0 和 β 1 的概率分布
Yi = β0 + β1 X i + ui
i=1
Y为被解释变量,X为解释变量,β0与β1为待估 待估 参数, 随机项。 参数 u为随机项。 随机项
2
回归分析的主要目的是要通过样本回归函数 回归分析的主要目的 (模型)SRF尽可能准确地估计总体回归函数 (模型)PRF。 估计方法有多种,其中最广泛使用的是普通最 普通最 估计方法 小二乘法(ordinary least squares, OLS)。 小二乘法 为保证参数估计量具有良好的性质,通常对模 型提出若干基本假设。 实际这些假设与所采用的估计方法紧密相关。
2
1 X2 = + n ∑ x2 i
计量经济学第2章 一元线性回归模型

15
~ ~ • 因为 2是β2的线性无偏估计,因此根据线性性, 2 ~ 可以写成下列形式: 2 CiYi
• 其中αi是线性组合的系数,为确定性的数值。则有
E ( 2 ) E[ Ci ( 1 2 X i ui )]
E[ 1 Ci 2 Ci X i Ci ui ]
6
ˆ ˆ X )2 ] ˆ , ˆ ) [ (Yi Q( 1 2 i 1 2 ˆ ˆ X 2 Yi 1 2 i ˆ ˆ 1 1 2 ˆ ˆ ˆ ˆ [ ( Y X ) ] 1 2 i Q( 1 , 2 ) i ˆ ˆ X X 2 Yi 1 2 i i ˆ ˆ 2 2
16
~
i
i
• 因此 ~ 2 CiYi 1 Ci 2 Ci X i Ci ui 2 Ci ui
• 再计算方差Var( ) 2 ,得 ~ ~ ~ 2 ~ Var ( 2 ) E[ 2 E ( 2 )] E ( 2 2 ) 2
C E (ui )
2 i 2 i
i
~
i
i
i
i
E ( 2 Ci ui 2 ) 2 E ( Ci ui ) 2
i
2 u
C
i
2 i
i
~ ˆ)的大小,可以对上述表达式做一 • 为了比较Var( ) 和 Var( 2 2
些处理: ~ 2 2 2 2 Var ( 2 ) u C ( C b b ) i u i i i
8
• 2.几个常用的结果
• (1) • (2) • (3) • (4)
计量经济学 第二章 一元线性回归模型

第二章 一元线性回归模型2.1 一元线性回归模型的基本假定2.1.1一元线性回归模型有一元线性回归模型(统计模型)如下, y t = β0 + β1 x t + u t上式表示变量y t 和x t 之间的真实关系。
其中y t 称被解释变量(因变量),x t 称解释变量(自变量),u t 称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t ) = β0 + β1 x t ,(2)随机部分,u t 。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,居民收入与支出的关系;商品价格与供给量的关系;企业产量与库存的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自同一收入水平的家庭,受其他条件的影响,如家庭子女的多少、消费习惯等等,其出也不尽相同。
所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
“线性”一词在这里有两重含义。
它一方面指被解释变量Y 与解释变量X 之间为线性关系,即1tty x β∂=∂220tt y x β∂=∂另一方面也指被解释变量与参数0β、1β之间的线性关系,即。
1ty x β∂=∂,221ty β∂=∂0 ,1ty β∂=∂,2200ty β∂=∂2.1.2 随机误差项的性质随机误差项u t 中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
随机误差项u t 正是计量模型与其它模型的区别所在,也是其优势所在,今后咱们的很多内容,都是围绕随机误差项u t 进行了。
回归模型的随机误差项中一般包括如下几项内容: (1)非重要解释变量的省略, (2)数学模型形式欠妥, (3)测量误差等,(4)随机误差(自然灾害、经济危机、人的偶然行为等)。
第二章 一元线性回归

n ei 0 i 1 n xe 0 i i i 1
经整理后,得正规方程组
