计量经济学-第11章 异方差性
计量经济学试题异方差性与加权最小二乘法

计量经济学试题异方差性与加权最小二乘法计量经济学试题:异方差性与加权最小二乘法一、引言计量经济学作为经济学的一个重要分支,通过运用数理统计和经济理论的方法,旨在分析经济现象并进行经济政策的评估。
在实证分析中,经常会遇到异方差性的问题,而加权最小二乘法是处理异方差性的一种重要方法。
本文将探讨异方差性的来源、加权最小二乘法的原理与应用。
二、异方差性的来源异方差性是指随着自变量的变化,随机误差的方差也会发生变化。
异方差性可能会导致经验结果不准确、偏离真实情况,并影响对经济现象的解释和预测。
以下是可能导致异方差性的原因:1. 条件异方差性:数据的方差可能与自变量之间的关系存在相关性。
例如,在研究家庭收入对教育支出的影响时,高收入家庭的支出方差可能比低收入家庭更大。
2. 记忆效应:在纵向数据分析中,随着时间的推移,个体经济行为可能受到过去观测结果的影响,进而导致异方差性的存在。
3. 测量误差:数据收集中的测量误差可能会导致异方差性。
例如,对于某些变量,测量误差可能更大,从而导致随机误差的方差不一致。
三、加权最小二乘法的原理加权最小二乘法(Weighted Least Squares, WLS)是一种用于处理异方差性的回归方法,其原理是通过给不同观测值分配不同的权重,以减小异方差的影响。
具体来说,加权最小二乘法的目标是最小化加权残差平方和。
在加权最小二乘法中,权重的选择是关键。
常见的权重选择方法包括:1. 方差稳定化权重:根据方差与自变量的关系,将观测值的权重设置为方差的倒数,以减小方差变化带来的影响。
2. 广义最小方差法权重:将权重设置为具有稳定方差的函数形式,例如Huber权重函数、Andrews权重函数等。
3. 经验权重:根据经验判断,给不同观测值分配权重,以反映其重要性。
四、加权最小二乘法的应用加权最小二乘法在计量经济学中有广泛的应用。
以下是一些常见的应用领域:1. 金融经济学:在金融领域中,异方差性往往普遍存在。
(完整)计量经济学考试重点整理

计量经济学考试重点整理第一章:P1:什么是计量经济学?由哪三组组成?定义:“用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不能和计量经济学混为一谈。
计量经济学与经济统计学绝非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。
经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分条件。
三者结合起来,就是力量,这种结合便构成了计量经济学。
”P9:理论模型的设计主要包含三部分工作,即选择变量,确定变量之间的数学关系,拟定模型中待估计参数的数值范围。
P12:常用的样本数据:时间序列,截面,虚变量数据P13:样本数据的质量(4点)完整性;准确性;可比性;一致性P15-16:模型的检验(4个检验)1、经济意义检验2、统计检验拟合优度检验总体显著性检验变量显著性检验3、计量经济学检验异方差性检验序列相关性检验共线性检验4、模型预测检验稳定性检验:扩大样本重新估计预测性能检验:对样本外一点进行实际预测P16计量经济学模型成功的三要素:理论、方法和数据。
P18-20:计量经济学模型的应用1、结构分析经济学中的结构分析是对经济现象中变量之间相互关系的研究.结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析。
计量经济学模型的功能是揭示经济现象中变量之间的相互关系,即通过模型得到弹性、乘数等。
2、经济预测计量经济学模型作为一类经济数学模型,是从用于经济预测,特别是短期预测而发展起来的。
计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律为主要技术手段。
对于非稳定发展的经济过程,对于缺乏规范行为理论的经济活动,计量经济学模型预测功能失效。
模型理论方法的发展以适应预测的需要。
3、政策评价政策评价是指从许多不同的政策中选择较好的政策予以实行,或者说不同的政策对经济目标所产生的影响的差异。
异方差性的概念、类型、后果、检验及其修正方法含案例

Yi和Xi分别为第i个家庭的储蓄额和可支配收入。
