单级功率因数校正(PFC)变压器的设计
功率因数校正(PFC)技术的研究

网络教育学院《电源技术》课程设计题目:功率因数校正(PFC)技术的研究学习中心:辽宁东港奥鹏层次:高中起点专科专业:电气工程及其自动化年级: 2010年春季学号:学生:辅导教师:武东锟完成日期: 2012年 2 月 24 日内容摘要本文对于单相与单相PFC技术及其控制方法的研究,针对于各种功率因数校正,介绍了相应的基本工作原理,和功率因数校正技术的额发展和其主要最主要特点。
从主电路的拓扑形式和控制方式分析有源功率因数校正。
进而更好的学习电源技术。
关键词:功率因数校正;PFC技术;控制方法;有源功率因数引言、功率因数是衡量电器设备性能的一项重要指标。
功率因数低的电器设备,不仅不利于电网传输功率的充分利用,而且往往这些电器设备的输入电流谐波含量较高,实践证明,较高的谐波会沿输电线路产生传导干扰和辐射干扰,影响其它用电设备的安全经济运行。
如对发电机和变压器产生附加功率损耗,对继电器、自动保护装置、电子计算机及通讯设备产生干扰而造成误动作或计算误差。
因此。
防止和减小电流谐波对电网的污染,抑制电磁干扰,已成为全球性普遍关注的问题。
国际电工委与之相关的电磁兼容法规对电器设备的各次谐波都做出了限制性的要求,世界各国尤其是发达国家已开始实施这一标准。
随着减小谐波标准的广泛应用,更多的电源设计结合了功率因数校正(PFC)功能。
设计人员面对着实现适当的PFC段,并同时满足其它高效能标准的要求及客户预期成本的艰巨任务。
许多新型PFC拓扑和元件选择的涌现,有助设计人员优化其特定应用要求的设计。
1功率因数校正基本原理及方法1.1功率因数校正基本原理功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。
基本上功率因数可以衡量电力被有效利用的程度,当功率因数值越大,代表其电力利用率越高。
开关电源供应器上的功率因数校正器的运作原理是去控制调整交流电电流输入的时间与波型,使其与直流电电压波型尽可能一致,让功率因数趋近于。
PFC参数设计及理论推算

PFC参数设计及理论推算作者:王文林胡廷东来源:《科学与财富》2017年第23期摘要:PFC是功率因数校正,PFC参数一般指PFC滤波电感的参数,本文以电磁理论为基础,逻辑推理,层层深入,揭示了PFC参数同电磁学物理量的定量关系,从而就把线圈匝数、线径大小推导出来,是有理有据分析开关电源的典范。
关键词:电感量,磁导率,有效磁路成长度,磁芯横截面面积,安培环路定律,磁电路磁阻定律如图1所示,由J1、RT1、RT2、D1、C1、D4、D6、PFC1、C10、L6563S及外围构成了PFC控制电路。
J1是交流输入插座。
输入电压范围是85~265VAC.输出电压:UO=400V,输出电流:IO=0.5A。
根据功率因数公式η=PO/S (1)其中PO 是有用功率,S是视在功率,也叫总功率。
PO=IOUO (2)其中IO是有效输出电流,UO是有效输出电流。
S=IINUIN (3)其中IIN是有效输入电流,UIN 是有效输入电压。
于是便得到η=IOUO /IINUIN (4)有效输出电流和有效输出电压都是恒定的。
则输出功率恒定。
当输入电压有效值最小时,输入电流有效值就会最大。
IINmax=IOUO /ηUINmin (5)取η=0.9 UINmin =85V IINmax=2.61A当 GD为高电平时,Q1和Q2导通,Q1和Q2的漏极为低电平,二极管D5截止,直流电源对PFC主线圈充电,根据自感应定律:ξPFC=Ldi/dt (6)又因为ξPFC=UOM+UD (7)由于UD 很小UOM是稳定的,因此充电过程中自感应电动势保持常数,则充电电流是线性增加的。
i=UOM t/L (8)当t=TON时,充电电流达到最大。
IPFCmax=UOM TON/L (9)TON是QM5的导通时间,也就是开启时间,由于PFC充电电流总是少于最大输入电流有效值。
U设置L6563S的工作频率为100KHzT=1/f (11)则 T=10μs又因为T=TON+TOFF+TD (12)取TON=4μs解得L≧0.613mH(13)当GD为低电平时,Q1和Q2截止,D5导通,PFC主线圈向负载放电,根据充放电曲线可知,IPFCmax≧3IO (14)才能确保连续性的要求。
功率因数校正电路(pfc)电路工作原理及应用

