计量经济学Eviews操作案例集.

合集下载

计量经济学EViews操作

计量经济学EViews操作

计量经济学作业操作过程详解1.进入Eviews软件2.主菜单-->File--->Workfile3.打开工作文件范围选择框,选择Annual,分别输入1985,1998。

点击完成。

4.数据输入:方法一:导入excel文件中的数据1)在excel中先建立数据文件2)点击file/import/read text-lotus-excel选项,在对话框中选择已建立的excel文件4)打开后,在新的对话框中输入想要分析的变量名称,然后点击OK即可。

此时工作文件中出现变量图标。

方法二:手工数据输入主菜单--->Quick----->Empty Group分别输入变量Y、GDP的数据。

点击obs后面的灰色格子中分别输入Y、GDP。

(方法一:一个一个输入方法二:在Excel中输入完再复制粘贴)5.主菜单---->Quick----->Estimate Equation打开估计模型对话框,输入Y C GDP ,(如上图所示,注意字母之间要有空格)点击OK键。

得出Eviews的估计结果:β(上面还要带个帽子,电脑打不出来),26.95415为1β。

其中12596.27为0第五步可以直接输入LS Y C GDP 等出结果6.一元线性回归模型的预测1)在工作文件主窗口点击procs/change workfile range(改变范围),弹出对话框,在对话框的end date栏中输入预测值的时间或序号,点击OK2)在工作文件窗口中双击解释变量文件,在变量窗口中点击edit+/-键,进入编辑模式,在变量窗口底端输入新序号的数值,再点击edit+/-键,关闭编辑模式3)再次进行估计,点击quick/estimate equation,在对话框中输入方程,注意样本范围应不包括新序号,点击OK得到估计结果4)点击结果窗口中的forecast键,产生对话框,在对话框中选择样本范围,点击OK可得预测曲线图。

计量经济学EVIEWS模型案例

计量经济学EVIEWS模型案例

数据收集
数据来源: 《中国统计年鉴》 其中:
Y ——各项税收收入(亿元)
X2——国内生产总值(亿元) X3——财政支出(亿元) X4——商品零售价格指数(%)
参数估计
假定模型中随机项满足基本假定,可用 假定模型中随机项满足基本假定,可用OLS法估计 法估计 其参数。具体操作: 软件, 其参数。具体操作:用EViews软件,估计结果为: 软件 估 X2t + β2 X3t + β3 X4t + ut
其中: 其中: 各项税收收入(亿元) Y — 各项税收收入(亿元) X2 — 国内生产总值(亿元) 国内生产总值(亿元) X3 — 财政支出(亿元) 财政支出(亿元) 商品零售价格指数( ) X4 — 商品零售价格指数(%)
上机要求: 上机要求:
1、更新数据至2009年,并对模型进行估 计和检验; 2、上网查2010年各解释变量的数据,求 出2010年税收收入的点预测和区间预测, 并与实际值进行比较分析; 3、形成报告于下次上机课上交打印稿。
R 2 = 0.9971
F = 2717.238
df = 21
模型检验: 模型检验: 拟合优度: 较高, 拟合优度:可决系数 R 2 = 0.9974 较高, R 2 = 0.9971 也较高, 修正的可决系数 也较高, 表明模型拟合较好。 表明模型拟合较好。
显著性检验
F检验: 针对 H0 : β2 =,取β4 = 0 检验: 检验 β3 = 查自由度为 k -1=3 和 的临界值 n - k =21
理论分析 影响中国税收收入增长的主要因素可能有: 影响中国税收收入增长的主要因素可能有: (1)从宏观经济看,经济整体增长是税收增长的 )从宏观经济看, 基本源泉。 基本源泉。 2) (2)社会经济的发展和社会保障等都对公共财政 提出要求, 提出要求,公共财政的需求对当年的税收收入可 能会有一定的影响。 能会有一定的影响。 (3)物价水平。中国的税制结构以流转税为主, )物价水平。中国的税制结构以流转税为主, 以现行价格计算的GDP和经营者的收入水平都与 以现行价格计算的 和经营者的收入水平都与 物价水平有关。 物价水平有关。 (4)税收政策因素。 )税收政策因素。

