【人教版】版高中物理选修35知识点清单
高中物理人教版选修3-5-知识点总结材料

选修3-5知识梳理一.量子论的建立黑体和黑体辐射Ⅰ(一)量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。
2.量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。
②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。
3.量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。
②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。
③到1925年左右,量子力学最终建立。
4.量子论的意义①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。
②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。
③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。
量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。
(二)黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。
这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。
①.物体在任何温度下都会辐射能量。
②.物体既会辐射能量,也会吸收能量。
物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。
辐射和吸收的能量恰相等时称为热平衡。
此时温度恒定不变。
实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。
2.黑体物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。
(完整word版)人教版-高中物理选修3-3、3-4、3-5知识点整理(良心出品必属精品)

影响气体压强的因素:①气体的平均分子动能(温度)②分子的密集程度即单
位体积内的分子数(体积)
三、物态和物态变化
9、晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异
性
非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向
同性
①判断物质是晶体还是非晶体的主要依据是有无固定的熔点
《高中物理选修 3-4 、3-5 知识点》
Ⅰ 选修 3-4 部分
一、简谐运动 简谐运动的表达式和图象 Ⅰ
1、机械振动:
物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:①回复力不为零 . ②阻力很小 . 使振动物体回到平衡位置的
力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
⑶周期 T:振动物体完成一次余振动所经历的时间叫做周期。 所谓全振动是指物体从
某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次
全振动。
⑷频率 f :振动物体单位时间内完成全振动的次数。
⑸角频率 ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这
个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,
②这两种方式改变系统的内能是等效的
③区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或
物体的不同部分)之间内能的转移
14、热力学第一定律
①表达式 u W Q
②
符
W
Q
u
号
外界对3;
做功
吸热
加
15、能量 律
系统对外界 做功
系统向外界 放热
人教版高中物理选修3-5知识点整理及重点题型梳理] 原子结构
![人教版高中物理选修3-5知识点整理及重点题型梳理] 原子结构](https://img.taocdn.com/s3/m/d408147fa8956bec0875e32a.png)