在该模型中,i的同方差假定往往不符合实际情况。对高收 入家庭来说,储蓄的差异较大;低收入家庭的储蓄则更有规律 性(如为某一特定目的而储蓄),差异较小。
因此,i的方差往往随Xi的增加而增加,呈单调递增型变化 。
– 在选项中,EViews提供了包含交叉项的怀特检验“White Heteroskedasticity(cross terms)”和没有交叉项的怀特检 验“White Heteroskedasticity(no cross terms)” 这样两个 选择。
• 软件输出结果:最上方显示两个检验统计量:F统计 量和White统计量nR2;下方则显示以OLS的残差平 方为被解释变量的辅助回归方程的回归结果。
随机误差项具有不同的方差,那么: 检验异方差性,也就是检验随机误差项的方差与解
释变量观测值之间的相关性及其相关的“形式”。 • 各种检验方法正是在这个共同思路下发展起来的。
路漫漫其修远兮, 吾将上下而求索
问题在于:用什么来表示随机误差项的方差? 一般的处理方法:
路漫漫其修远兮, 吾将上下而求索
2.图示检验法
路漫漫其修远兮, 吾将上下而求索
3.模型的预测失效
一方面,由于上述后果,使得模型不具有良好的统计性质;
【书上这句话有点问题】
其中 所以,当模型出现异方差性时,Y预测区间的建立将发生困 难,它的预测功能失效。
路漫漫其修远兮, 吾将上下而求索
三、异方差性的检验(教材P111)
1.检验方法的共同思路 • 既然异方差性就是相对于不同的解释变量观测值,
(注意:其中的2完全可以是1)
计量经济学讲义——线性回归模型的异方差问题1

Gleiser检验与Park检验存在同样的弱点。
(9.3) (9.4) (9.5)
9.4 异方差的诊断-方法4:怀特(White)检验法
Yi = B1 + B 2 X 2 i + B3 X 3 i + u i
2、做如下辅助回归: (9.6) (9.7)
1、首先用普通最小二乘法估计方程(9.6),获得残差ei
E(Y|X)=α+β*X Y
+u +u -u -u -u +u
0
同方差(homoscedasticity)
X 0
E(Y|X)=α+β*X
异方差(heteroscedasticity)
X
一元线性回归分析-回归的假定条件
假定5 无自相关假定,即两个误差项之间不相关。 Cov(ui,uj) = 0。
ui
9.2 异方差的性质
例9.1 美国创新研究:销售对研究与开发的影响 ^ R&D = 266.2575 + 0.030878*Sales se=(1002.963) (0.008347) t =(0.265471) (3.699508) p =(0.7940) R2 = 0.461032 从回归结果可以看出: (1)随着销售额的增加,R&D也逐渐增加,即销售 额每增加一百万美元,研发相应的增加3.1 万美元。 (2)随着销售额的增加,R&D支出围绕样本回归线 的波动也逐渐变大,表现出异方差性。 (0.0019)
计量经济学--异方差性讲解

图1:我国税收和GDP
图2:1998年我国制造工业和利润
X-GDP Y-税收
X-销售收入 Y-销售利润
两个散点图有共同的特征,随着自变量增加,因变量也 增加,但是图2中,当X比较小时,数据点相对集中,随 着X增大,数据点变得相对分散。而图1中数据分布却没 有出现这一特征。
异方差的性质
➢经典线形回归模型的一个重要假定是同方差性:
PRF的干扰项 u i 是同方差的(homoscedastic)
即: E(ui2) 2
i 1, 2, , n (3.3.1)
➢异方差性是指,ui 的条件方差(= Yi 的条件方差)
随着X的变化而变化,用符号表示为:
E (ui2
)
2 i
(3.3.2)
Var(Yi ) Var(ui )
异方差产生的主要原因
——这就是GLS方法,得到的是GLS估计量
•模型函数形式存在设定误差 •模型中遗漏了一些重要的解释变量 •随机因素本身的影响
异方差较之 同方差更为
常见
7
异方差的具体理由
➢按照边错边改学习模型(error—learning models),人 们的行为误差随时间而减少。
➢随着收入的增长,人们在支出和储蓄中有更大的灵活
性。在做储蓄对收入的回归中, i2与收入俱增
此时如果仍采用
计算斜率参数的方差,将会
产生估计偏误,偏误的大小取决与因子值的大小。
17
3.t检验的可靠性降低
由于异方差的存在,无法正确估计参数的方差和标 志误差,因此也影响到t检验的效果
