人工神经网络理论基础.共61页文档

合集下载

《人工神经网络》课件

《人工神经网络》课件
添加项标题
动量法:在梯度下降法的基础上,引入动量项,加速收敛速 度
添加项标题
RMSProp:在AdaGrad的基础上,引入指数加权移动平 均,提高了算法的稳定性和收敛速度
添加项标题
随机梯度下降法:在梯度下降法的基础上,每次只使用一个 样本进行更新,提高了训练速度
添加项标题
AdaGrad:自适应学习率算法,根据历史梯度的平方和来 调整学习率,解决了学习率衰减的问题
情感分析:分析文本中的情感 倾向,如正面评价、负面评价 等
推荐系统
推荐系统是一种基于用户历史行为 和偏好的个性化推荐服务
推荐算法:协同过滤、深度学习、 矩阵分解等
添加标题
添加标题
添加标题
添加标题
应用场景:电商、社交媒体、视频 网站等
应用效果:提高用户满意度、增加 用户粘性、提高转化率等
Part Six
类型:Sigmoid、 Tanh、ReLU等
特点:非线性、可 微分
应用:深度学习、 机器学习等领域
权重调整
权重调整的目的:优化神经网络的性能 权重调整的方法:梯度下降法、随机梯度下降法等 权重调整的步骤:计算损失函数、计算梯度、更新权重 权重调整的影响因素:学习率、批次大小、优化器等
Part Four
《人工神经网络》PPT 课件
,
汇报人:
目录
01 添 加 目 录 项 标 题 03 神 经 网 络 基 础 知 识 05 神 经 网 络 应 用 案 例 07 未 来 发 展 趋 势 与 挑 战
02 人 工 神 经 网 络 概 述 04 人 工 神 经 网 络 算 法 06 神 经 网 络 优 化 与 改 进
深度学习算法
卷积神经网络(CNN):用于图像处理和识别 循环神经网络(RNN):用于处理序列数据,如语音识别和自然语言处理 长短期记忆网络(LSTM):改进的RNN,用于处理长序列数据 生成对抗网络(GAN):用于生成新数据,如图像生成和文本生成

人工神经网络教学课件

人工神经网络教学课件
2006年
Hinton等人提出了深度学习的概念,使得神经网络的层次和参数数量大大增加,提高了模型的表示能力和泛化能力。
1997年
Bengio等人提出了卷积神经网络(CNN),用于图像识别和处理。
感知机模型:由输入层、隐藏层和输出层组成,通过权重和激活函数实现非线性映射,完成分类或识别任务。
人工神经网络的基本结构
人工神经网络教学课件
目录
CONTENTS
人工神经网络简介人工神经网络的基本结构常见的人工神经网络模型人工神经网络的训练与优化人工神经网络的应用场景人工神经网络的未来展望
人工神经网络简介
人工神经网络是一种模拟生物神经网络结构和功能的计算模型,由多个神经元相互连接而成,通过训练和学习来处理和识别数据。
适用于小样本数据集和高维数据集
支持向量机在小样本数据集和高维数据集上表现良好,因为它主要基于数据的内积运算,而不是计算输入空间中的距离。这使得它在文本分类、生物信息学等领域得到广泛应用。
核函数的选择对模型性能影响较大
支持向量机通过核函数将输入空间映射到高维特征空间,然后在这个空间中找到最优决策边界。不同的核函数会导致不同的决策边界,因此选择合适的核函数对模型性能至关重要。
总结词
自然语言处理是人工神经网络的另一个应用领域,通过训练神经网络理解和生成自然语言文本,实现文本分类、情感分析、机器翻译等功能。
自然语言处理是利用人工神经网络对自然语言文本进行分析、理解和生成,广泛应用于搜索引擎、智能问答、新闻推荐等领域。通过训练神经网络理解和生成自然语言文本,可以实现文本分类、情感分析、机器翻译等功能,提高自然语言处理的准确性和效率。
人工神经网络具有自适应性、非线性、并行处理和鲁棒性等特点,能够处理复杂的模式识别和预测问题。