计量经济学案例Eviews实现

计量经济学案例Eviews实现

2.8:散点图:graph01。

建立一元线性回归模型。

参数估计:eq02。

可得出模型:t t x y 69.031.135+=预测:graph02。

得到1990年、2000年某城镇居民年人均消费性支出预测值为:1354.89、1424.05.3.7进行回归分析,建立回归模型。

1用最小二乘法做参数估计:eq02/stats 。

得到回归方程:i i i x x y 219117.00494.05398.158-+=。

回归标准差为:20.217572经济意义检验:可得出所有的回归系数的符号和大小都与经济理论及人们的经验期望值相一致。

3统计检验:(1) 拟合优度检验:得出样本回归方程较好的拟合了样本观测值。

(2) F 检验:F=72.9065>4.46,所以回归方程是显著的.(3) t 检验:t1=10.5479>2.306即1β显著不等于0;9213.02-=t <2.306不能否定02=β即x2不能作为解释变量进入模型.4预测eq02/resids在2000年我国城镇居民家庭人均可支配收入为5800,耐用消费价格指数为135,进行预测可得2000Y 的置信度为0.95的预测区间为(267.2001,376.7605)4.31对CES 函数进行线性化处理,再用最小二乘法做参数估计:eq02/stats.得出回归方程:2)]([0602.00293.11693.17145.8)(LK Ln LnL LnK LnGDP -++-=分别得到A m ,,ρδ的估计值A=0.00016、δ=0.5318、ρ=0.2199、m=2.1986.2 预测:eq02/resids最后得出CES 的生产函数为2199.01986.22199.02199.0]4682.05318.0[00016.0---+=L KGDP当2199.0=ρ时得出K 与L 的替代弹性8197.0=σ5.51建立计量经济模型i i i u X Y ++=10ββ用普通最小二乘法估计:eq03。

EViews统计分析在计量经济学中的应用综合案例

EViews统计分析在计量经济学中的应用综合案例
R itiiR m tit (6)
计量经济学创新实验设计
我们以方正科技(600601)为例,介绍如何通过Eviews 软件进行系数的回归估计。
打开Eviews6.0,选择File-New-Workfile,frequency选择integer date,时间为1至200,点击确定。
计量经济学创新实验设计
计量经济学创新实验设计
二.资本资产定价模型及其检验方法介绍
各种股票的收益和风险呈现正相关,每种资
产的收益由无风险收益和风险贴水两部分构成。 可表示为:
E Ri Rf i E Rm Rf
(1)
其中: E Ri 为股票的期望收益率; Rf 为无风险收益率、 E Rm 为市场证券组合的
期望收益率; i 是股票 i 收益和市场组合收益间的协方差im 与市场组合收益方差 m 2 的比
值,即 i
im
2 m
,常被称为“
系数”(可以看作某种股票收益变动对市场组合收益变
动的敏感度)。
计量经济学创新实验设计
假设关于任何资产的收益是一个公平博弈,换句 话说就是任何资产已实现的平均收益率等于其预 期的收益率。数学上有如下形式:
Rit E Rit imt eit
(2)
其 中 , mt Rmt E Rmt , E mt 0 , eit 为 随 机 误 差 项 , 且 E eit 0 ,
covemt
, eit
0

cov eit ,eit1
0

i
cov Rmt
,
Rit
Var
Rmt

计量经济学创新实验设计
出现下图后,点击Object-New Object,在Type of object中 选择seriers,,并命名为SY和MY,从而创建两个序列。

eviews操作及案例-简版

eviews操作及案例-简版

■ 成本分析和预测
■ 蒙特卡罗模拟
■ 经济模型的估计和仿真 ■ 利率与外汇预测
EViews 引入了流行的对象概念,操作灵活简便,可采用多种操作方式进行各种计量分
析和统计分析,数据管理简单方便。其主要功能有:
(1)采用统一的方式管理数据,通过对象、视图和过程实现对数据的各种操作;
(2)输入、扩展和修改时间序列数据或截面数据,依据已有序列按任意复杂的公式生
实验七 ___________________________________________________________67
1
FuRretAlphlreorridrguehctpesrdordewsuitectrhivopenedrpbrmyioshEsiicbooitnneoodfmtewhtitreihccosoutIpynprsiteirgthumttiesosiowfonnSe.r.WUFE.
第一部分 EViews 基本操作
第一章 预 备 知识
一、什么是 EViews
EViews (Econometric Views)软件是 QMS(Quantitative Micro Software)公司开发的、基
于 Windows 平台下的应用软件,其前身是 DOS 操作系统下的 TSP 软件。EViews 具有现代
自 结合课程论文,自拟上机内容(不低于 定 10 学时上机)。
FuRretAlphlreorridrguehctpesrdordewsuitectrhivopenedrpbrmyioshEsiicbooitnneoodfmtewhtitreihccosoutIpynprsiteirgthumttiesosiowfonnSe.r.WUFE.