功率因数校正(英文缩写是PFC)是目前比较流行的一个专业术语。
PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。
PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。
线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。
前一个原因人们是比较熟悉的。
而后者在电工学等书籍中却从未涉及。
功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。
对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。
由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。
这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。
为提高负载功率因数,往往采取补偿措施。
最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。
PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。
长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。
由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。
滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。
根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。
功率因数校正电路(pfc)电路工作原理及应用

功率因数校正(英文缩写是PFC)是目前比较流行的一个专业术语。
PFC 是在20世纪80年代发展起来的一项新技术,其背景源于离线开关电源的迅速发展和荧光灯交流电子镇流器的广泛应用。
PFC 电路的作用不仅仅是提高线路或系统的功率因数,更重要的是可以解决电磁干扰(EMI)和电磁兼容(EMC)问题。
线路功率因数降低的原因及危害 导致功率因数降低的原因有两个,一个是线路电压与电流之间的相位角中,另一个是电流或电压的波形失真。
前一个原因人们是比较熟悉的。
而后者在电工学等书籍中却从未涉及。
功率因数(PF)定义为有功功率(P)与视在功率(S)之比值,即PF=P/S 。
对于线路电压和电流均为正弦波波形并且二者相位角Φ时,功率因数PF 即为COS Φ。
由于很多家用电器(如排风扇、抽油烟机等)和电气设备是既有电阻又有电抗的阻抗负载,所以才会存在着电压与电流之间的相位角Φ。
这类电感性负载的功率因数都较低(一般为0.5-0.6),说明交流(AC)电源设备的额定容量不能充分利用,输出大量的无功功率,致使输电效率降低。
为提高负载功率因数,往往采取补偿措施。
最简单的方法是在电感性负载两端并联电容器,这种方法称为并联补偿。
PFC 方案完全不同于传统的“功率因数补偿”,它是针对非正弦电流波形而采取的提高线路功率因数、迫使AC 线路电流追踪电压波形的瞬时变化轨迹,并使电流与电压保持同相位,使系统呈纯电阻性的技术措施。
长期以来,像开关型电源和电子镇流器等产品,都是采用桥式整流和大容量电容滤波电路来实现AC-DC 转换的。
由于滤波电容的充、放电作用,在其两端的直流电压出现略呈锯齿波的纹波。
滤波电容上电压的最小值远非为零,与其最大值(纹波峰值)相差并不多。
根据桥式整流二极管的单向导电性,只有在AC 线路电压瞬时值高于滤波电容上的电压时,整流二极管才会因正向偏置而导通,而当AC 输入电压瞬时值低于滤波电容上的电压时,整流二极管因反向偏置而截止。
单级PFC介绍

单级PFC电路为减少办公自动化设备、计算机和家用电器等内部开关电源对电网的污染,国际电工委员会和一些国家与地区推出了IEC1000-3-2和EN61000-3-2等标准,对电流谐波作出了限量规定。
为满足输入电流谐波限制要求,最有效的技术手段就有源功率因数校正(有源PFC)。
目前被广为采用的有源PFC技术是两级方案,即有源PFC升压变换器+DC-DC变换器,如图1所示。