n n ˆ ˆ n ( x ) 0 i 1 yi i 1 i 1 n n n ( x ) ˆ ( x 2 ) ˆ xy i 0 i 1 i i i 1 i 1 i 1
y ˆ i 0 1xi ˆi 之间残差的平方和最小。 使观测值 y i 和拟合值 y
ei y i y ˆi
n
称为yi的残差
ˆ , ˆ ) ˆ ˆ x )2 Q( ( y i 0 1i 0 1
i 1
min ( yi 0 1 xi ) 2
i
xi x
2 ( x x ) i i 1 n
yi
2 .3 最小二乘估计的性质
二、无偏性
ˆ ) E ( 1
i 1 n
n
xi x
2 ( x x ) j j 1 n
其中用到
E ( yi )
( x x) 0 (xi x) xi (xi x)2
二、用统计软件计算
1.例2.1 用Excel软件计算
什么是P 值?(P-value)
• P 值即显著性概率值 ,Significence Probability Value
•
是当原假设为真时所得到的样本观察结果或更极端情况 出现的概率。
P值与t值: P t t值 P值
•
它是用此样本拒绝原假设所犯弃真错误的真实概率,被 称为观察到的(或实测的)显著性水平。P值也可以理解为 在零假设正确的情况下,利用观测数据得到与零假设相 一致的结果的概率。
2 .1 一元线性回归模型
21一元线性回归模型.ppt

同理,p(Y= ? /X=260)=1/7
条件均值(条件期望 ) :
对Y的每一条件概率分布,我们能算出它 的均值 :
记做E(Y/X=Xi)
[简写为E(Y/Xi) ]
并读为“在X取特定Xi值时的Y的期望值”。
计算方法:
将表2.1中的有关列乘以表2.2中的相应列 的条件概率,然后对这些乘积求和便是。
第二章 一元线性回归模型
§2.1 一元线性回归模型概念基础 回归是计量经济学的主要工具 一、“回归”一词的历史渊源
Francis Galton F.加尔顿
回归一词最先由F.加尔顿 (FrancisC,alton)引入
加尔顿的普遍回归定律还被他的朋友 K.皮尔逊(KartPearson)证实
Karl Pearson K.皮尔逊
综合来看,回归分析一般可以用来:
(1) 通过已知变量的值来估计因变量的均值。
(2)对独立性进行假设检验―――根据经济理 论建立适当的假设。
例如,对于需求函数,你可以检验假设:需求的 价格弹性为-1.0;即需求曲线具有单一的价格 弹性。也就是说,在其他影响需求的因素保持 不变的情况下,如果商品的价格上涨1%,平 均而言,商品的需求量将减少1%。
P (
1/7 1/5 1/5 1/6 1/5 1/7 1/5 1/7 1/5
Y/ 1/7 1/5 1/5 1/6 1/5 1/7 1/5 1/7 1/5
Xi ) 1/7
1/6
1/7
1/7
1/7
1/7
1/7
Y的条 48 46 44 42 40 38 36 34 32 30
件均值
E(Y/X=Xi) Y的条件均值
·
·
·
· ·
计量经济学(第三版)李子奈 潘文卿 编著 第二章第12题答案

计量经济学(第三版)李子奈潘文卿编著第二章第12题解题答案P61:1.作散点图,建立税收和GDP的一元线性回归方程,解释斜率经济意义。
1.1散点图图表1税收Y和国内生产总值GDP散的样本点图1.2税收Y随国内总值GDP(X)变化的一元线性回归方程,以及斜率的经济意义。
图表2中国内地税收的平均状态对国内生产总值平均状态的回归∴又回归估计结果可得一元线性回归方程为Y I=-10.6296+0.0710X I斜率的经济意义:表示国内生产总值GDP每1元的变化所引起的税收的平均变化为0.071.2.对建立的回归方程进行检验。
2.1拟合优度检验----可决系数R2统计量从回归估计的结果看,模型拟合还行。
可决系数R2=0.7603,表明税收变化的76.03%可以由国内生产总值GDP的变化来解释。
2.2变量的显著性检验假设:H0:βi=0 H1:βi≠0给定显著性性水平0.05,查t分布表得到临界值t(a/2)(31-2)=2.045i.对于β1,从回归分析结果中斜率的t检验值来看9.591245>2.045,所以在95%的置信度下拒绝原假设H0,即变量X是显著的,通过显著性检验。
