人工智能发展综述
《2024年人工智能技术发展综述》范文

《人工智能技术发展综述》篇一一、引言随着科技的飞速发展,人工智能()技术已经成为了全球科技领域内最为热门的话题之一。
技术以其强大的自主学习和自主决策能力,对现代社会的发展和进步起到了不可替代的推动作用。
从基础的智能语音助手到高级的机器人,再到复杂的数据分析模型,技术的应用场景和需求越来越广泛,这也为人工智能技术的快速发展提供了源源不断的动力。
二、人工智能技术的发展历程人工智能技术的发展可以追溯到上世纪五十年代。
早期的人工智能技术主要基于符号逻辑和知识表示,用于解决一些简单的推理和决策问题。
随着计算机技术的飞速发展,特别是深度学习和机器学习等技术的出现,人工智能技术得到了极大的推动和突破。
在过去的几十年里,人工智能技术经历了从符号主义到连接主义,再到深度学习的三个主要阶段。
每个阶段都有其独特的特点和挑战,但都为人工智能技术的快速发展奠定了基础。
三、人工智能技术的关键技术及发展现状1. 深度学习:深度学习是人工智能技术的重要分支,通过模拟人脑神经网络的工作方式,实现复杂的模式识别和决策任务。
目前,深度学习已经在语音识别、图像识别、自然语言处理等领域取得了显著的成果。
2. 机器学习:机器学习是人工智能技术的另一重要分支,通过训练大量的数据来建立模型,实现自动学习和决策。
随着大数据和云计算技术的发展,机器学习的应用越来越广泛。
3. 自然语言处理:自然语言处理技术是技术的重要应用之一,旨在使计算机理解和处理人类语言的文字信息。
随着深度学习技术的发展,自然语言处理的能力越来越强大。
四、人工智能技术的具体应用1. 智能语音助手:通过语音识别和自然语言处理技术,智能语音助手可以实现语音输入、语音查询、语音控制等功能。
2. 机器人技术:机器人技术是技术的另一重要应用领域,可以应用于工业制造、医疗护理、军事侦察等领域。
3. 数据分析与预测:技术可以通过分析大量的数据来预测未来的趋势和事件,为企业决策提供有力的支持。
人工智能技术发展趋势研究综述毕业论文文献选读

人工智能技术发展趋势研究综述毕业论文文献选读随着科技的不断进步和发展,人工智能技术作为一种前沿技术,正日益受到人们的关注和重视。
本文将对人工智能技术的发展趋势进行研究综述,通过选读相关文献,探讨人工智能技术未来的发展方向和可能的影响。
一、人工智能技术的发展历程人工智能技术起源于上世纪50年代,经过几十年的发展,如今已经成为当今科技领域的热门话题。
早期的人工智能技术主要集中在模式识别、专家系统等领域,随着计算机性能的提升和大数据技术的发展,人工智能技术得到了迅猛的发展。
目前,人工智能技术已经应用于各个领域,包括医疗、金融、交通等,为人们的生活带来了诸多便利。
二、人工智能技术的发展趋势1. 深度学习技术的应用深度学习作为人工智能技术的一个重要分支,近年来取得了巨大的突破。
通过构建深层神经网络模型,深度学习技术在图像识别、语音识别等领域取得了显著的成果。
未来,深度学习技术有望在更多领域得到应用,为人工智能技术的发展提供强大支持。
2. 人工智能与大数据的融合大数据技术的兴起为人工智能技术的发展提供了重要支撑。
人工智能技术需要大量的数据支持,而大数据技术能够提供海量数据的存储和处理能力。
人工智能技术与大数据的融合将进一步推动人工智能技术的发展,为各行业带来更多创新应用。
3. 人工智能在自然语言处理领域的应用自然语言处理是人工智能技术的重要应用领域之一,涉及机器翻译、情感分析、问答系统等多个方面。
随着人工智能技术的不断进步,自然语言处理领域的研究也在不断深化,未来人工智能技术在语言处理方面的应用将更加广泛。
4. 人工智能与物联网的结合物联网技术的发展为人工智能技术的应用提供了更广阔的空间。
人工智能技术可以通过物联网设备获取实时数据,实现智能化的控制和管理。
人工智能与物联网的结合将为智慧城市、智能家居等领域带来更多可能性。
三、人工智能技术的影响与挑战1. 社会影响人工智能技术的发展将对社会产生深远影响,可能改变人们的生活方式和工作模式。
有关人工智能的综述

有关人工智能的综述一、人工智能综述1.人工智能的起源在AI历史上,有逻辑规律和统计规律之争,具体而言,人工智能有两大主流学派符号主义:又称为计算主义或逻辑主义,它认为智能需要通过精确的逻辑推理计算实现。
这是传统的人工智能方法,最典型的例子是专家系统和知识库,现在有了一个更优雅的名字,叫知识图谱。