4.模型的预测误差增大
模型的预测区间和随机误差项的方差有着紧密联 系,随着随机误差项方差的增大,模型的预测区 间也随之增大,模型的预测误差也会相应增加。
计量经济学:异方差性

计量经济学:异方差性异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,上一章介绍的多重共线性只是其中一个方面,本章将讨论违背基本假定的另一个方面——异方差性。
虽然它们都是违背了基本假定,但前者属于解释变量之间存在的问题,后者是随机误差项出现的问题。
本章将讨论异方差性的实质、异方差出现的原因、异方差的后果,并介绍检验和修正异方差的若干方法。
第一节异方差性的概念一、异方差性的实质第二章提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var (5.1)也就是说i u 具有同方差性。
这里的方差2σ度量的是随机误差项围绕其均值的分散程度。
由于0)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =ki k i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。
设模型为n i u X X Y iki k i i ,,2,1221 =++++=βββ (5.2)如果其它假定均不变,但模型中随机误差项i u 的方差为).,,3,2,1(,)(22n i u Var i i ==σ (5.3)则称i u 具有异方差性。
由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,如图5.1所示,所以进一步可以把异方差看成是由于某个解释变量的变化而引起的,则)()(222i i i X f u Var σσ== (5.4)图5.1二、产生异方差的原因由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。
所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。
通常产生异方差有以下主要原因:1、模型中省略了某些重要的解释变量异方差性表现在随机误差上,但它的产生却与解释变量的变化有紧密的关系。
计量经济学的异方差性

一、 异方差性1. 中国农村居民人均消费支出主要由人均纯收入来决定。
农村人均纯收入除从事农业经营的收入外,还包括从事其他产业的经营性收入以及工资性收入、财产收入和转移支出收入等。
为了考察从事农业经营的收入和其他收入对中国农村居民消费支出增长的影响,可使用如下双对数模型:01122ln ln ln Y X X u βββ=+++其中Y 表示农村家庭人均消费支出,1X 表示从事农业经营的收入,2X 表示其他收入。
表4.1.1列出了中国2001年各地区农村居民家庭人均纯收入及消费支出的相关数据。
表4.1.1中国2001年各地区农村居民家庭人均纯收入与消费支出建立工作文件输入数据,输入命令:data y x1 x2 取对数:genr ly=log(y) 回车 Genr lx1=log(x1)回车Genr lx2=log(x2)回车估计参数:lsly c lx1 lx2 回车,得结果如下:用OLS 法进行估计,结果如下:对应的表达式为:12ln 1.6030.325ln 0.507ln Y X X =++(1.86) (3.14) (10.43)20.7965,0.78,0.8117R R RSS ===不同地区农村人均消费支出的差别主要来源于非农经营收入及其他收入的差别,因此,如果存在异方差性,则可能是2X 引起的。
对异方差性的检验:做OLS 回归得到的残差平方项与ln 2X 的散点图:从散点图可以看出,两者存在异方差性。
下面进行统计检验。
采用White异方差检验:EViews提供了包含交叉项和没有交叉项两个选择。
本例选择没有包含交叉项。
得到如下结果:所以辅助回归结果为:2221122ˆ 3.9820.579ln 0.042(ln )0.563ln 0.04(ln )eX X X X =-+-+ (1.38) (-0.63) (0.63) (-2.77) (2.9)其他收入2X 与2X 的平方项的参数的t 检验是显著的,且White 统计量为13.36,在5%的显著性水平下,拒绝同方差性这一原假设,方程确实存在异方差性。