计量经济学案例分析(Eviews操作)

计量经济学案例分析(Eviews操作)

美股行情对A股的影响性分析——标普500与沪深300相关性分析摘要:本文主要通过分析标准普尔500指数与沪深300指数的相关性,以标普500指数为解释变量,以沪深300指数为被解释变量,利用Eviews软件,使用其中的最小二乘法对其进行线性回归分析,最终得出方程。

并对其进行显著性检验(F,t)、异方差检验、自相关性检验来验证方程的可靠性。

然后解释方程的经济意义,并利用软件对未来指数变动进行预测。

最后在未来几天比较预测结果与实际两个指数的变化情况,验证实际应用情况。

关键词:标普500、沪深300、Eviews、显著性检验、异方差检验、自相关性检验。

一、研究背景1.全球化大环境在经济全球化不断深入发展的今天,全球资本市场,尤其是中美两个超级大国之间的资本流通,早已彼此嵌入,密不可分。

全世界早有不少学者对中美资本流通做了深入研究。

但美国股市发展早于中国十几年,其内部的资金也远远超过中国股市,美国股市的资本流动势必会对中国股市产生一定影响,这种影响不仅体现在情绪面,更反映在指数变动方向上。

2.对外开放资本市场的QFII政策Qualified Foreign Institutional Investor,作为一种过渡性制度安排,QFII制度是在资本项目尚未完全开放的国家和地区,实现有序、稳妥开放证券市场的特殊通道。

外资对中国股市的影响早已不可忽视,而美国市场的变动也一定程度会影响在中国股市外资的操作行为。

所以研究两个指数的变动是很有意义的。

二、数据1.数据选择沪深两个市场各自均有独立的综合指数和成份指数,这些指数不能用来反映沪深两市的整体情况,而沪深300指数则同时考虑了两市的交易情况,是中国A股市场的“晴雨表”。

标准普尔500指数英文简写为S&P 500 Index,是记录美国500家上市公司的一个股票指数。

与道琼斯指数等其他指数相比,标准普尔500指数包含的公司更多,因此风险更为分散,能够反映更广泛的市场变化。

计量经济学---EViews的基本操作案例

计量经济学---EViews的基本操作案例

说明总离差平方和的99.88%被样本回归直线解释,仅有0.12%未被解释,因此,样
本回归直线对样本点的拟合优度很高。也即用人均年收入解释消费性支出变化效 果很好。
回归系数显著性检验(t检验)
提出原假设H0:β 1=0 备择假设H1:β 1≠0
取显著性水平α =0.05,在自由度为v=17-2=15下,查t分布表,得:t
R² =0.998726
F=12952.03 n=17 DW=1.025082
(7)回归预测
点估计。假定预测出2002年、2003年的平均每人年收入分别为
X2002=6932.91元,X2003=7334.37元。预测Ŷ2002,Ŷ2003的值。
将X2002=6932.91,X2003=7334.37代入估计的回归方程的点估计值 Ŷ2002=132.0125+0.768761*6932.91=5461.76(元)
(3)画散点图
确定了模型后,需要在直观上初步探明变量之间的相互关系,
为此,以人均年收入为横轴,以人均年消费支出为纵轴,描 出样本变量观测值的散点分布图。如下图所示:
根据上图散点分布情况可以看出,在1985~2001年期间,我国城镇
居民人均年消费和可支配收入之间存在较为明显的线性关系。
(4)显示估计结果Fra bibliotekTHANKS
利用Eviews的最小二乘法程序,输出的结果如下: Dependent Variable(从属变量):Y Method:Least Squares(最小二乘法) Sample:1985 2001 Included observations:17
(5)模型检验
可决系数检验:R² =1-ESS/TSS=0.9988
Xi——表示城镇居民人均年收入水平 ui——表示随机误差项 现给定样本观测值(Xi,Yi),i=1,2,…,17,n=17为样本容量。则建立样 本回归模型:Yi=β0+β1Xi+ei 其中,β0,β1分别为β0、β1的估计值,ei为残差项。样本回归方程: Ŷi=β0+β1Xi 其中,Ŷi表示样本观测值Yi的估计值。