两级PFC变换器使用两个开关(通常为MOSFET)和两个控制器,即一个功率因数控制器和一个PWM控制器。
只有在采用PFC/PWM组合控制器IC时,才能使用一个控制器,但仍需用两个开关。
两级PFC在技术上十分成熟,早已获得广泛应用,但该方案存在电路拓扑复杂和成本较高等缺点。
单级PFC AC-DC变换器中的PFC级和DC-DC级共用一个开关管和采用PWM方式的一套控制电路,同时实现功率因数校正和对输出电压的调节。
2、单级PFC变换器基本电路拓扑2.1单级PFC变换器基本电路单级PFC变换器通常由升压型PFC级和DC-DC变换器组合而成。
其中的DC-DC变换器又分为正激式和反激式两种类型。
图2所示为基本的单级隔离型正激式升压PFC电路。
两部分电路共用一个开关(Q1),通过二极管D1的电流为储能电容C1充电,D2在Q1关断时防止电流倒流。
通过控制Q1的通断,电路同时完成对AC输入电流的整形和对输出电压的调节。
由于全波桥式整流电路输入连接AC供电线路,瞬时输入功率是随时变化的,欲得到稳定的功率输出,要依靠储能电容实现功率平衡。
对于DC-DC变换器,通常在连续模式(CCM)下工作,占空因数不随负载变化。
而全桥整流输出电压与负载大小无关,当负载减轻时,输出功率减小,但PFC级输入功率同重载时一样,使充入C1的能量等于从C1抽取的能量,引起直流总线电压明显上升,C1上的电压应力往往达1000V 以上,对开关器件的耐压要求非常高。
由于开关器件的电压高,电流应力大,开关损耗大,并且功率从输入到输出要经两次变换,故效率低。
反激PFC设计

反激PFC设计摘要:提出了一种新型的功率因数校正模块(flyboost模块),它具有两种工作状态(反激变换器状态和Boost电感状态)。
基于这种PFC模块,得到了一种新型的单级PFC变换器,实验证明这种变换器不仅可以得到很高的功率因数,而且可以显著提高变换器的效率并自动限制中间储能电容上的电压。
关键词:单级功率因数校正;Flyboost模块;效率1引言近年来,提出了很多单级功率因数校正(PFC)变换器[1-2]。
然而,这些变换器存在着不少缺点,如低效率,不适用于大功率应用,储能电容电压变化大等。
这些缺点都限制了单级PFC变换器的应用。
一般的单级PFC变换器都是由Boost电感和DC/DC变换器组成,通过控制Boost 电感工作在不连续导电模式,可以使得输入电流自动跟随输入电压,从而实现功率因数校正。
然而,无论是两级PFC变换器还是通常的Boost电感型单级PFC变换器,输入功率都是先经过中间储能电容然后再经过DC/DC变换器输出,这样,从输入到输出,功率经过两级变换。
本文提出了直接功率变换的概念,基于这种概念,提出了一种新型的单级功率因数校正AC/DC变换器。
实验证明,这种新型的变换器不仅具有很高的功率因数,而且能够显著提高变换器的效率并自动限制中间储能电容上的电压。
(a)典型变换器功率流向(b)带直接功率变换模块的变换器功率流向图1变换器的功率流向图2直接功率变换的概念在如图1(a)所示的典型功率因数校正AC/DC变换器中,包含了两个功率模块,即PFC模块和DC/DC模块。
首先,脉动的输入交流功率经过PFC模块输入到储能电容上,然后经过DC/DC变换器,得到稳定的直流输出。
如果PFC模块和DC/DC 变换器模块的效率分别是η1和η2,那么,AC/DC变换器的总效率η为η=η1·η2(1)实际上,希望得到稳定的直流输出并不需要经过两次功率变换。
我们可以让一部分交流功率只经过一次功率变换就到达直流输出端;而其余部分输入功率则经过两次功率变换。
一种单级全桥PFC变换器变压器偏磁抑制策略

一种单级全桥PFC变换器变压器偏磁抑制策略单级全桥PFC变换器是一种常用的功率因数校正(PFC)变换器拓扑结构,它能够有效地提高电力系统的功率因数,降低谐波干扰,同时具有较高的转换效率和稳定性。
在实际应用中,变压器的偏磁效应往往会对全桥PFC变换器的性能造成一定的影响,甚至引起系统的失效。
如何有效地抑制变压器的偏磁效应成为了研究和应用中的一个重要问题。
一种常见的变压器偏磁抑制策略是采用磁场退磁技术。
磁场退磁技术是利用退磁电流通过变压器绕组产生的磁场,将变压器芯的磁通密度降至较低的水平,从而消除或减小偏磁效应对系统性能的影响。
通常情况下,磁场退磁技术可以分为主动退磁和被动退磁两种方式。
主动退磁是通过外部的电路和控制器主动地对变压器绕组施加一定的退磁电流,从而实现对偏磁效应的抑制。