计量经济学习题及答案

计量经济学习题一、名词解释1、普通最小二乘法:为使被解释变量的估计值及观测值在总体上最为接近使Q= 最小,从而求出参数估计量的方法,即之。
2、总平方和、回归平方和、残差平方和的定义:TSS度量Y自身的差异程度,称为总平方和。
TSS除以自由度n-1=因变量的方差,度量因变量自身的变化;RSS度量因变量Y的拟合值自身的差异程度,称为回归平方和,RSS除以自由度〔自变量个数-1〕=回归方差,度量由自变量的变化引起的因变量变化局部;ESS度量实际值及拟合值之间的差异程度,称为残差平方和。
RSS除以自由度〔n-自变量个数-1〕=残差〔误差〕方差,度量由非自变量的变化引起的因变量变化局部。
3、计量经济学:计量经济学是以经济理论为指导,以事实为依据,以数学和统计学为方法,以电脑技术为工具,从事经济关系及经济活动数量规律的研究,并以建立和应用经济计量模型为核心的一门经济学科。
而且必须指出,这些经济计量模型是具有随机性特征的。
4、最小样本容量:即从最小二乘原理和最大似然原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限;即样本容量必须不少于模型中解释变量的数目〔包扩常数项〕,即之。
5、序列相关性:模型的随机误差项违背了相互独立的根本假设的情况。
6、多重共线性:在线性回归模型中,如果某两个或多个解释变量之间出现了相关性,那么称为多重共线性。
7、工具变量法:在模型估计过程中被作为工具使用,以替代模型中及随机误差项相关的随机解释变量。
这种估计方法称为工具变量法。
8、时间序列数据:按照时间先后排列的统计数据。
9、截面数据:发生在同一时间截面上的调查数据。
10、相关系数:指两个以上的变量的样本观测值序列之间表现出来的随机数学关系。
11、异方差:对于线性回归模型提出了假设干根本假设,其中包括随机误差项具有同方差;如果对于不同样本点,随机误差项的方差不再是常数,而互不一样,那么认为出现了异方差性。
12、外生变量:外生变量是模型以外决定的变量,作为自变量影响内生变量,外生变量决定内生变量,其参数不是模型系统的元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
White的一般异方差性检验
基本思想:
对于 Yi 1 2 X 2i 3 X 3i ui
(11.5.20)
看uˆi2与X
2i
,
X
3i
,
X
2 2i
,
X
2 3i
,
X
2i
X
3i
是否存在
回归关系.
对于 Yi 1 2 X 2i 3 X 3i ui
(11.5.20)
(11.2.2) 返回 (11.2.3) 返回
在经典模型的各种假定,包括同方差性假定在 内,全部成立的情形下,OLS估计量是BLUE
其他假定不变,同方差性假定不成立时,OLS 估计量不再是BLUE
OLS估计量仍然是线性的和无偏的,但是,不
再是“最优的”或“有效的”,即2 ,3
,, n
E (u i2
)
2 i
见P388 Fig. 11.2
(11.1.2)
异方差的理由
按照边错边改学习模型(error—learning models), 人们的行为误差随时间而减少。见Fig. 11.3
随着收入的增长,人们在支出和储蓄中有更大的灵
活性。在做储蓄对收入的回归中,
2 i
与收入俱增
其中vi是变换后的干扰项,vi
ui Xi
。可以证明:
2
E(vi2 )
E
ui Xi
1
X
2 i
E(ui2 )
2 利用(11.6.5)
假定2.:
误差方差正比于X
:
i
E(ui2 ) 2 X i
平方根变换:
(11.6.7)
其中vi 可证:
Yi Xi
1
Xi
(11.2.3)所给出的 高估 的真实的 2方差
是va有r(偏2的) ,可能低估或
ˆ 2 uˆi2 /(n 2)不是 2的无偏估计
置信区间,t检验和F检验也将不准确
异方差性的判断
非正式方法
问题的性质
在涉及不均匀(heterogeneous)单元(国家、省 份、企业、家庭)的横截面数据中,异方差性可 能是一种常规,而不是例外
步骤1. 步骤2.
估计(11.5.20),获得残差ˆ uˆi 做辅助回归:
uˆi2
1
2 X 2i
3 X 3i
4
X
2 2i
5
X
2 3i
6 X 2i X 3i vi
(11.5.21)
还可以引入回归元的更高次方。求出R2
步骤3.