(完整版)神经网络理论基础

(完整版)神经网络理论基础

从人脑生理、心理学着手,模拟人脑 工作机理
大脑是由生物神经元构成的巨型网络, 它在本质上不同于计算机,是一种大规模 的并行处理系统,它具有学习、联想记忆、 综合等能力,并有巧妙的信息处理方法。
图片来自蒲慕明教授的第6届模式识别会议大会报告版权归其所有
图片来自蒲慕明教授的第6届模式识别会议大会报告版权归其所有
人工神经网络是模拟人脑思维 方式的数学模型,从微观结构和 功能上对人脑进行抽象和简化, 模拟人类智能
人工神经网络
是 对人脑的模拟
人工神经元 模拟 生物神经元
人工神经元 模拟 生物神经元
人工神经网络 模拟 生物神经网络
人工神经元 模拟 生物神经元
生物神经元
生物神经元
生物神经元
人工神经元
人工神经网络以数学手段来模拟 人脑神经网络结构和特性
神经网络是一个并行和分布式的 信息处理网络结构,它一般由许多个 神经元组成,每个神经元只有一个输 出,它可以连接到很多其他的神经元, 每个神经元输入有多个连接通道,每 个连接通道对应于一个连接权系数。
目前已有40多种模型
人脑神经网络信息处理的特点
一种模范动物神经网络行为特征,进 行分布式并行信息处理的算法数学模 型。
这种网络依靠系统的复杂程度,通过 调整内部大量节点之间相互连接的关 系,从而达到处理信息的目的。
人工神经网络具有自学习和自适应 的能力,可以通过预先提供的一批 相互对应的输入-输出数据,分析 掌握两者之间潜在的规律,最终根 据这些规律,用新的输入数据来推 算输出结果,这种学习分析的过程 被称为“训练”。(引自《环球科 学》2007年第一期《神经语言:老 鼠胡须下的秘密》)
图片来自蒲慕明教授的第6届模式识别会议大会报告版权归其所有

人工神经网络基础 PPT

人工神经网络基础 PPT
人工神经网络基础 PPT
人工神经网络概述 前向多层网络 自组织特征映射网络(SOFM)
人工神经网络概述
一 人工神经网络发展 二 生物学基础 三 人工神经网络结构 四 神经网络基本学习算法
一 人工神经网络发展
最早的研究可以追溯到20世纪40年代。1943年, 心理学家McCulloch和数学家Pitts合作提出了形式 神经元的数学模型。这一模型一般被简称M-P神经 网络模型,至今仍在应用,可以说,人工神经网络 的研究时代,就由此开始了。
大家学习辛苦了,还是要坚持
继续保持安静
一 人工神经网络发展
自20世纪80年代中期以来,世界上许多国家掀 起了神经网络的研究热潮,可以说神经网络已 成为国际上的一个研究热点。
一 人工神经网络发展
神经网络研究的两大派:
主要包括:生物学家、物理学家和心理学家
研究目的:给出大脑活动的精细模型和描述。
主要包括:工程技术人员
主要目的:怎样利用神经网络的基本原理,来构 造解决实际问题的算法,使得这些算法具有有趣 的和有效的计算能力。
人工神经网络属于此类
一 人工神经网络发展
人工神经网络概念: 人工神经网络:
就是把一个描述生物神经网络运行机理和工 作过程的抽象和简化了的数学-物理模型,表 达成为一个以其中的人工神经元为节点、以 神经元之间的连接关系为路径权值的有向图, 再用硬件或软件程序实现该有向图的运行, 其稳态运行结果体现生物神经系统的某种特 殊能力。
一 人工神经网络发展
人工神经网络是近年来得到迅速发展的一 个前沿课题。神经网络由于其大规模并行 处理、容错性、自组织和自适应能力和联 想功能强等特点,已成为解决很多问题的 有力工具。
二 生物学基础
生物神经元 突触信息处理 信息传递功能与特点

人工智能9人工神经网络基础

人工智能9人工神经网络基础

第九章人工神经网络基础人工神经网络(Artificial Neural Network, ANN)是在模拟人脑神经系统的基础上实现人工智能的途径,因此认识和理解人脑神经系统的结构和功能是实现人工神经网络的基础。