ii.对于β0,从回归分析结果中截距t检验值来看-0.1235<2.045, 所以在95%的置信度下接受原假设H0,没有通过显著性检验。
3.若2008年某地区GDP为8500亿元,求该地区税收收入的预测值及预测区间?解:由回归方程Y I=-10.6296+0.0710X I可得该地区税收收入的预测值Y=-10.6296+0.0710x8500=592.8704(亿元)由于国民生产总值X的样本均值和样本方差为:E(X)=8891.126 Vax(X)=5782313在给定95%的置信度水平下,该地区税收收入的预测区间为:=592.704±641.288或(-48.584,1233.992)。
计量经济学第二章一元线性回归模型

回归分析概述 一元线性回归模型的参数估计 一元线性回归模型的检验 一元线性回归模型的预测 实例
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数(PRF) 三、随机扰动项 四、样本回归函数(SRF)
2020/3/6
LOU YONG
表 2.1.3 家庭消费支出与可支配收入的一个随机样本 Y 800 1100 1400 1700 2000 2300 2600 2900 3200 3500 X 594 638 1122 1155 1408 1595 1969 2078 2585 2530
2020/3/6
LOU YONG
20
• 该样本的散点图(scatter diagram):
分i。
2020/3/6
LOU YONG
17
上式称为总体回归函数(PRF)的随机 设定形式。表明被解释变量除了受解释 变量的系统性影响外,还受其他因素的 随机性影响。
由于方程中引入了随机项,成为计量经 济学模型,因此也称为总体回归模型。
2020/3/6
LOU YONG
18
随机误差项主要包括下列因素 在解释变量中被忽略的因素的影响; 变量观测值的观测误差的影响; 模型关系的设定误差的影响; 其他随机因素的影响。
回归系数(regression coefficients)。
2020/3/6
LOU YONG
15
三、随机扰动项
总体回归函数说明在给定的收入水平Xi下,该社 区家庭平均的消费支出水平。
但对某一个别的家庭,其消费支出可能与该平 均水平有偏差。
称为观察值围绕它的期望值的离差 (deviation),是一个不可观测的随机变量, 又称为随机干扰项(stochastic disturbance)或 随机误差项(stochastic error)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2002 2420 4950 11495 16445 19305 23870 25025 21450 21285 15510
11
2.1 回归分析概述
由于不确定因素的影响,对同一收入水平X,不同 家庭的消费支出不完全相同;
935 1012 1210 1408 1650 1848 2101 2354 2860 968 1045 1243 1474 1672 1881 2189 2486 2871
1078 1254 1496 1683 1925 2233 2552 1122 1298 1496 1716 1969 2244 2585 1155 1331 1562 1749 2013 2299 2640 1188 1364 1573 1771 2035 2310 1210 1408 1606 1804 2101
1500 2000 2500 3000 每月可支配收入X(元)
3500 4000
13
2.1 回归分析概述
总体回归函数 在给定解释变量Xi条件下被解释变量Yi的期
望轨迹称为总体回归线(population regression line),或更一般地称为总体回 归曲线(population regression curve)。 相应的函数: E(Y | X i ) f (X i ) 称为(双变量)总体回归函数(population regression function, PRF)。
7
2.1 回归分析概述
回归分析的基本概念
回归分析构成计量经济学的方法论基础,主要内 容包括:
根据样本观察值对计量经济学模型参数进行估计,求 得回归方程
对回归方程、参数估计值进行显著性检验 利用回归方程进行分析、评价及预测
