计量经济学中相关证明

合集下载

计量经济学

计量经济学

X的值,被解释变量Y的值就唯一地确定了,Y与X的关系就是函数关系。

是指两个以上的变量的样本观测值序列之间表现出来的随机数学关系,用相关系数来衡量。

因果关系是指两个或两个以上变量在行为机制上的依赖性,作为结果的变量是由作为原因的变量所决定的,原因变量的变化引起结果变量的变化。

果关系的变量之间一定具有数学上的相关关系。

而具有相关关系的变量之间并不一定具有因果关系。

是分析两个或以上变量的样本观测值序列之间的非确定随机数学关系,用相关系数来衡量。

回归分析是分析两个或两个以上变量之间的相互依赖关系或因果关系,作为结果的变量是由作为原因的变量所决定的,原因变量的变化引起结果变量的变化。

回归分析的因果关系一定有相关关系,具有相关关客观事物或现象相互关系密切程度的问题,而回归则是用函数的形式表示变量之间的因果关系。

二者相互补充,只有当变量间存在一定程度的相关关系时,才能进行回归分析;而在进行相关分析时,如果要具体确定变量间相关的具体数学形式,又依赖于回归分析。

内生变量是其数值由经济模型所内在决定的变量,内生变量可以在模型内得到说明,由给定的经济模型本身决定的变量。

外生变量是指在经济模型中,给定的经济模型本身无法决定而由这个模型以外的因素决定的变量。

它是模型据以建立的外部条件。

其对被解释变量的影响效果通过随机误差项体现。

外生变量决定内生变量,外生变量不能在模型内部得到说明。

外生变量是在经济模型中受外部因素影响而内部因素所决定的变量。

1)增大样本容量n。

因为在同样的显著性水平下,n越大,t分布表中的临界值越小。

同时,增大样本容量,还可使样本参数估计量的标准差减小。

(2)提高模型的拟合优度。

因为样本参数估计量的标准差与残差平方和呈正比,模型拟合优度越高,残差平方和越小。

(3)提高样本观测值的分散度。

这样计算参数估计量的标准差的分母越大,则可使得参数估计量的标准差减小。

最小样本容量的确定,样本数量不得少于模型中解释变量的数目(包括常数项),即: n ≥ k+1。

序列相关性

序列相关性
yt 1 2 Pt 1 ut
5.滞后效应 在经济中,因变量受到自身或另一解释变量的前几期值影响的现象称为 滞后效应。在一个消费支出对收入的时间序列回归中,人们常常发现当前时 期的消费支出除了依赖于其他变量外,还依赖于前期的消有效 因为,在有效性证明中利用了 E(NN’)=2I 即同方差性和互相独立性条件。而且,在大样本情况下,参数估计量 虽然具有一致性,但仍然不具有渐近有效性。 2、变量的显著性检验失去意义 在变量的显著性检验中,统计量是建立在参数方差正确估计基础之 上的,这只有当随机误差项具有同方差性和互相独立性时才能成立。如果存 在序列相关,估计的参数方差 S ˆ ,出现偏误(偏大或偏小) ,t 检验就失去
~ e ~ e t t 1 t

~ e ~ ~ e t 1 t 1 2 et 2 t
3
, 。 。 。
醉客天涯之计量经济学
如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。 回归检验法的优点是: (1)能够确定序列相关的形式 (2)适用于任何类型序列相关性问题的检验。 3、杜宾-瓦森(Durbin-Watson)检验法(最常用) (1)方法使用条件: ①解释变量 X 非随机; ②随机误差项 i 为一阶自回归形式: i=i-1+i ③回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式: Yi=0+1X1i+kXki+Yi-1+i ④回归含有截距项 ⑤误差项被假定为正态分布 (2)D.W.统计量: 杜宾和瓦森针对原假设:H0: =0, 即不存在一阶自回归,构如下造统计量:
D.W .
~ (e
t 2
n
t
~ )2 e t 1
2 t