在单级全桥PFC变换器中,主动退磁技术通常是通过在变压器侧串联额外的电感和开关器件,通过合适的控制方法和算法来实现退磁电流的产生和控制。
主动退磁技术具有抑制偏磁效应快速、精确的优点,但同时也需要更复杂的控制和电路设计,在实际应用中需要考虑成本和可靠性的问题。
除了磁场退磁技术,还可以采用一些其他的偏磁抑制策略,如增加磁补偿绕组、选择合适的变压器芯材料和形状、合理的布线和屏蔽等。
这些策略在一定程度上可以减小变压器偏磁效应,提高单级全桥PFC变换器的性能和可靠性。
针对单级全桥PFC变换器中变压器偏磁效应的问题,可以采用多种策略进行抑制。
在具体应用中,需要根据系统的具体需求和工作条件选择合适的抑制策略,并进行合理的设计和调整。
通过有效地抑制变压器偏磁效应,可以提高单级全桥PFC变换器系统的性能和稳定性,推动其在工业和电力领域的广泛应用。
由单相功率因数校正PFC实现三相PFC的方案介绍

由单相功率因数校正PFC实现三相PFC的方案介绍引言电力电子装置的广泛应用,给公用电网造成严重污染,谐波和无功问题日益受到重视。
为了减轻电力污染的危害程度,许多国家纷纷制定了相应的标准,如国际电工委员会的谐波标准IEEE555—2和IEC—1000—3—2等。
功率因数校正(Power Factor CorrecTIon,简称PFC)技术,尤其是有源功率因数校正(Active Power FactorCorrection,简称APFC)技术可以有效的抑制谐波,已成为研究的热点。
单相APFC技术的研究比较成熟,已有不少商业化的专用控制芯片,如UC3854,IRll 50,LTl508,ML4819。
与单相功率因数校正整流装置相比,三相PFC整流装置具有许多优点:(1)输入功率高,功率额定值可达几千瓦以上;(2)单相PFC整流装置输入功率是一个两倍于工频变化的量,但在三相平衡装置中,三相输入功率脉动部分的总和为零,输入功率是一恒定值,三相PFC整流装置输出功率的脉动周期仅为单相全波整流的三分之一,脉动系数低,因此可以使用容量较小的输出电容,从而可以实现更快的输出电压动态响应。
三相APFC技术正成为众多学者研究的重点,但其实现有一定的困难,而且还未见成熟的专用控制芯片。
若能将单相APFC电路简单整合成一个三相APFC电路,将能充分利用成熟的单相控制芯片,制作出满足要求的三相APFC装置。
1 由单相APFC组合成三相APFC的几种方法单相PFC组合成三相PFC的技术优势是:(1)无需研究新的拓扑和控制方式,可直接应用发展比较成熟的单相PFC拓扑,以及相应的单相PFC控制芯片和控制方法;(2)电路由多个单相PFC同时供电,如果某一相出现故障,其余两相仍能继续向负载供电,电路具有冗余特性;(3)由于单向模块的使用,因此需要更少的维护和维修,而且有利于产品的标准化;(4)与三相PFC相比,不需要高压器件等。
下面将对由单相PFC实现三相PFC的几种方法分别进行介绍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单级功率因数校正(PFC)变压器的设计
1引言
为了减少对交流电网的谐波污染,国际上推出了一些限制电流谐波的标准,如IEC 1000- 3-2,它要求开关电源电源必须采取措施降低电流谐波含量。
为了使输入电流谐波满足要求,必须加入功率因数校正(PFCPFC)。
目前应用得最广泛的是PFC级+DC/DC级的两级方案,它们有各自的开关器件和控制电路。
这种方案能够获得很好的性能,但它的缺点是电路复杂,成本高。
在单级单级功率因数校正变换器[1]中,PFC级和DC/DC级共用一个开关管和一套控制电路,在获得稳定输出的同时实现功率因数校正。
这种方案具有电路简单、成本低的优点,适用于小功率场合。
本文介绍了一种单级PFC变换器的基本原理及其设计设计过程。
2单级PFC变换器
单级PFC变换器的原理图,是一种基于脉宽调制(PWM)的变换器。
变换器的PFC级采用Boost 电感电路,而DC/DC级采用双管单端正激电路结构。
PWM集成芯片采用了UC3842,是一种电流型控制的专用芯片,具有电压调整率高、外围元器件少、工作频率高、启动电流小的特点。
其输出驱动信号通过隔直电容,连接在驱动变压器变压器原边。
驱动变压器采用副边双绕组结构,得到两路同相隔离的驱动信号,从而实现了DC/DC级的双管驱动。