统计主义:它更注重从数据和经验中学习统计规律。
目前绝大多数机器学习方法都属于统计主义,因为我们目前仍然缺乏让电脑自动提炼和运用逻辑规律的有效方法。
这两大学派各有所长,都经历过数次兴衰,人工智能也曾经理两次浪潮与两次低谷,目前我们正位于第三次浪潮,而这一切与计算机硬件的发展有着密不可分的联系。
在两千多年前,从春秋战国时期《列子》中描述的偃师造人,到古希腊传说中的青铜机器人Talos,人类就曾梦想创造出与人类具有相同行为模式的智能机器。
而17世纪Leibnitz的数学逻辑与Pascal 的机器加法机,可谓是人工智能算法和硬件的先驱。
部分摘自《深度卷积网络-原理与实践》一书2.人工智能的范畴亚瑟·塞缪尔(1959),机器学习:使计算机无需明确编程就能学习的研究领域。
Tom Mitchell(1998)学习问题:一个计算机程序被称为从经验E中学习关于某个任务T和某个性能度量P,如果它在T上的性能(用P度量)可以随着经验E的提高而提高。
3.人工智能研究方向–技术分类人类语言技术(包括自然语言处理及语音技术)计算机视觉(包括图像、视频及三维视觉等)机器人与自动化技术(自动驾驶技术等)机器学习算法(深度学习与强化学习等)智能基础设施(芯片、云计算与物联网等)数据智能技术(大数据、知识图谱与推荐系统等)前沿智能技术(脑机接口、量子计算与沉浸式技术等)4.人工智能研究方向5.论文收录方向6.人工智能应用状况企业和政府对人工智能的应用逐渐升温。
在决定企业产生经济效益的各个环节,都已经能够看到人工智能的身影:AI帮助人们安全生活、远程交易、边界通行;深度学习和知识图谱帮助企业在生产过程中分析预测、科学决策;人机对话提升了拜访等级、服务响应中的用户体验。
《2024年人工智能技术发展综述》范文

《人工智能技术发展综述》篇一一、引言人工智能(Artificial Intelligence,)已经成为当前科技领域的热门话题。
从上世纪五十年代起,随着计算机科技的快速发展,人工智能技术开始萌芽并不断得到应用与改进。
人工智能以其独特的能力,为众多领域提供了革命性的解决方案。
本文旨在全面地综述人工智能技术的发展历程、现状以及未来趋势。
二、人工智能技术的发展历程1. 早期发展阶段早期的人工智能技术主要关注于机器模拟人类智能的可能性。
从上世纪五十年代开始,研究者们尝试通过模拟人类的思维过程和认知能力,构建简单的机器智能系统。
然而,由于技术限制和计算能力的不足,这一阶段的人工智能系统仅限于解决一些简单的任务。
2. 知识表示与推理阶段进入八十年代后,人工智能领域的研究开始向知识表示和推理方面发展。
研究者们利用各种方法,如逻辑、语义网络、产生式规则等,建立了一系列的模型来描述知识和实现推理。
这一阶段的发展使得人工智能能够在更复杂的任务中发挥重要作用。
3. 深度学习与神经网络阶段随着计算能力的不断提升,特别是深度学习技术的发展,人工智能进入了一个新的阶段。
深度学习使得人工智能能够在语言理解、图像识别、语音识别等许多领域取得了突破性进展。
通过构建大规模神经网络模型,系统的能力得以大幅度提升。
三、人工智能技术的现状目前,人工智能已经在各个领域得到广泛应用,包括医疗、教育、交通、军事等。
在医疗领域,技术已经能协助医生进行疾病的诊断和治疗。
在教育领域,的应用已经实现了智能教学和个性化学习等目标。
此外,也在助力解决社会难题,如无人驾驶车辆为交通行业带来了巨大便利,提高行车安全并减少拥堵等。
同时,人工智能的不断发展也带来了伦理、法律等社会问题。
为了更好地发挥人工智能的优势并避免潜在的风险,各国家和地区都在积极探索相关的法律法规和伦理准则。
此外,业界和学术界也在持续开展人工智能的安全和可信性研究,为解决技术在社会应用中可能产生的潜在风险和问题提供了支持。
人工智能新技术发展综述报告范文

人工智能新技术发展综述报告范文一、自然语言处理技术的突破自然语言处理(NLP)技术一直是人工智能领域的研究热点之一。
近年来,随着深度学习算法的快速发展,自然语言处理技术取得了巨大的突破。
2018年,谷歌发布了BERT模型,该模型在多项NLP任务中取得了state-of-the-art的表现,大大提升了文本理解和语言生成的能力。
GPT-3模型更是在语言生成方面达到了前所未有的水平,展现出了惊人的创造力和表达能力。
二、计算机视觉技术的深度发展计算机视觉技术在人工智能领域的应用也取得了长足的进步。
随着卷积神经网络(CNN)的不断优化和改进,计算机视觉算法在图像识别、物体检测、图像生成等方面取得了显著成果。