人教版高中物理选修3-5知识点梳理重点题型(常考知识点)巩固练习原子结构【学习目标】1.知道电子是怎样发现的;2.知道电子的发现对人类探索原子结构的重大意义; 3.了解汤姆孙发现电子的研究方法. 4.知道α粒子散射实验;5.明确原子核式结构模型的主要内容; 6.理解原子核式结构提出的主要思想.【要点梳理】要点诠释: 要点一、原子结构 1.阴极射线(1)气体的导电特点:通常情况下,气体是不导电的,但在强电场中,气体能够被电离而导电.平时我们在空气中看到的放电火花,就是气体电离导电的结果.在研究气体放电时一般都用玻璃管中的稀薄气体,导电时可以看到发光放电现象.(2)1858年德国物理学家普里克发现了阴极射线.①产生:在研究气体导电的玻璃管内有阴、阳两极.当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线.②阴极射线的特点:碰到荧光物质能使其发光. 2.汤姆孙发现电子(1)从1890年起英国物理学家汤姆孙开始了对阴极射线的一系列实验研究. (2)汤姆孙利用电场和磁场能使带电的运动粒子发生偏转的原理检测了阴极射线的带电性质,并定量地测定了阴极射线粒子的比荷(带电粒子的电荷量与其质量之比,即e m). (3)1897年汤姆孙发现了电子(阴极射线是高速电子流).电子的电量()191.602177334910C e =⨯-,电子的质量319.109389710kg m =⨯-,电子的比荷111.758810C/kg em=⨯.电子的质量约为氢原子质量的1 1836.3.汤姆孙对阴极射线的研究(1)阴极射线电性的发现.为了研究阴极射线的带电性质,他设计了如图所示装置.从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷.(2)测定阴极射线粒子的比荷.4.密立根实验美国物理学家密立根在1910年通过著名的“油滴实验”简练精确地测定了电子的电量密立根实验更重要的发现是:电荷是量子化的,即任何电荷只能是元电荷e的整数倍.5.电子发现的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕.6.19世纪末物理学的三大发现对阴极射线的研究,引发了19世纪末物理学的三大发现:(1)1895年伦琴发现了X射线;(2)1896年贝克勒尔发现了天然放射性;(3)1897年汤姆孙发现了电子.要点二、原子的核式结构模型1.汤姆孙的原子模型“枣糕模型”.“葡萄干布丁模型”(如图所示).“葡萄干面包模型”.汤姆孙的原子模型是在发现电子的基础上建立起来的,汤姆孙认为,原子是一个球体,正电荷均匀分布在球内,电子像枣糕里的枣子一样,镶嵌在原子里面,所以汤姆孙的原子模型也叫枣糕式原子结构模型.【注意】汤姆孙的原子结构模型虽然能解释一些实验事实,但这一模型很快就被新的实验事实——仅粒子散射实验所否定.2.α粒子散射实验1909~1911年卢瑟福和他的助手做α粒子轰击金箔的实验,获得了重要的发现. (1)实验装置(如图所示)由放射源、金箔、荧光屏等组成.特别提示:①整个实验过程在真空中进行. ②金箔很薄,α粒子(42He 核)很容易穿过.(2)实验现象与结果.绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大角度的偏转,极少数α粒子偏转角超过90︒,有的几乎达到180︒,沿原路返回.仅粒子散射实验令卢瑟福万分惊奇.按照汤姆孙的原子结构模型:带正电的物质均匀分布,带负电的电子质量比α粒子的质量小得多.α粒子碰到电子就像子弹碰到一粒尘埃一样,其运动方向不会发生什么改变.但实验结果出现了像一枚炮弹碰到一层薄薄的卫生纸被反弹回来这一不可思议的现象.卢瑟福通过分析,否定了汤姆孙的原子结构模型,提出了核式结构模型.3.原子的核式结构卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.4.原子核的电荷与尺度由不同原子对α粒子散射的实验数据可以确定各种元素原子核的电荷.又由于原子是电中性的,可以推算出原子内含有的电子数.结果发现各种元素的原子核的电荷数,即原子内的电子数非常接近于它们的原子序数,这说明元素周期表中的各种元素是按原子中的电子数来排列的.原子核的半径无法直接测量,一般通过其他粒子与核的相互作用来确定,α粒子散射是估算核半径最简单的方法.对于一般的原子核半径数量级为1510m -,整个原子半径的数量级是1010m -,两者相差十万倍之多,可见原子内部是十分“空旷”的. 5.解题依据和方法(1)解答与本节知识有关的试题,必须以两个实验现象和发现的实际为基础,应明确以下几点: ①汤姆孙发现了电子,说明原子是可分的,电子是原子的组成部分.②卢瑟福“α粒子散射实验”现象说明:原子中绝大部分是空的,原子的绝大部分质量和全部正电荷都集中在一个很小的核上.(2)根据原子的核式结构,结合前面所掌握的动能、电势能、库仑定律及能量守恒定律等知识,是综合分析解决d 粒子靠近原子核过程中,有关功、能的变化,加速度,速度的变化所必备的知识基础和应掌握的方法.6.对α粒子散射实验的理解如果按照汤姆孙的“枣糕”原子模型,α粒子如果从原子之间或原子的中心轴线穿过时,它受到周围的正负电荷作用的库仑力是平衡的,α粒子不产生偏转;如果α粒子偏离原子的中心轴线穿过,两侧电荷作用的库仑力相当大一部分被抵消,α粒子偏转很小;如果α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹.所以α粒子的散射实验结果否定了汤姆孙的原子模型.按卢瑟福的原子模型(核式结构),当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,仅粒子就像穿过“一片空地”一样,无遮无挡,运动方向改变极少,由于原子核很小,这种机会就很多,所以绝大多数α粒子不产生偏转;只有当α粒子十分接近原子核穿过时,才受到很大的库仑斥力,偏转角才很大,而这种机会很少;如果α粒子几乎正对着原子核射来,偏转角就几乎达到180︒,这种机会极少.如图所示.卢瑟福根据α粒子散射实验,不仪建立了原子的核式结构,还估算出了原子核的大小.220121(1)4sin 2m Ze r Mv θπε=⋅+(θ为散射角).原子核的商径数量级在1510m -.原子直径数量级大约是1010m -,所以原子核半径只相当于原子半径的十万分之一.原子的核式结构初步建立了原子结构的正确图景,但跟经典的电磁理论发生了矛盾.(见玻尔的原子模型)7.原子结构的探索历史(1)发现原子核式结构的过程.实验和发现 说明了什么 电子的发现说明原子有复杂结构α粒子散射实验说明汤姆孙(枣糕式)原子模型不符合实际,卢瑟福重新建立原子的核式结构模型(2)原子的核式结构与原子的枣糕式结构的根本区别.核式结构枣糕式结构原子内部是非常空旷的,正电荷集中在一个很小的核里 原子是充满了正电荷的球体 电子绕核高速旋转 电子均匀嵌在原子球体内【典型例题】 类型一、原子结构例1.关于阴极射线的本质,下列说法正确的是( ). A .阴极射线本质是氢原子 B .阴极射线本质是电磁波 C .阴极射线本质是电子 D .阴极射线本质是X 射线【思路点拨】阴极射线基本性质.【答案】C【解析】阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X 射线都是在研究阴极射线过程中的一些假设,是错误的.【总结升华】对阴极射线基本性质的了解是解题的依据.举一反三:【变式】如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将( ).A .向纸内偏转B .向纸外偏转C .向下偏转D .向上偏转【答案】D【解析】本题综合考查电流产生的磁场、左手定则和阴极射线的产生和性质.由题目条件不难判断阴极射线所在处磁场垂直纸面向外,电子从负极射出,由左手定则可判定阴极射线(电子)向上偏转.【总结升华】注意阴极射线(电子)从电源的负极射出,用左手定则判断其受力方向时四指的指向和射线的运动方向相反.例2.汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴1O O 的方向进入到两块水平正对放置的平行极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点(O '点与O 点的竖直间距为d ,水平间距可忽略不计).此时,在P 和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为1L ,极板间距为b ,极板右端到荧光屏的距离为2L (如图所示). (1)求打在荧光屏O 点的电子速度的大小. (2)推导出电子的比荷的表达式.【答案】(1)UBb(2)2121(/2)Ud B bL L L +【解析】(1)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回到中心O点,设电子的速度为v ,则evB eE =, 得E v B =, 即U v Bb =. (2)当极板间仅有偏转电场时,电子以速度v 进入后,竖直方向做匀加速运动,加速度为eUa mb =. 电子在水平方向做匀速运动,在电场内的运动时间11L t v=。
高中物理人教版选修3-5-知识点总结

选修3-5知识梳理一.量子论的建立黑体和黑体辐射Ⅰ(一)量子论1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。
2.量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。
②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。
3.量子论的发展①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。
②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。
③到1925年左右,量子力学最终建立。
4.量子论的意义①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。
②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。