变换器的过流保护由电阻R9检测到开关管的过流信号,封锁UC3842的输出信号,实现过流保护。
电压负反馈控制由电阻R12和R13获得输出电压信号。
变换器的工作原理简述如下:当变换器接通电源时,输入交流电压整流后的直流电压经电阻R17降压后,给UC3842提供启动电压。
进入正常工作后,二次绕组N3提供UC3842的工作电压(12 V);绕组N2的高频电压经整流滤波,由TL431获得偏差信号,经光耦隔离后反馈到UC3842,去控制开关管的导通与截止,实现稳压的目的。
在一个开关周期Ts内,控制Boost 电感工作在不连续导电模式(DCM)下,使得输入电流波形自然跟随输入电压波形,从而实现了功率因数校正。
3变换器的设计
3.1 EMI滤波器的设计
EMI滤波器能有效地抑制电网噪声,提高电子仪器、计算机和测控系统的抗干扰能力及可靠性[2]。
单级PFC变换器的PFC级工作在不连续导电模式下,其输入电流波形为脉动三角波,因此其前端需添加EMI滤波器以滤除高频纹波。
EMI滤波器电路,包括共模扼流圈(亦称共模电感)和滤波电容。
共模电感主要用来滤除共模干扰,其电感量与EMI滤波器的额定电流有关。
本文中的单级PFC变换器的额定电流为1 A,取共模电感值为15 mH。
滤波电容C11和C13主要滤除串模干扰,容量大致为0.01μ F~0.47 μ F。
C14和C15跨接在输入端,并将电容器的中点接地,能有效抑制共模干扰,容量范围是2200 pF~0.1 μ F。
3.2功率器件的选取
变换器的开关器件一般均选用功率场效应管(MOSFET),依据输入最高电压时输出最大电流的要求来确定其电压与电流等级,并预留有1.5~2倍的电压和2~3倍的电流裕量。
在单管变换器中,开关器件的电压UCEO通常可按经验公式选取
式中:Udmax为漏源极的最大电压;
D为占空比。
开关器件的电流按高频变压器一次绕组的最大电流来确定。
本文中,由于采用双管电路结构,每个开关管所承受的电压为UCEO的一半,故选用耐压500 V、电流8 A的IRF840。
变换器中PFC级的二极管选用了超快速恢复二极管,而DC/DC级整流输出端选用肖特基整流二极管,以减小二极管的压降。
3.3变换器电感的设计
在单级PFC变换器中,为了实现功率因数校正,通常控制PFC级的Boost电感工作在不连续导电模式;而为了提高变换器的率,DC/DC级一般采用连续导电模式,在一个开关周期内,通过L1和L2的电流。
为了使Boost电感工作于DCM,则有
式中:RL为变换器的负载电阻;
L1为Boost电感值;
Ts为变换器的开关周期;
D为占空比;
η为变换器的效率;
UC1为中间储能电容上的电压;
Uo为输出电压。
为了使得DC/DC级工作在连续导电模式下,则有
式中:L2为DC/DC级的储能电感值。
在本文中,要求Ts=8.33 μ s,D=0.2, Uo=16 V,RL=2.133 Ω,UC1=380 V。
故选取L1=100 μH,L2=20μH。
功率因数校正的实验结果。
图中,第一条波形是交流输入电压经整流桥后的电压波形,第二条波形是流经Boost电感L1的电流波形,近似于正弦波。
实验得到的功率因数为0.97。
3.4高频变压器的设计
高频变压器是变换器的核心元件,它的性能好坏不仅影响其本身的发热和效率,而且还会影响到变换器的技术性能和可靠性。
1)磁芯的选用
本文的负载设计为Uo=16V,Io=7.5A,由高频变压器的二次绕组N2绕组提供。
而绕组N3提供UC3842的工作电源,其输出功率很小,可忽略。
由设定条件可知,高频变压器的输出功率为
给出的输出功率与磁芯尺寸的关系,选用了PQ32-30磁芯,其有效截面积为167mm2。
2)绕组匝数的确定
变压器初级绕组电压幅值UP1为
式中:UC1是变压器输入直流电压(等于中间储能电容上的电压);
ΔU1是变压器初级绕组的电阻压降与开关管的导通压降之和,在实际计算中可以忽略。
变压器二次绕组N2的电压幅值UP2
式中:ΔU2是变压器二次绕组的电阻压降与整流管的压降之和。
初级绕组匝数N1为
式中:f是开关频率(120 kHz);
ΔBm是磁通增量,此处取ΔBm=0.15T。
二次绕组N3提供UC3842的12V工作电压,其匝数由下式得到
式中:UP3为二次绕组N3的电压幅值。
4结语
应用脉宽调制集成控制芯片UC3842构成的单级PFC变换器,具有电路结构简单、成本低等优点。
不仅获得稳定的输出,而且实现了功率因数校正。