深度学习模型如YOLO、Mask R-CNN等在目标检测和图像分割领域表现出色,推动了计算机视觉技术的发展。
三、强化学习技术的新应用强化学习作为人工智能的重要分支,近年来也取得了许多突破性的进展,在游戏、机器人控制、自动驾驶等领域都有了广泛的应用。
以AlphaGo为代表的基于强化学习的人工智能系统成功击败了多名国际围棋高手,引起了全球范围内的热烈讨论。
强化学习在自动驾驶领域也取得了重大突破,许多公司都在积极探索基于强化学习的自动驾驶技术。
四、应用领域的拓展与融合人工智能技术的应用领域也在不断拓展和融合,涉及医疗、金融、农业、制造等多个行业。
在医疗领域,人工智能技术已经被成功应用于疾病诊断、药物研发、健康管理等方面;在金融领域,人工智能技术被用于风险预测、欺诈检测、交易智能等方面。
这些领域的拓展与融合为人工智能技术的发展提供了更广阔的空间。
五、未来发展趋势展望随着人工智能技术的不断进步,未来的发展方向将更加注重人工智能与其他领域的融合,例如人工智能与物联网、生物医学、无人机等领域的结合将会成为未来的研究热点。
人工智能技术的发展还将更加注重对技术伦理、安全和隐私保护的关注,建立人工智能技术的良性发展框架,为人工智能技术的未来发展打下良好的基础。
人工智能 文献综述 参考文献

人工智能文献综述人工智能(Artificial Intelligence,简称本人)是指利用计算机技术模拟人类智能的一种技术和科学领域。
随着计算机技术和数据处理能力的不断提升,人工智能已经在很多领域得到广泛应用,包括医疗、金融、交通、军事等。
本文通过查阅相关文献,对人工智能的发展历程、研究现状以及未来发展趋势进行综述。
一、人工智能的发展历程人工智能的起源可以追溯到20世纪50年代,当时的学者们开始探索如何利用计算机技术来模拟人类的智能思维过程。
随着计算机硬件和软件技术的不断进步,人工智能开始逐渐获得了更多的关注和投入。
在此过程中,人工智能的研究方向也逐渐明确,包括机器学习、深度学习、自然语言处理、图像识别等领域。
二、人工智能的研究现状目前,人工智能已经在多个领域取得了显著的进展。
在机器学习领域,深度学习技术被广泛应用于语音识别、图像识别、自然语言处理等任务中,取得了很好的效果。
自然语言处理技术也在智能掌柜、智能翻译、舆情分析等领域得到了应用。
智能机器人、自动驾驶、智能家居等领域也取得了一些突破性的进展。
三、人工智能的未来发展趋势在未来,人工智能技术仍将继续深入发展。
在技术方面,人工智能将不断提升在多模态感知、认知推理、知识表示等方面的能力,实现更加智能的应用。
在应用方面,人工智能将进一步渗透到各行各业,包括医疗、金融、教育、制造等领域,助力产业升级和社会进步。
另外,在伦理和政策方面,人工智能的发展也需要积极引导,在保障个人隐私、数据安全、社会公平等方面做出相应规范和监管。
人工智能作为一种前沿的技术,正深刻改变着人类的生产生活方式,对人类社会的发展产生着深远的影响。
随着技术的不断进步和应用场景的不断拓展,人工智能将为人类带来更多的便利和发展机遇。
参考文献:1. Russell, S. (2017). Artificial intelligence: A modern approach. New York: Macmillan.2. Goodfellow, I., Bengio, Y., Courville, A. (2016). Deep learning. MIT press.3. Silver, D., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.4. Simon, H. A. (1957). Models of man; social and rational. New York: Wiley.。
综述文章近三年文献

综述文章近三年文献
摘要:
一、引言
二、近三年文献综述
1.人工智能的发展
2.人工智能在各个领域的应用
3.人工智能面临的挑战与未来发展趋势
三、结论
正文:
【引言】
近年来,人工智能技术在我国取得了举世瞩目的成果,为各行各业带来了巨大的变革。
本文将综述近三年关于人工智能的文献,总结其发展状况、应用领域以及面临的挑战和未来发展趋势。
【近三年文献综述】
1.人工智能的发展
近三年来,我国人工智能领域的研究取得了突破性的进展。