③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。
量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。
(二)黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。
这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。
①.物体在任何温度下都会辐射能量。
②.物体既会辐射能量,也会吸收能量。
物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。
辐射和吸收的能量恰相等时称为热平衡。
此时温度恒定不变。
实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。
2.黑体物体具有向四周辐射能量的本领,又有吸收外界辐射来的能量的本领。
人教版高中物理选修3-5知识点汇总_一册全_

人教版高中物理选修3—5知识点总结第十六章动量守恒定律动16.1实验探究碰撞中的不变量碰撞的特点:1、相互作用时间极短。
2.相互作用力极大,即内力远大于外力。
3、速度都发生变化。
一、实验的基本思路1、一维碰撞:我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。
2、猜想与假设:一个物体的质量与它的速度的乘积是不是不变量?3、碰撞可能有很多情形。
例如两个物体可能碰后分开,也可能粘在一起不再分开。
二、需要考虑的问题①如何保证碰撞是一维的?即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动。
在固定的轨道上做实验——气垫导轨。
②怎样测量物体的质?用天平测量。
③怎样测量两个物体在磁撞前后的速度?速度的测量:可以充分利用所学的运动学知识,如利用匀速运动、平抛运动,并借助于斜槽、气垫导轨、打点计时器和纸带等来达到实验目的和控制实验条件。
④数据处理:列表。
参考案例一气垫导轨和光电门研究碰撞。
参考案例二利用单摆研究碰撞参考案例三利用打点计时器研究碰撞参考案例四利用平抛运动研究碰撞研究能量损失较小的碰撞时,可以选用参考案例二;研究碰撞后两个物体结合在一起的情况时,可以选用参考案例三。
参考案例四测出小球落点的水平距离可根据平抛运动的规律计算出小球的水平初速度。
实验设计思想巧妙之处在于用长度测量代替速度测量。
16.2动量定理一、动量1、定义:把物体的质量m和速度ʋ的乘积叫做物体的动量p,用公式表示为p = mʋ2、单位:在国际单位制中,动量的单位是千克米每秒,符号是kg•m/s3、动量是矢量:方向由速度方向决定,动量的方向与该时刻速度的方向相同。
4、注意:物体的动量,总是指物体在某一时刻的动量,即具有瞬时性,故在计算时相应的速度应取这一时刻的瞬时速度。
5、动量的变∆p①某段运动过程(或时间间隔)末状态的动量p',跟初状态的动量p的矢量差,称为动量的变化(或动量的增量),即p = p' - p。
新教材 人教版高中物理选择性必修第三册 第五章 原子核 知识点考点重点难点提炼汇总

第五章原子核1.原子核的组成............................................................................................................ - 1 -2. 放射性元素的衰变..................................................................................................... - 6 -3. 核力与结合能........................................................................................................... - 13 -4. 核裂变与核聚变....................................................................................................... - 19 -5. “基本”粒子 ................................................................................................................ - 19 -章末复习提高................................................................................................................ - 29 -1.原子核的组成一、天然放射现象及三种射线1.天然放射现象(1)1896年,法国物理学家贝克勒尔发现某些物质具有放射性。