计量经济学的数学基础

计量经济学的数学基础

2.1.1. 求和算子运算规则求和算子定义:对于T个观测值,x1, x2, …, xT,求和可以简化地表示为其中称作求和算子。

求和算子的运算规则如下:(1) 变量观测值倍数的和等于变量观测值和的倍数。

(2) 两个变量观测值和的总和等于它们分别求总和后再求和。

(3) T个常数求和等于该常数的T倍。

其中k是常数。

利用求和算子定义,样本平均数可表示为(4) 变量观测值对于其平均数的离差和等于零。

利用规则(2),(3)和样本平均数定义即可推导出上述结果。

(5) 随机变量的方差等于其平方的均值减去其均值的平方证明(6) 两个随机变量的协方差等于它们乘积的均值减去它们均值的乘积。

与规则(5)的证明类似,即可证明上述结果。

定义双重求和为(7) 两个变量和的双重求和等于它们各自双重求和的和。

(8) 两个不同单下标变量积的双重求和等于它们各自求和的乘积。

2.2.1 随机变量的数学期望随机变量定义:按一定的概率取不同实数值的变量称为随机变量,用x, y等表示。

若随机变量x可能取的值为有限个或可列个,则称x为离散型随机变量。

离散型随机变量的一切可能取值及其取值的相应概率称作离散型随机变量的概率分布。

若随机变量x可能取的值是整个数轴,或数轴上的某个区间,则称x为连续型随机变量。

连续型随机变量的概率分布是通过随机变量在一切可能区域内取值的概率定义的。

最常用和最简便的形式是通过概率密度函数表示。

对于随机变量x,若存在非负可积函数f(x),(- ∞< x< ∞),使对任意实数a, b, (a < b)有则称x为连续型随机变量。

f (x)为x的概率密度函数(简称概率密度或密度)。

由上式知f (x)在[a, b]区间上的积分等于随机变量x在[a, b]区间取值的概率。

1 随机变量的数学期望对于离散型随机变量x,若有概率分布 P{x = x i} = p i, (i= 1, 2, …, )则称为x的数学期望,简称为期望或均值。

计量经济学随机项方差无偏估计量的证明

计量经济学随机项方差无偏估计量的证明
所以,

即 是 的无偏估计量,从而
而样本残差平方和 的自由度 。
因为,样本残差可以看作是总体随机项的估计量,而样本残差 ,是完全可以计算的,因此,可以用样本残差的方差来估计总体随机项的方差。
我们目的是得到 的无偏估计量,因此,我们需要确定样本残差平方和的自由度 ,使得
(3.4.3)
由于 ,所以,上式等价于
(3.4.4)
可以证明 ,其中n是样本容量。下面给出证明:
证明
证明:为了得到 的值,我们不妨先求 ,看它和 是什么关系。由于

两边求均值,有
所以

两边求均值有:
由于 ,所以有:
将 和 代入 有
对上式平方求和再取期望值有:
在式中:
由于 ,其中 ,所以,上式可以写为:
注意式中 是n项之和,而 则是n(n-1)项之和。
注意:式中 是n项之和,而 则是nn-1)项之和。

计量经济学 —理论方法EVIEWS应用--第七章 序列相关性

计量经济学 —理论方法EVIEWS应用--第七章  序列相关性
C o v ( , j ) E ( ) 0 i i j
在其他假设仍然成立的条件下,随机干扰项序列相关意味着
(7-2)
如果仅存在
E ( ) 0 , i 1 , 2 , . . . , n i i 1
(7-3)
则称为一阶序列相关或自相关(简写为AR(1)),这是常见的一种序列相关问题。
D .W .
不存在一阶自相关,构造如下统计量: t
t
( eˆ
t2
n
ˆt 1 ) 2 e
2 t

t 1
n
杜宾—沃森证明该统计量的分布与出现在给定样本中的X值有复杂的关系,
其准确的抽样或概率分布很难得到;
因为D.W.值要从
eˆ t 中算出,而 eˆ t
又依赖于给定的X的值。
2 χ 因此D-W检验不同于t、F或 检验,它没有唯一的临界值可以导出拒绝或
用OLS法估计序列相关的模型得到的随机误差项的方差不仅是 有偏的,而且这一偏误也将传递到用OLS方法得到的参数估计 量的方差中来,从而使得建立在OLS参数估计量方差基础上的 变量显著性检验失去意义。
以一元回归模型为例,
Y X i 0 1 i i
2
ˆ) Var ( 1 2 xt
序列相关性及其产生原因序列相关性的影响序列相关性的检验序列相关的补救第一节序列相关性及其产生原因序列相关性的含义对于多元线性回归模型71在其他假设仍然成立的条件下随机干扰项序列相关意味着如果仅存在则称为一阶序列相关或自相关简写为ar1这是常见的一种序列相关问题
—理论· 方法· EViews应用
郭存芝 杜延军 李春吉 编著
二、回归检验法
, eˆ, 以 e ˆ t 为解释变量,以各种可能的相关变量,诸如 t1