而人脑现有研究成果表明人脑是由大量生物神经元经过广泛互连而形成的,基于此,人们首先模拟生物神经元形成人工神经元,进而将人工神经元连接在一起形成人工神经网络。

因此这一研究途径也常被人工智能研究人员称为“连接主义”(connectionism)。

又因为人工神经网络开始于对人脑结构的模拟,试图从结构上的模拟达到功能上的模拟,这与首先关注人类智能的功能性,进而通过算法来实现的符号式人工智能正好相反,为了区分这两种相反的途径,我们将符号式人工智能称为“自上而下的实现方式”,而称人工神经网络称为“自下而上的实现方式”。

人工神经网络中存在两个基本问题。

第一个问题是人工神经网络的结构问题,即如何模拟人脑中的生物神经元以及生物神经元之间的互连方式的问题。

确定了人工神经元模型和人工神经元互连方式,就确定好了网络结构。

第二个问题是在所确定的结构上如何实现功能的问题,这一般是,甚至可以说必须是,通过对人工神经网络的学习来实现,因此主要是人工神经网络的学习问题。

具体地说,是如何利用学习手段从训练数据中自动确定神经网络中神经元之间的连接权值的问题。

这是人工神经网络中的核心问题,其智能程度更多的反映在学习算法上,人工神经网络的发展也主要体现在学习算法的进步上。

当然,学习算法与网络结构是紧密联系在一起的,网络结构在很大程度上影响着学习算法的确定。

本章首先阐述人脑神经系统,然后说明人工神经元模型,进而介绍人工神经网络的基本结构类型和学习方式。

9.1 人脑神经系统人工神经网络是在神经细胞水平上对人脑的简化和模拟,其核心是人工神经元。

人工神经元的形态来源于神经生理学中对生物神经元的研究。

因此,在叙述人工神经元之前,首先介绍目前人们对生物神经元的构成及其工作机理的认识。

第一讲 人工神经网络的基本知识

第一讲 人工神经网络的基本知识

1.3.2 人工神经元模型
1.3.2 人工神经元模型



一组连接(对应于生物神经元的突触),连接 强度由各连接上的权值表示,权值为正表示激 活,为负表示抑制。 一个求和单元,用于求取各输入信号的加权和 (线性组合). 一个非线性激活函数(作用函数),起非线性映 射作用并将神经元拘出幅度限制在一定范围内.
课程目的和基本要求



了解人工神经网络的有关研究思想,从中 学习开拓者们的部分问题求解方法。 通过实验进一步体会有关模型的用法和性 能,获取一些初步的经验。 查阅适当的参考文献,将所学的知识与自 己未来研究课题(包括研究生论文阶段的 研究课题)相结合起来,达到既丰富学习 内容,又有一定的研究和应用的目的。

1、控制输入对输出的激活作用; 2、对输入、输出进行函数转换; 3、将可能无限域的输入变换成指定的有 限范围内的输出。
几种常用的作用函数
1、阈值函数.
M-P 模型
几种常用的作用函数
2,分段线性函数
它类似于一个放大系数为1 的非线性放大器,当工作 于线性区时它是一个线性 组合器,放大系数趋于无 穷大时变成一个阈值单元。
1、构成
2、工作过程:树突
轴突
突触 其他神经元
1.3.1 生物神经网

3、六个基本特征:
1)神经元及其联接; 2)神经元之间的联接强度决定信号传递的强弱; 3)神经元之间的联接强度是可以随训练改变的; 4 )信号可以是起 刺激 作用的,也可以是起 抑制 作用 的; 5 )一个神经元接受的信号的 累积效果 决定该神经元 的状态; 6)每个神经元可以有一个“阈值”。
第二高潮期(1983~1990) 1982年,J. Hopfield提出循环网络,并 将Lyapunov函数作为网络性能判定的 能量函数,阐明了人工神经网络与动力 学的关系,用非线性动力学的方法来研 究人工神经网络的特性,建立了人工神 经网络稳定性的判别依据,指出信息被 存放在网络中神经元的联接上。