在硬件方面,人工智能芯片不断优化,算力得到显著提升;在算法方面,深度学习、强化学习等先进技术得到了广泛应用。
此外,我国政府也高度重视人工智能的发展,出台了一系列政策支持,为人工智能产业的发展提供了良好的环境。
2.人工智能在各个领域的应用
在近三年的文献中,人工智能在各个领域的应用得到了广泛的探讨。
例
如,在医疗领域,人工智能可以辅助医生进行疾病诊断,提高诊断的准确性和效率;在教育领域,人工智能可以为学生提供个性化的学习方案,提高学习效果。
此外,人工智能还在金融、交通、农业等领域发挥着重要作用。
3.人工智能面临的挑战与未来发展趋势
尽管人工智能取得了显著的进展,但仍然面临着诸多挑战,如数据安全、隐私保护、人工智能伦理等问题。
在未来,人工智能的发展将更加注重人与机器的和谐共处,以及人工智能技术与传统行业的深度融合。
【结论】
综上所述,近三年来,我国人工智能发展迅速,应用领域广泛,但仍然面临着诸多挑战。
《2024年人工智能技术发展综述》范文

《人工智能技术发展综述》篇一一、引言人工智能(Artificial Intelligence,)已经成为当前科技领域的热门话题。
其快速发展及广泛的应用正在对全球经济、科技、文化和社会产生深远的影响。
本综述将就人工智能技术的发展历程、关键技术、应用领域、发展趋势以及面临的挑战进行全面的分析和总结。
二、人工智能技术的发展历程自20世纪50年代人工智能概念首次提出以来,经过几十年的发展,人工智能技术已经取得了显著的进步。
从最初的符号逻辑推理到现在的深度学习,人工智能的发展经历了以下几个阶段:1. 符号逻辑推理阶段:这个阶段主要关注的是符号逻辑和规则推理,是人工智能的初步尝试。
2. 知识表示与推理阶段:该阶段开始利用知识表示和推理来模拟人类智能。
3. 机器学习与深度学习阶段:随着计算机技术的进步,机器学习和深度学习逐渐成为人工智能的主流技术。
三、关键技术1. 机器学习:机器学习是人工智能的核心技术之一,通过训练算法使计算机能够从数据中学习和识别模式。
2. 深度学习:深度学习是机器学习的一个分支,通过模拟人脑神经网络的工作方式,实现对复杂数据的处理和识别。
3. 自然语言处理:自然语言处理使计算机能够理解和生成人类语言,是人工智能在语言交流方面的关键技术。
4. 计算机视觉:计算机视觉使计算机能够识别和处理图像和视频信息,是实现智能识别和监控的重要技术。
四、应用领域人工智能技术的应用已经渗透到各个领域,包括但不限于:1. 工业制造:通过智能机器人和自动化设备提高生产效率和质量。
2. 医疗健康:利用大数据和机器学习技术进行疾病预测、诊断和治疗。
3. 金融服务:通过智能投顾和风险控制系统提高金融服务的质量和效率。
4. 交通物流:利用智能交通系统和物流管理系统提高交通效率和物流效率。
5. 教育科技:利用智能教学系统和在线教育平台改善教育质量和效率。
五、发展趋势未来,人工智能技术的发展将呈现以下几个趋势:1. 算法优化:随着算法的不断优化,人工智能将能够处理更复杂的任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工智能发展综述摘要:概要的阐述下人工智能的概念、发展历史、当前研究热点和实际应用以及未来的发展趋势。
关键词:人工智能; 前景; 发展综述人工智能(Artificial Intelligence)自1956 年正式问世以来的五十年间已经取得了长足的进展,由于其应用的极其广泛性及存在的巨大研究开发潜力, 吸引了越来越多的科技工作者投入人工智能的研究中去。
尤其是八十年代以来出现了世界范围的开发新技术的高潮,许多发达国家的高科技计划的重要内容是计算机技术,而尤以人工智能为其基本重要组成部分。
人工智能成为国际公认的当代高技术的核心部分之一。
1什么是人工智能美国斯坦福大学人工智能研究中心尼尔逊教授给人工智能下了这样一个定义:人工智能是关于知识的学科, 是怎样表示知识以及怎样获得知识并使用知识的科学。
从人工智能所实现的功能来定义是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别学习和问题求解等思维活动。
这些反映了人工智能学科的基本思想和基本内容, 即人工智能是研究人类智能活动的规律。
若是从实用观点来看,人工智能是一门知识工程学:以知识为对象,研究知识的获取、知识的表示方法和知识的使用。
从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。