计量经济学 第四章_2 序列相关性

计量经济学 第四章_2 序列相关性

ij, i,j=1,2, …,n
则认为出现了序列相关性(serial correlation)。
# 序列相关性下的方差-协方差阵
在其他假设仍成立的条件下,序列相关即意味着 E ( i j ) 0
此时,随机误差项之间的方差-协方差阵为:
2 2 E ( 1 n ) Cov (μ ) E (μμ ) E ( ) 2 n 1 n1
(3)回归模型中不应含有滞后因变量作为解释变量,即不应
出现下列形式: Yt=0+1X1t+kXkt+Yt-1+t
(4)回归含有截距项
# D.W.检验统计量
杜宾和瓦森针对原假设:H0: =0, 即不存在一阶自回归,构造如下 统计量:
D. W.
~ (e
t 2
n
t
~ )2 e t 1
(0.22) (-0.497) (4.541) (-1.842) (0.087)
R2=0.6615
五、序列相关性的补救

如果模型被检验证明存在序列相关性,则首先需要分析其 原因,对症下药:
◦ 如果产生序列相关的原因是变量选择失准(如遗漏了重要的解释 变量等),则应调整变量;如果是模型设定不当,应当调整模型 形式。——虚假的序列相关问题 ◦ 如果原因在于客观经济现象的自身特点,如经济变量的惯性作用 等,则需要发展新的估计方法
~2 e t
t 1
n
• 该统计量的分布与出现在给定样本中的X值有复杂的关系,因此其精 确的分布很难得到。
• 但是,他们成功地导出了临界值的下限 dL 和上限 dU ,且这些上下 限只与样本的容量 n 和解释变量的个数 k 有关,而与解释变量X的 取值无关。

计量经济学复习笔记(二):一元线性回归(下)

计量经济学复习笔记(二):一元线性回归(下)

计量经济学复习笔记(⼆):⼀元线性回归(下)回顾上⽂,我们通过OLS推导出了⼀元线性回归的两个参数估计,得到了以下重要结论:ˆβ1=∑x i y i∑x2i,ˆβ0=¯Y−ˆβ1¯X.注意总体回归模型是Y=β0+β1X+µ,同时我们还假定了µ∼N(0,σ2),这使得整个模型都具有正态性。

这种正态性意味着许多,我们能⽤数理统计的知识得到点估计的优良性质,完成区间估计、假设检验等,本⽂就来详细讨论上述内容。

1、BLUE我们选择OLS估计量作为⼀元线性回归的参数估计量,最主要的原因就是它是最⼩⽅差线性⽆偏估计(Best Linear Unbiased Estimator),这意味着它们是:线性的。

⽆偏的。

最⼩⽅差的。

不过,光给你这三个词,你可能会对定义有所困扰——⽐如,关于什么线性?⼜关于什么是⽆偏的?我们接下来就对OLS估计量的BLUE性详细讨论,包括简单证明。

原本我认为,证明在后⾯再给出会更合适,引⼊也更顺畅,但是我们接下来要讨论的许多,都有赖于OLS估计量的BLUE性,因此我还是决定将这部分内容放在这⾥。

⾸先是线性性,它指的是关于观测值Y i线性,这有什么意义呢?注意到,在之前的讨论中,我们总讨论在给定X的取值状况下的其他信息,如µ的条件期望、⽅差协⽅差等,因此我们往往会在这部分的讨论中将X视为常数(⽽不是随机变量)看待,这会带来⼀些好处。

⽽因为µ∼N(0,σ2)且µi是从µ中抽取的简单随机样本,且µi与X i⽆关,所以由正态分布的性质,有Y i|X i∼N(β0+β1X i,σ2).实际上,由于参数真值β1,β1是常数,所以每⼀个Y i在给定了X i的⽔平下,都独⽴地由µi完全决定,⽽µi序列不相关(在正态分布的情况下独⽴),所以Y i之间也相互独⽴。

这样,如果有⼀个统计量是Y i的线性组合,那么由正态分布的可加性,这个统计量就⾃然服从正态分布,从⽽我们可以很⽅便地对其进⾏参数估计、假设检验等。

二阶段最小二乘法和工具变量法结果相同的证明

二阶段最小二乘法和工具变量法结果相同的证明

二阶段最小二乘法(Two-Stage Least Squares, 2SLS)和工具变量法(Instrumental Variables, IV)在计量经济学中被广泛应用,用于解决因果关系的内生性问题。