(2)①放射性:物质发射射线的性质。
【人教版】版高中物理选修35知识点清单(15页)(1)全套资源.doc

高中物理选修3-5 知识点第十六章动量守恒规则一、动量动量守恒规则1、动量:能够从两个旁边面临动量进行界说或解说:①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种丈量。
动量的表达式 P = mv。
单位是 kg m s. 动量是矢量,其方向便是瞬时速度的方向。
因为速度是相对的,所以动量也是相对的。
2、动量守恒规则:当体系不受外力效果或所受合外力为零,则体系的总动量守恒。
动量守恒规则依据实际状况有多种表达式,一般常用等号左右别离标明体系效果前后的总动量。
运用动量守恒规则要留意以下几个问题:①动量守恒规则一般是针对物体系的,对单个物体谈动量守恒没有意义。
②关于某些特定的问题 , 例如磕碰、爆破等,体系在一个十分短的时刻内,系统内部各物体彼此效果力,远比它们所遭到外界效果力大,就能够把这些物体看作一个所受合外力为零的体系处理 , 在这一短暂时刻内遵从动量守恒规则。
③核算动量时要触及速度,这时一个物体系内各物体的速度有必要是相关于同一惯性参照系的,一般取地上为参照物。
④动量是矢量,因此“体系总动量”是指体系中悉数物体动量的矢量和,而不是代数和。
⑤动量守恒规则也能够运用于分动量守恒的状况。
有时尽管体系所受合外力不等于零,但只需在某一方面上的合外力重量为零,那么在这个方向上体系总动量的重量是守恒的。
⑥动量守恒规则有广泛的运用规模。
只需体系不受外力或所受的合外力为零,那么体系内部各物体的彼此效果,不管是万有引力、弹力、摩擦力,仍是电力、磁力,动量守恒规则都适用。
体系内部各物体彼此效果时,不管具有相同或相反的运动方向;在彼此效果时不管是否直接触摸;在彼此效果后不管是粘在一同,仍是分裂成碎块,动量守恒规则也都适用。
3、动量与动能、动量守恒规则与机械能守恒规则的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
②动量是用来描绘机械运动彼此搬运的物理量而动能往往用来描绘机械运动与其他运动( 比如热、光、电等) 相互转化的物理量。
物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版

物理人教版高中选修3-5物理选修3-5_知识点总结提纲_精华版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高中物理选修3-5知识点梳理一、动量动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式P = mv。
单位是skg .动量是矢量,其方向就是瞬时速度的方向。
因为速度是相对的,所以m动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的,对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。
④动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零,那么系统内部各物体的相互作用,不论是万有引力、弹力、摩擦力,还是电力、磁力,动量守恒定律都适用。
系统内部各物体相互作用时,不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块,动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品“正版”资料系列,由本公司独创。
旨在将“人教版”、”苏教版“、”北师大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和检测题分享给需要的朋友。
本资源创作于2020年12月,是当前最新版本的教材资源。
包含本课对应内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。
通过我们的努力,能够为您解决问题,这是我们的宗旨,欢迎您下载使用!一、动量动量守恒定律高中物理选修 3-5 知识点第十六章 动量守恒定律1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积, 叫做物体的动量。
②动量是物体机械运动的一种量度。
动量的表达式 P = mv 。
单位是kg m s .动量是矢量, 其方向就是瞬时速度的方向。
因为速度是相对的, 所以动量也是相对的。
2、动量守恒定律:当系统不受外力作用或所受合外力为零, 则系统的总动量守恒。
动量守恒定律根据实际情况有多种表达式, 一般常用等号左右分别表示系统作用前后的总动量。
运用动量守恒定律要注意以下几个问题:①动量守恒定律一般是针对物体系的, 对单个物体谈动量守恒没有意义。