如果仅从技术的角度来看,人工智能要解决的问题是如何使电脑表现智能化,使电脑能更灵活方效地为人类服务。
只要电脑能够表现出与人类相似的智能行为,就算是达到了目的,而不在乎在这过程中电脑是依靠某种算法还是真正理解了。
人工智能就是计算机科学中涉及研究、设计和应用智能机器的—个分支,人工智能的目标就是研究怎样用电脑来模仿和执行人脑的某些智力功能,并开发相关的技术产品,建立有关的理论。
2 人工智能历史当然,人工智能的发展也并不是一帆风顺的,人工智能的研究经历了以下几个阶段:第一阶段:50年代人工智能的兴起和冷落人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题求解程序、LISP 表处理语言等。
但由于消解法推理能力的有限,以及机器翻译等的失败,使人工智能走入了低谷。
这一阶段的特点是:重视问题求解的方法,忽视知识重要性。
第二阶段: 60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。
DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR 探矿系统、Hearsay-II语音理解系统等专家系统的研究和开发,将人工智能引向了实用化。
并且,1969年成立了国际人工智能联合会议(International Joint Conferences on Artificial Intelligence 即IJCAI)。
第三阶段: 80年代,随着第五代计算机的研制,人工智能得到了很大发展。
日本1982年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统K I P S”,其目的是使逻辑推理达到数值运算那么快。
虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
第四阶段: 80年代末,神经网络飞速发展。
1987 年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。
此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
第五阶段: 90年代,人工智能出现新的研究高潮。
由于网络技术特别是国际互连网技术的发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。
不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,将人工智能更面向实用。
另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。
人工智能已深入到社会生活的各个领域。
3 人工智能的研究与应用领域人工智能存在许多不同的研究领域,如语言处理、自动定理证明、计算智能、智能数据检索系统、视觉系统、问题求解、人工智能方法和程序语言以及自动程序设计等。
在过去的40年中已经建立了一些具有人工智能的计算机系统, 能够求解微分方程、下棋、设计和分析集成电路、合成人类自然语言、检索情报、诊断疾病以及控制太空飞行器和水下机器人等。
目前,人工智能的研究是与具体领域相结合进行的。
基本上有如下领域: (1)专家系统专家系统是依靠人类专家已有的知识建立起来的知识系统,是一种具有特定领域内大量知识与经验的程序系统。
它应用人工智能技术、模拟人类专家求解问题的思维过程求解领域内的各种问题, 其水平可以达到甚至超过人类专家的水平。
目前专家系统是人工智能研究中开展较早、最活跃、成效最多的领域,广泛应用于医疗诊断、地质勘探、文化教育等各方面。
它是在特定的领域内具有相应的知识和经验的程序系统,它应用人工智能技术、模拟人类专家解决问题时的思维过程,来求解领域内的各种问题,达到或接近专家的水平。
(2)机器学习机器学习就是机器自己获取知识。
机器学习的研究, 主要是研究人类学习的机理、人脑思维的过程; 机器学习的方法; 建立针对具体任务的学习系统。
还有机器人学这个领域所研究的问题, 包括从机器人手臂的最佳移动到实现机器人的目标动作序列的规划方法等。
因此开发高智能机器人是一个重要研究方面。
(3)模式识别模式识别是研究如何使机器具有感知能力, 主要研究视觉模式和听觉模式的识别, 如识别物体、地形、图像、字体(如签字)等。