虽然这两种方法在形式上有所不同,但是它们在某些条件下可以得到相同的结果。

本文将就二阶段最小二乘法和工具变量法结果相同的证明展开探讨。

1. 二阶段最小二乘法的基本原理及公式我们需要了解二阶段最小二乘法的基本原理。

在计量经济学中,当自变量存在内生性问题时,我们无法直接使用最小二乘法进行回归分析。

这时,我们可以通过引入工具变量来解决内生性问题。

二阶段最小二乘法包括两个阶段,第一阶段是利用工具变量估计内生变量的值,第二阶段是利用第一阶段的估计值替代内生变量进行普通最小二乘法回归分析。

其公式为:[Y_i = _0 + _1X_i + _i][X_i = _0 + _1Z_i + _i]其中,(Y_i)代表因变量,(X_i)代表内生解释变量,(Z_i)代表工具变量,(_i)和(_i)分别为误差项。

通过两个阶段的回归分析,我们可以得到最终的估计结果。

2. 工具变量法的基本原理及公式工具变量法是一种处理内生性的方法,其基本原理是利用与内生解释变量相关但与误差项不相关的外生变量作为工具变量,通过工具变量的线性组合来替代内生变量进行估计。

工具变量法的回归模型可以表示为:[X_i = _0 + _1Z_i + _i] [Y_i = _0 + _1 + _i]其中,()是利用工具变量估计的内生变量的值。

3. 二阶段最小二乘法和工具变量法结果相同的条件现在让我们来探讨二阶段最小二乘法和工具变量法结果相同的条件。

事实上,当工具变量法满足一定条件时,其结果与二阶段最小二乘法是等价的。

具体而言,若工具变量满足外生性和相关性条件(即与内生变量相关),并且内生变量的影响能够完全通过工具变量进行替代,那么工具变量法的结果将与二阶段最小二乘法一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课本中相关章节的证明过程第2章有关的证明过程2.1 一元线性回归模型有一元线性回归模型为:y t = β0 + β1 x t + u t上式表示变量y t 和x t之间的真实关系。

其中y t 称被解释变量(因变量),x t称解释变量(自变量),u t称随机误差项,β0称常数项,β1称回归系数(通常未知)。

上模型可以分为两部分。

(1)回归函数部分,E(y t) = β0 + β1 x t,(2)随机部分,u t。

图2.8 真实的回归直线这种模型可以赋予各种实际意义,收入与支出的关系;如脉搏与血压的关系;商品价格与供给量的关系;文件容量与保存时间的关系;林区木材采伐量与木材剩余物的关系;身高与体重的关系等。

以收入与支出的关系为例。

假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。

但实际上数据来自各个家庭,来自各个不同收入水平,使其他条件不变成为不可能,所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。

随机误差项u t中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。

所以,在经济问题上“控制其他因素不变”实际是不可能的。

回归模型的随机误差项中一般包括如下几项内容,(1)非重要解释变量的省略,(2)人的随机行为,(3)数学模型形式欠妥,(4)归并误差(粮食的归并)(5)测量误差等。

回归模型存在两个特点。

(1)建立在某些假定条件不变前提下抽象出来的回归函数不能百分之百地再现所研究的经济过程。

(2)也正是由于这些假定与抽象,才使我们能够透过复杂的经济现象,深刻认识到该经济过程的本质。

通常,线性回归函数E(y t) = β0 + β1 x t是观察不到的,利用样本得到的只是对E(y t) = β0 + β1 x t 的估计,即对β0和β1的估计。

在对回归函数进行估计之前应该对随机误差项u t做出如下假定。

(1) u t 是一个随机变量,u t 的取值服从概率分布。

(2) E(u t) = 0。

(3) D(u t) = E[u t - E(u t) ]2 = E(u t)2 = σ2。

称u i 具有同方差性。

(4) u t 为正态分布(根据中心极限定理)。

以上四个假定可作如下表达:u t~N (0,σ2)。

(5) Cov(u i, u j) = E[(u i - E(u i) ) ( u j - E(u j) )] = E(u i, u j) = 0, (i≠j )。