8
2.1 回归分析概述
总体回归函数 由于变量间关系的随机性,回归分析关心
6
2.1 回归分析概述
回归分析的基本概念
回归分析(regression analysis)是研究一个变量关于另一个 (些)变量的具体依赖关系的计算方法和理论。
其用意:在于通过后者的已知或设定值,去估计和(或) 预测前者的(总体)均值。
这里:前一个变量被称为被解释变量(Explained Variable) 或应变量(Dependent Variable),后一个(些)变量被 称为解释变量(Explanatory Variable)或自变量 (Independent Variable)。
3
2.1 回归分析概述
回归分析的基本概念 经济变量之间的关系,大体可分为两类:
确定性关系或函数关系:研究的是确定现象非 随机变量间的关系。
统计依赖或相关关系:研究的是非确定现象随 机变量间的关系。
4
例如: 函数关系:
圆面积 f ,半径 半径2
统计依赖关系/统计相关关系:
农作物产量 f 气温, 降雨量, 阳光, 施肥量
对变量间统计依赖关系的考察主要是通过相关分析 (correlation analysis)或回归分析(regression analysis)来完成 的:
正相关
线性相关 不相关 相关系数:
统计依赖关系
负相关 1 XY 1 有因果关系 回归分析
正相关 非线性相关 不相关
负相关
无因果关系 相关分析
的是根据解释变量的已知或给定值,考察 被解释变量的总体均值,即当解释变量取 某个确定值时,与之统计相关的被解释变 量所有可能出现的对应值的平均值。
9
2.1 回归分析概述
例2.1:一个假想的社区有100户家庭组成, 要研究该社区每月家庭消费支出Y与每月家庭 可支配收入X的关系。
即如果知道了家庭的月收入,能否预测该社区家 庭的平均月消费支出水平。
5
2.1 回归分析概述
相关关系与回归分析
不线性相关并不意味着不相关;
有相关关系并不意味着一定有因果关系;
回归分析/相关分析研究一个变量对另一个(些) 变量的统计依赖关系,但它们并不意味着一定有 因果关系。
相关分析对称地对待任何(两个)变量,两个变 量都被看作是随机的。回归分析对变量的处理方 法存在不对称性,即区分应变量(被解释变量) 和自变量(解释变量):前者是随机变量,后者 不是。
但由于调查的完备性,给定收入水平X的消费支出 Y的分布是确定的,即以X的给定值为条件的Y的 条件分布(Conditional distribution)是已知的, 如: P(Y=561|X=800)=1/4。
因此,给定收入X的值Xi,可得消费支出Y的条件 均值(conditional mean)或条件期望 (conditional expectation):
《计量经济学》
《Econometrics》 《经济计量学》
第二章 一元线性回归模型
回归分析概述 一元线性回归模型的基本假设 一元线性回归模型的参数估计 一元线性回归模型检验 一元线性回归模型预测 实例
2
2.1 回归分析概述
一、回归分析的基本概念 数(SRF)
E(Y|X=Xi)
该例中:E(Y | X=800)=605
12
描出散点图发现:随着收入的增加,消费“平 均地说”也在增加,且Y的条件均值均落在一根 正斜率的直线上。这条直线称为总体回归线。
3500
每 月 消 费 支 出
Y (元)
3000 2500 2000 1500 1000
500 0
500
1000
为达到此目的,将该100户家庭划分为组内收入差 不多的10组,以分析每一收入组的家庭消费支出。
10
每 月 家 庭 消 费 支 出 Y (元)
共计
表 2.1.1 某社区家庭每月收入与消费支出统计表 每月家庭可支配收入X(元)
800 1100 1400 1700 2000 2300 2600 2900 3200 3500 561 638 869 1023 1254 1408 1650 1969 2090 2299 594 748 913 1100 1309 1452 1738 1991 2134 2321 627 814 924 1144 1364 1551 1749 2046 2178 2530 638 847 979 1155 1397 1595 1804 2068 2266 2629