设置虚拟假设H
:无异方差性。可证:
0
n
R2
(11.6.9)
Yi E(Yi )
1
E(Yi )
2
Xi E(Yi )
ui E(Yi )
1
E
1 (Yi
)
2
Xi E(Yi )
vi
(11.6.10)
E(Yi )不可知,利用E(Yi )的一致性估计值Yˆi:
Yi Yˆi
1
1 Yˆi
2
在小样本情形下, Glejser检验只能作为一种摸 索异方差性的定性的技巧
Spearman的等级相关检验
Spearman等级相关系数为:
rs
1
6
n(n
d
2 i
2 1)
(11.5.5)
其中 d i 表示第 i 单元或现象的两种不同特性所处的
等级之差,而 n 表示带有级别的单元或现象的个数 侦察异方差性:
第11章 异方差性
异方差的性质
经典线形回归模型的一个重要假定是同方差性:
PRF的干扰项 u i 是同方差的(homoscedastic)
即: E(ui2) 2
i 1,2,, n (11.1.1)
异方差性是指,u i 的条件方差(= Yi 的条件方差)
随着X的变化而变化,用符号表示为:
或:
ln
2 i
ln
2
ln
Xi
vi
其中vi是随机干扰项
由于 i2未知,用uˆi2代替,回归变为:
ln
uˆ
2 i
ln
2
ln
Xi
vi
ln X i vi
(11.5.1) (11.5.2)
如果 显著,则有异方差性;如果它不显著,则接
受同方差性假设
见 P404例子
Xi Yˆi
vi
(11.6.11)
其中vi
ui YˆI
。变换后的(11.6.11)一般具有良好的性质
假定4. : 回归模型:
Yi 1 2 X i ui
通过对数变换,变为:
ln Yi 1 2 ln X i ui
通常能降低异方差性
(11.6.12)
2的OLS 估计量
2
xi yi n X iYi X i Yi
xi2
n
X
2 i
(
Xi )2
异方差假定下,它的方 差为:
var( 2 ) (
xi2
2 i
xi2 ) 2
而同方差假定下,它的方差为:
var( 2 )
2
xi2
(11.2.1)
Glejser检验
Glejser建议,从OLS回归得到残差 uˆ i 之后,用
uˆ
i
的绝对值对被认为与
2 i
密切相关的X变量做回归:
ui 1 2 X i vi
ui 1 2 X i vi
ui
1 2
1 Xi
vi
ui恒有X 0i 1。用 i去除(11.3.2)得:
Yi
i
1
X 0i
i
2
Xi
i
ui
i
进一步,可以写作:
(11.3.3)
Yi
1
X
0i
* 2
X
i
u
i
(11.3.4)
其中
,
1,
表示转换模型的参数。经转
讨论: “小悦悦”事件 2011年10月13日下午,2岁女童悦悦在佛山广佛
五金城连遭两车碾轧,直到被陈贤妹救起,悦悦熬 过了387秒。在这段时间里,18名路人经过,但没人 伸出援手。
本章结束,谢谢!
图解法
在缺乏先验信息或经验的情况下,可对
uˆ
2 i
做检
验,看看是否存在系统模式
见P402的Fig11.8 P403的Fig11.9
Eviews提供了查看残差判断是否存在异方差性 的功能
正式方法
Park检验
Park提出
2 i
是解释变量
Xi
的函数,从而,将图解
法形式化:
2 i
2
X
i
evi
见11.3节,可得到BLUE
Yi
i
ˆ1
(1
i
)
ˆ2
(
Xi
i
)
( uˆi
i
)
当
2为未知
i
假定1.:
误差
方差
正比
于X
2 i
E
(u
2 i
)
2
X
2 i
用X
去除原模型
i
,得
:
Yi Xi
1
Xi
2
ui Xi
1
1 Xi
2
vi
(11.6.1)
(11.6.5) (11.6.6)
2
换有
:
var(ui )
E(ui )2
E
u
i i
2
1
2 i
E(ui2 )
s
in
ce
2 i
is
know
1
2 i
(
2 i
)
sin
ceE(ui2
)
2 i
1
(11.3.5)
即,转换后模型的干扰项满足同方差性假定,再 用OLS方法,就可以得到BLUE估计量
——这就是GLS方法,得到的是GLS估计量
wi )( wi X iYi ) ( wi X i )( wiYi )
(
wi )(
wi
X
2 i
)
(
wi X i ) 2
(11.3.8)
它的方差为:
var( 2 ) (
wi )(
wi
wi
X
2 i
)
(
wi X i )2
其中,wi
1
2 i
(11.3.9)
OLS和GLS的区别
因为:
var(
* 2
)
var(
2