含义是不同观测值所对应的随机项相互独立。

称为u i 的非自相关性。

(6) x i是非随机的。

(7) Cov(u i, x i) = E[(u i - E(u i) ) (x i - E(x i) )] = E[u i (x i - E(x i) ] = E[u i x i - u iE(x i) ] = E(u i x i) = 0.u i与x i相互独立。

否则,分不清是谁对y t的贡献。

(8) 对于多元线性回归模型,解释变量之间不能完全相关或高度相关(非多重共线性)。

在假定(1),(2)成立条件下有E(y t) = E(β0 + β1 x t + u t) = β0 + β1 x t。

2.2 最小二乘估计(OLS)对于所研究的经济问题,通常真实的回归直线是观测不到的。

收集样本的目的就是要对这条真实的回归直线做出估计。

图2.9怎样估计这条直线呢?显然综合起来看,这条直线处于样本数据的中心位置最合理。

怎样用数学语言描述“处于样本数据的中心位置”?设估计的直线用yˆ =0ˆβ+1ˆβx tt表示。

其中yˆ称y t的拟合值(fitted value),0ˆβ和1ˆβ分别是β0 和β1的估计量。

观测值到t这条直线的纵向距离用uˆ表示,称为残差。

ty t =yˆ+t uˆ=0ˆβ+1ˆβx t +t uˆt称为估计的模型。

假定样本容量为T 。

(1)用“残差和最小”确定直线位置是一个途径。

但很快发现计算“残差和”存在相互抵消的问题。

(2)用“残差绝对值和最小”确定直线位置也是一个途径。

但绝对值的计算比较麻烦。

(3)最小二乘法的原则是以“残差平方和最小”确定直线位置。

用最小二乘法除了计算比较方便外,得到的估计量还具有优良特性(这种方法对异常值非常敏感)。

设残差平方和用Q 表示,Q = ∑=Ti t u 12ˆ= ∑=-Ti t t y y 12)ˆ(= ∑=--Ti tt x y 1210)ˆˆ(ββ, 则通过Q 最小确定这条直线,即确定0ˆβ和1ˆβ的估计值。

以0ˆβ和1ˆβ为变量,把Q 看作是0ˆβ和1ˆβ的函数,这是一个求极值的问题。

求Q 对0ˆβ和1ˆβ的偏导数并令其为零,得正规方程, 0ˆβ∂∂Q= 2∑=--Ti tt x y 110)ˆˆ(ββ(-1) = 0 (2.7)1ˆβ∂∂Q= 2∑=--Ti tt x y 110)ˆˆ(ββ(- x t ) = 0 (2.8) 下面用代数和矩阵两种形式推导计算结果。

首先用代数形式推导。

由(2.7)、(2.8)式得,∑=--Ti tt x y 110)ˆˆ(ββ= 0 (2.9) ∑=--T i tt x y 110)ˆˆ(ββx t = 0 (2.10) (2.9)式两侧用除T ,并整理得,ˆβ= x y 1ˆβ- (2.11)把(2.11)式代入(2.10)式并整理,得,])(ˆ)[(11∑=---Ti ttx x y yβx t = 0 (2.12) ∑∑==---Ti t tTi t t x x xx y y 111)(ˆ)(β= 0 (2.13)1ˆβ= ∑∑--ttt t x x xy y x )()( (2.14)因为∑=-T i t y y x 1)(= 0,∑=-T i t x x x 1)(= 0,[采用离差和为零的结论:∑==-T i t x x 10)(,0)(1=-∑=Ti t y y ]。

所以,通过配方法,分别在(2.14)式的分子和分母上减∑=-T i t y y x 1)(和∑=-Ti t x x x 1)(得,1ˆβ= ∑∑∑∑------)()()()(x xx x x xy yx y y x ttttt t (2.15)= ∑∑---2)())((x x y y x x ttt(2.16) 即有结果:1ˆβ= ∑∑---2)())((x x y y x x t t t t t (2.17)ˆβ= x y 1ˆβ- 这是观测值形式。