在日常生活各方面以及军事上都有广大的用途。
近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的用统计模式和结构模式的识别方法。
特别神经网络方法在模式识别中取得较大进展。
当前模式识别主要集中在图形识别和语音识别。
图形识别方面例如识别各种印刷体和某些手写体文字, 识别指纹、白血球和癌细胞等的技术已经进入实用阶段。
语音识别主要研究各种语音信号的分类。
语音识别技术近年来发展很快, 现已有商品化产品如扫描仪的上市。
(4)人工神经网络人工神经网络是在研究人脑的奥秘中得到启发,试图用大量的处理单元(人工神经元、处理元件、电子元件等)模仿人脑神经系统工程结构和工作机理。
是通过范例的学习,修改了知识库和推理机的结构,达到实现人工智能的目的。
在人工神经网络中,信息的处理是由神经元之间的相互作用来实现的,知识与信息的存储表现为网络元件互连间分布式的物理联系,网络的学习和识别取决于和神经元连接权值的动态演化过程。
人工神经网络也许永远也无法代替人脑,但是他能帮助人类扩展对外部世界的认识和智能控制。
多年来,个人工神经网络的研究取得了较大的进展,成为具有一种独特风格的信息处理学科。
目前,人工神经网络的发展趋势有如下特点:①新的人工神经网络模型产生频率非常之快。
②现有的人工神经网络模型的完善改进速度喜人。
③人工神经网络结合和其他一些现代优化计算方法的结合运用日见增多。
如结合混沌理论、遗传+ 神经、模拟退火+神经算法等成功运用的实例。
(5)智能决策支持系统决策支持系统是属于管理科学的范畴,它与“知识-智能”有着极其密切的关系。
自20世纪80年代以来专家系统在许多方面取得成功,将人工智能中特别是智能和知识处理技术应用于决策支持系统,扩大了决策支持系统的应用范围,提高了系统解决问题的能力,这就成为智能决策支持系统。
(6)自动定理证明自动定理证明是指利用计算机证明非数值性的结果,即确定真假值。
早期研究数学系统的机器是1926年由美国加州大学伯里克分校制作的。
如不断开发能够对某些问题或事物进行推理证明,这些程序能够借助于对事实数据库的操作来证明和作推理判断。
(7)自然语言理解及自动程序设计自然语言理解方面已经开发出能够从内部数据库回答英语提出问题的程序, 此外, 这些程序通过阅读文本材料,还能够把其中的句子从一种语言翻译为另一种语言,执行用英语给出的指令和获取知识等。
自动程序方面的目的在于,使计算机自身能够根据各种不同目的和要求来自动编写计算机程序,既可用高级语言编程,又可用英语描述算法。
目前已经可以自动编写出一些简单的程序。
5 人工智能的前景人工智能的近期研究目标是研制可代替人类从事脑力劳动的智能计算机, 要准确地预测人工智能的未来是不可能的。
但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展:模糊处理、并行化、神经网络和机器情感。
人工神经网络是未来人工智能应用的新领域,而人工智能领域的下一个突破可能在于赋予计算机情感能力。
情感能力对于计算机与人的自然交往至关重要。
结论:人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。
今天,已经有很多人工智能研究的成果进入人们的日常生活。
将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。
今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。
科学研究讲创新,而创新必须接受应用和市场的检验。
因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。
参考文献[1] 王文杰.人工智能原理与应用[M].北京:人民邮电出版社,2004.[2] 张玉峰.智能情报系统[M].武汉:武汉大学出版社,1991.[3] 王万良.人工智能及其应用[M].北京:高等教育出版社,2005.[4] 蔡自兴.人工智能基础[M].北京:清华大学出版社,1996.[5] 张仰森.人工智能原理与应用[M].北京:高等教育出版社,2004.[6] 李陶深.人工智能[M].重庆:重庆大学出版社,2002.[7] Rob Callan.人工智能[M].黄厚宽, 田盛丰,译.北京:电子工业出版社,2004.[9] 蔡自兴. 人工智能基础[M ] . 北京: 高等教育出版社, 2005.。