2人工神经网络基础知识

2人工神经网络基础知识
在人工神经网络中,神经元常被称为“处理单元”。 有时从网络的观点出发常把它称为“节点”。人工神经元 是对生物神经元的一种形式化描述,它对生物神经元的信 息处理过程进行抽象,并用数学语言予以描述;对生物神 经元的结构和功能进行模拟,并用模型图予以表达。
目前人们提出的神经元模型已有很多,其中最早提出且 影响最大的,是1943年心理学家McCulloch和数学家 W.Pitts在分析总结神经元基本特性的基础上首先提出的M -P模型。该模型经过不断改进后,形成目前广泛应用的形 式神经元模型。
单个神经元可以与多达上千个其他神经元的轴突末梢形 成突触连接,接受从突触前各个轴突传来的脉冲输入.这些输入 从不同部位输入给神经元,各输入的权重影响也不同.
输入一个神经元的信息在时间和空间上常呈现一种复杂 多变的形式,神经元需要对它们进行积累和整合加工,从而决定 其输出的时机和强弱.
整合---时间整合、空间整合。 时间整合—各输入脉冲抵达神经元的先后时间不同,一个脉 冲引起的突触后电位很小,但随着时间延续,另有脉冲到达, 总的突触后电位就增大。
一个神经元的各树突和细胞体往往通过突触和大量的其他 神经元相连接,从而靠突触把众多的神经元连成一个神经元 网络。(即一神经元树突和其它神经元轴突一一对接,)
突触连接相当于神经元间信息传递的输入与输出接口, 每个神经元有103-105个突触.
突触后电位的变化(其他神经元传来的信息),将对该神经元 产生综合作用,即当这些突出后电位的总和超过某一阈值 (threshold)时,该神经元便被激活,并产生脉冲,脉冲沿轴突向 其他神经元传递,从而实现神经元之间信息的传递.
胞体
(晶枝)
神经元(即神经细胞-neuron) 是由细胞体(body)、树突(晶 枝-dendrite)、轴突(axon)和 突触(synapse)四部分组成。

人工神经网络(网络资料)

人工神经网络(网络资料)

人工神经网络1、基本特征(1)结构特征 并行处理(时间)、分布式存储(空间)与容错性(2)能力特征 自适应性(自学习和自组织)2、基本功能(1)联想记忆 自联想和异联想(2)非线性映射(3)分类与识别(4)优化计算(5)知识处理3、神经元建模:(1)每个神经元都是一个多输入单输出的信息处理单元;(2)神经元输入分兴奋性输入和抑制性输入两种类型;(3)神经元具有空间整合性和阈值特性;(4)神经元输入与输出间有固定的时滞,主要取决于突触延搁;(5)忽略时间整合作用和不应期;(6)神经元本身是非时变的,即其突触时延和突触强度均为常数。

4、人工神经元模型令)(t x i 表示t 时刻神经元j 接收的来自神经元i 的输入信息,)(t o j 表示t 时刻神经元j 的输出信息,则神经元j 的状态可表达为:})]({[)(1∑=--=ni j ij i ij j T t x w f t o τ其中,ij τ为输入输出间的突触时延,j T 为神经元j 的阈值,ij w 为神经元i 到j 的突触连接系数或称权重值,()∙f 为神经元转移函数。

取1=ij τ,则有:})]({[)1(1∑=-=+ni j i ij j T t x w f t o输入总和常称为神经元在t 时刻的净输入,用下式表示:∑=='ni i ij j t x w t t ne 1)()()(t t ne j '体现了神经元j 的空间整合性,而未考虑时间整合,当0)(>-'j j T t t ne 时,神经元才能被激活。

上式还可表示为权重向量j W 和输入向量X 的点积:X W t ne T j j ='其中j W 和X 均为列向量,定义为:T nj j j j w w w W ),,,(21 =T n x x x X ),,,(21 =如果令10-=x ,j j T w =0,则有j j w x T 00=-,因此净输入与阈值之差可表达为:∑====-'ni T j i ij j j j X W x w net T t ne 0综合以上各式,神经元模型可简化为:)()(X W f net f o T j j j ==5、神经元的转移函数(1)阈值型转移函数(M-P 模型) 处理离散信号单极性阈值型转移函数 单位阶跃函数双极性阈值型转移函数 sgn(x)(2)非线性转移函数(单极性/双极性Sigmoid 函数曲线)实数域R 到[0,1]闭集的非减性连续函数,代表了状态连续型神经元模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

Байду номын сангаас
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
61

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
人工神经网络理论基础. 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
相关文档
最新文档