如果以离差形式表示,就更加简洁好记。

1ˆβ=∑∑2ttt xy xˆβ= x y 1ˆβ- 矩阵形式推导计算结果:由正规方程,ˆβ∂∂Q= 2∑=--Ti tt x y 110)ˆˆ(ββ(-1) = 0 1ˆβ∂∂Q= 2∑=--T i tt x y 110)ˆˆ(ββ(- x t ) = 0 0ˆβT +1ˆβ (∑=Ti t x 1) = ∑=Ti t y 1ˆβ∑=Ti t x 1+1ˆβ (∑=T i t x 12) = ∑=Ti t t y x 1⎥⎦⎤⎢⎣⎡∑∑∑2ttt xx xT ⎥⎥⎦⎤⎢⎢⎣⎡10ˆˆββ=⎥⎥⎦⎤⎢⎢⎣⎡∑∑t t t y x y ⎥⎥⎦⎤⎢⎢⎣⎡10ˆˆββ=12-⎥⎥⎦⎤⎢⎢⎣⎡∑∑∑t tt x x x T⎥⎥⎦⎤⎢⎢⎣⎡∑∑t t t y x y=22)(1∑∑-t t x x T ⎥⎥⎦⎤⎢⎢⎣⎡--∑∑∑T x x x t t t 2⎥⎥⎦⎤⎢⎢⎣⎡∑∑t t t y x y = ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----∑∑∑∑∑∑∑∑∑∑∑22222)()(t t t t t t t t t t t t t x x T y x y x Tx x T y x x y x 注意:关键是求逆矩阵12-⎥⎥⎦⎤⎢⎢⎣⎡∑∑∑t tt x x x T。

它等于其伴随阵除以其行列式,伴随阵是其行列式对应的代数余子式构成的方阵的转置。

写成观测值形式。

1ˆβ= ∑∑---2)())((x x y y x x t t t t tˆβ= x y 1ˆβ- 如果,以离式形式表示更为简洁: 1ˆβ=∑∑2ttt xyxˆβ= x y 1ˆβ-2.3 一元线性回归模型的特性1. 线性特性(将结果离差转化为观测值表现形式) 2. 无偏性其中:0)222=-===∑∑∑∑∑∑∑i i i i i ii x X X x x x x K ( 故有:∑+=i i u K 22ˆββ3. 有效性首先讨论参数估计量的方差。

即: ∑=222)ˆ(i x Var οβ同理有:显然各自的标准误差为:∑=22)ˆ(i x se οβ,∑∑=221)ˆ(i i x n X se οβ标准差的作用:衡量估计值的精度。

由于σ为总体方差,也需要用样本进行估计。

证明过程如下: 因此有: u X Y ++=21ββ那么:)()()(2121u X u X y Y Y i i i i++-++==-ββββ根据定义:i i i x y e 2ˆβ-=,(实际观测值与样本回归线的差值) 则有:两边平方,再求和: 对上式两边取期望有:其中:2222οο==∑∑i i x x A故有:22)1(ο-=∑n e E i即有:⎥⎥⎦⎤⎢⎢⎣⎡-=∑222n e E i ο, 令2ˆ22-=∑n e i ο,则问题得证。

关于∑2i e 的计算:关于22R R≤的证明:()()22211111R a k n n RR -⨯-=----=,其中:1≥a 。

当 11=⇒=a k当11>⇒>a k ,当102≤≤R 时,有: 关于2R 可能小于0的证明。

设:t t t u X Y +=2β则有:那么 0ˆ2=∂∂βJ但:0≠∑t e ,因为没有0ˆ1=∂∂βJ存在。

同时,还有: 其中:()01=-=-=-∑∑∑∑t t t t e nne e n e e e,和 0=∑t t e X则: 考虑到: 若定义可能小于0。

参考书:Dennis J. Aigner Basic Econometrics, Prentice-Hall, Englewood Cliffs, N. J. 1971,pp85-88第二章2.1 简单线性回归最小二乘估计最小方差性质的证明对于OLS 估计式^1β和^2β,已知其方差为这里只证明^2()Var β最小,^1()Var β最小的证明可以类似得出。

设2β的另一个线性无偏估计为*2β,即其中2,i i i i i x w k k x ≠=∑因为*2β也是2β的无偏估计,即*22()E ββ=,必须有 0i w =∑,1i i w X =∑同时*2()()i i Var Var wY β=∑ 22i w σ=∑ [因为2()i Var Y σ=]上式最后一项中22222()i i i i iiiiw x x w k k x x -=-∑∑∑∑∑∑0= (因为0i w =∑,1i i w X =∑)所以2*222222()()[]()i i i i x Var w k x βσσ=-+∑∑∑ 而20σ≥,因为i i w k ≠,则有2()0i i w k -≥,为此 只有i i w k =时,^*22()()Var Var ββ=,由于*2β是任意设定的2β的线性无偏估计式,这表明2β的OLS 估计式具有最小方差性。

相关文档
最新文档