②对于某些特定的问题, 例如碰撞、爆炸等, 系统在一个非常短的时间内, 系统内部各物体相互作用力, 远比它们所受到外界作用力大, 就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。
③计算动量时要涉及速度, 这时一个物体系内各物体的速度必须是相对于同一惯性参照系的, 一般取地面为参照物。
④动量是矢量, 因此“系统总动量”是指系统中所有物体动量的矢量和, 而不是代数和。
⑤动量守恒定律也可以应用于分动量守恒的情况。
有时虽然系统所受合外力不等于零, 但只要在某一方面上的合外力分量为零, 那么在这个方向上系统总动量的分量是守恒的。
⑥动量守恒定律有广泛的应用范围。
只要系统不受外力或所受的合外力为零, 那么系统内部各物体的相互作用, 不论是万有引力、弹力、摩擦力, 还是电力、磁力, 动量守恒定律都适用。
系统内部各物体相互作用时, 不论具有相同或相反的运动方向;在相互作用时不论是否直接接触;在相互作用后不论是粘在一起,还是分裂成碎块, 动量守恒定律也都适用。
3、动量与动能、动量守恒定律与机械能守恒定律的比较。
动量与动能的比较:①动量是矢量, 动能是标量。
②动量是用来描述机械运动互相转移的物理量而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。
比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒, 若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。
所以动量和动能是从不同侧面反映和描述机械运动的物理量。
动量守恒定律与机械能守恒定律比较:前者是矢量式, 有广泛的适用范围, 而后者是标量式其适用范围则要窄得多。
这些区别在使用中一定要注意。
4、碰撞:两个物体相互作用时间极短, 作用力又很大, 其他作用相对很小, 运动状态发Th显著化的现象叫做碰撞。
以物体间碰撞形式区分, 可以分为“对心碰撞”(正碰), 而物体碰前速度沿它们质心的连线;“非对心碰撞”——中学阶段不研究。
以物体碰撞前后两物体总动能是否变化区分, 可以分为:“弹性碰撞”。
碰撞前后物体系总动能守恒;“非弹性碰撞”, 完全非弹性碰撞是非弹性碰撞的特例, 这种碰撞, 物体在相碰后粘合在一起, 动能损失最大。
各类碰撞都遵守动量守恒定律和能量守恒定律, 不过在非弹性碰撞中, 有一部分动能转变成了其他形式能量, 因此动能不守恒了。
二、验证动量守恒定律(实验、探究)Ⅰ【实验目的】研究在弹性碰撞的过程中, 相互作用的物体系统动量守恒.【实验原理】利用图 2-1 的装置验证碰撞中的动量图2-1P守恒, 让一个质量较大的球从斜槽上滚下来, 跟放在斜槽末端上的另一个质量较 小的球发Th 碰撞, 两球均做平抛运动.由于下落高度相同, 从而导致飞行时间相等, 我们用它们平抛射程的大小代替其速度.小球的质量可以测出, 速度也可间接地知道, 如满足动量守恒式 m 1v 1=m 1v 1'+m 2v 2', 则可验证动量守恒定律.进一步分析可以知道, 如果一个质量为 m 1, 速度为 v 1 的球与另一个质量为 m 2, 速度为 v 2 的球相碰撞, 碰撞后两球的速度分别为 v 1'和 v 2', 则由动量守恒定律有: m 1v 1=m 1v 1'+m 2v 2'.【实验器材】两个小球(大小相等, 质量不等);斜槽;重锤线;白纸;复写纸;天平;刻度尺;圆规.【实验步骤】1.用天平分别称出两个小球的质量 m 1 和 m 2;图 2-2 2.按图 2-1 安装好斜槽, 注意使其末端切线水平, 并在地面适当的位置放上白纸和复写纸, 并在白纸上记下重锤线所指的位置 O 点. 3.首先在不放被碰小球的前提下, 让入射小球从斜槽上同一位置从静止滚下, 重复数次, 便可在复写纸上打出多个点, 用圆规作出尽可能小的圆, 将这些点包括在圆内, 则圆心就是不发Th 碰撞时入射小球的平均位置 P 点如图 2-2。
4.将被碰小球放在斜槽末端上, 使入射小球与被碰小球能发Th 正碰;5.让入射小球由某一定高度从静止开始滚下, 重复数次, 使两球相碰, 按照步骤(3)的办法求出入球落地点的平均位置 M 和被碰小球落地点的平均位置 N ;6.过 ON 在纸上做一条直线, 测出 OM 、OP 、ON 的长度;7.将数据代入下列公式, 验证公式两边数值是否相等(在实验误差允许的范围内): m 1·OP=m 1·OM+m 2·ON【注意事项】1.“水平”和“正碰”是操作中应尽量予以满足的前提条件.2.测定两球速度的方法, 是以它们做平抛运动的水平位移代表相应的速度.3.斜槽末端必须水平, 检验方法是将小球放在平轨道上任何位置, 看其能否都保正碰持静止状态.4.入射球的质量应大于被碰球的质量.5.入射球每次都必须从斜槽上同一位置由静止开始滚下.方法是在斜槽上的适当高度处固定一档板, 小球靠着档板后放手释放小球.6.实验过程中, 实验桌、斜槽、记录的白纸的位置要始终保持不变.7.m1·OP=m1·OM+m2·ON 式中相同的量取相同的单位即可.【误差分析】误差来源于实验操作中, 两个小球没有达到水平正碰, 一是斜槽不够水平, 二是两球球心不在同一水平面上, 给实验带来误差.每次静止释放入射小球的释放点越高, 两球相碰时作用力就越大, 动量守恒的误差就越小.应进行多次碰撞, 落点取平均位置来确定, 以减小偶然误差.下列一些原因可能使实验产Th误差:1.若两球不能正碰, 则误差较大;2.斜槽末端若不水平, 则得不到准确的平抛运动而造成误差;3.O、P、M、N 各点定位不准确带来了误差;4.测量和作图有偏差;5.仪器和实验操作的重复性不好, 使得每次做实验时不是统一标准.三、弹性碰撞和非弹性碰撞Ⅰ碰撞:相互运动的物体相遇, 在极短的时间内, 通过相互作用, 运动状态发Th显著变化的过碰撞的种类弹性碰撞以物体间碰撞前后两物体的总动能是斜碰⑴完全弹性碰撞:在弹性力的作用下, 系统内只发Th机械能的转移, 无机械能的损失, 称完全弹性碰撞。
⑵非弹性碰撞:非弹性碰撞:在非弹性力的作用下, 部分机械能转化为物体的内能, 机械能有了损失, 称非弹性碰撞。
⑶完全非弹性碰撞:在完全非弹性力的作用下, 机械能损失最大(转化为内能等), 称完全非弹性碰撞。
碰撞物体粘合在一起, 具有相同的速度。
第十七章波粒二象性一、量子论1.创立标志:1900 年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文, 标志着量子论的诞Th。
2.量子论的主要内容:①普朗克认为物质的辐射能量并不是无限可分的, 其最小的、不可分的能量单元即“能量子”或称“量子”, 也就是说组成能量的单元是量子。
②物质的辐射能量不是连续的, 而是以量子的整数倍跳跃式变化的。
3.量子论的发展①1905 年, 爱因斯坦奖量子概念推广到光的传播中, 提出了光量子论。
②1913 年, 英国物理学家玻尔把量子概念推广到原子内部的能量状态, 提出了一种量子化的原子结构模型, 丰富了量子论。
③到 1925 年左右, 量子力学最终建立。
二、黑体和黑体辐射1.热辐射现象任何物体在任何温度下都要发射各种波长的电磁波, 并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。
这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。
①.物体在任何温度下都会辐射能量。
②.物体既会辐射能量, 也会吸收能量。
物体在某个频率范围内发射电磁波能力越大, 则它吸收该频率范围内电磁波能力也越大。
辐射和吸收的能量恰相等时称为热平衡。
此时温度恒定不变。
实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。
2.黑体物体具有向四周辐射能量的本领, 又有吸收外界辐射来的能量的本领。
黑体是指在任何温度下, 全部吸收任何波长的辐射的物体。
3.实验规律:1)随着温度的升高, 黑体的辐射强度都有增加;2)随着温度的升高, 辐射强度的极大值向波长较短方向移动。
三、光电效应Ⅰ1、光电效应⑴光电效应在光(包括不可见光)的照射下, 从物体发射出电子的现象称为光电效应。
⑵光电效应的实验规律:装置:如右图。
①任何一种金属都有一个极限频率, 入射光的频率必须大于这个极限频率才能发Th光电效应, 低于极限频率的光不能发Th光电效应。
②光电子的最大初动能与入射光的强度无关, 光随入射光频率的增大而增大。
③大于极限频率的光照射金属时, 光电流强度(反映单位时间发射出的光电子数的多少), 与入射光强度成正比。
④ 金属受到光照, 光电子的发射一般不超过 10-9 秒。
2、波动说在光电效应上遇到的困难波动说认为:光的能量即光的强度是由光波的振幅决定的与光的频率无关。
所以波动说对解释上述实验规律中的①②④条都遇到困难3、光子说⑴量子论:1900 年德国物理学家普朗克提出:电磁波的发射和吸收是不连续的, 而是一份一份的, 每一份电磁波的能量ε=hν.⑵光子论:1905 年爱因斯坦提出:空间传播的光也是不连续的, 而是一份一份的, 每一份称为一个光子, 光子具有的能量与光的频率成正比。
即:ε=hν.其中ν是电磁波的频率, h为普朗克恒量:h=6.63×10-34 J ⋅s4、光子论对光电效应的解释金属中的自由电子, 获得光子后其动能增大, 当功能大于脱出功时, 电子即可脱离金属表面, 入射光的频率越大, 光子能量越大, 电子获得的能量才能越大, 飞出时最大初功能也越大。
5.光电效应方程:E=hν-W0kE k 是光电子的最大初动能, 当E k =0 时, νc 为极限频率, νc=W0 .h四、光的波粒二象性物质波Ⅰ光既表现出波动性, 又表现出粒子性大量光子表现出的波动性强, 少量光子表现出的粒子性强;频率高的光子表现出的粒子性强, 频率低的光子表现出的波动性强.实物粒子也具有波动性, 这种波称为德布罗意波, 也叫物质波。