计量经济学EIVEWS实验步骤和案例

计量经济学EIVEWS实验步骤和案例

一元线性回归检验个人的收入与消费是密不可分的,为了考察城镇居民可支配收入和其人均消费支出的关系,利用计量经济学的方法进行回归。

1990-2011年城镇居民可支配收录和人均消费支出数据如表1.1所示表1.1 城镇居民可支配收录和人均消费支出图2-1数据来源:《中国民政统计年鉴2012》作城镇居民可支配收录(X)和人均消费支出(Y)的散点图图2. 2从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型:12i i i Y X u ββ=++三、估计参数假定所建模型及随机扰动项i u 满足古典假定,可以用OLS 法估计其参数。

运用计算机软件EViews 作计量经济分析十分方便。

利用EViews 作简单线性回归分析的步骤如下:1、建立工作文件首先,双击EViews 图标,进入EViews 主页。

在菜单一次点击File\New\Workfile图2-3选择数据类型和起止日期。

时间序列提供起止日期(年、季度、月度、周、日),非时间序列提供最大观察个数。

本例中在Start Data 里输入1990,在End data 里输入2011,见图2-3。

单击OK 后屏幕出现Workfile 工作框,如图2-4所示。

图2-4二、输入和编辑数据建立或调入工作文件以后,可以输入和编辑数据。

在主菜单上单击Quick→Empty Group(见图2-5)图2-5再用方向键将光标移到每一列的顶部之后,输入各个变量名,回车后输入数据(见图2-7)。

另外数据还可以从Excel中直接复制到空组。

然后为每个时间序列取序列名。

单击数据表中的SER01,在数据组对话框中的命令窗口输入该序列名称,如本例中输入X,回车后Yes。

采用同样的步骤修改序列名Y(见图2-8)。

数据输入操作完成。

图2-8数据输入完毕,单击工作文件窗口工具条的Save或单击菜单兰的File→Save将数据存入磁盘。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

案例分析一关于计量经济学方法论的讨论问题:利用计量经济学建模的步骤,根据相关的消费理论,刻画我国改革开放以来的边际消费倾向。

第一步:相关经济理论。

首先了解经济理论在这一问题上的阐述,宏观经济学中,关于消费函数的理论有以下几种:①凯恩斯的绝对收入理论,认为家庭消费在收入中所占的比例取决于收入的绝对水平。

②相对收入理论,是由美国经济学家杜森贝提出的,认为人们的消费具有惯性,前期消费水平高,会影响下一期的消费水平,这告诉我们,除了当期收入外,前期消费也很可能是建立消费函数时应该考虑的因素。

关于消费函数的理论还有持久收入理论、生命周期理论,有兴趣的同学可以参考相应的参考书。

毋庸置疑,收入和消费之间是正相关的。

第二步:数据获得。

在这个例子中,被解释变量选择消费,用cs表示;解释变量为实际可支配收入,用inc表示(用GDP减去税收来近似,单位:亿元);变量均为剔除了价格因素的实际年度数据,样本区间为1978~2002年。

第三步:理论数学模型的设定。

为了讨论的方便,我们可以建立下面简单的线性模型:第四步:理论计量经济模型的设定。

根据第三步数学模型的形式,可得式中:cs=CS/P,inc=(1-t)*GDP/P,其中GDP是当年价格的国内生产总值,CS代表当年价格的居民消费值,P代表1978年为1的价格指数,t=TAX/GDP代表宏观税率,TAX是税收总额。

u t表示除收入以外其它影响消费的因素。

第五步:计量经济模型的参数估计根据最小二乘法,可得如下的估计结果:常数项为正说明,若inc为0,消费为414.88,也就是自发消费。

总收入变量的系数 为边际消费倾向,可以解释为城镇居民总收入增加1亿元导致居民消费平均增加0.51亿元。

另外,根据相对收入理论,我们可以得到下面的估计结果:上述结果表明加入消费的上期值以后,边际消费倾向的数据发生了明显的变化,究竟选择哪一个模型,可以在以后的案例讨论中进行说明。

第六步:假设检验。

可以利用t检验和F检验来见模型参数的显著性。

例如,在(1.2)式中,边际消费倾向估计量的标准差估计值是0.01,从而可以计算出t值为15,如果给定显著性水平为5%,查表得到临界值t0.025(21)=2.08,因此可以拒绝总收入系数为0的原假设,认为边际消费倾向的估计量是统计显著的。

第七步:预测。

如果要对此模型的预测功能进行评价,可以用1978~1999年的22年数据进行参数估计,用2000~2002年的数据作为检验性数据,考察实际值和预测值的差别。

图1.1将因变量的实际值和预测值画在一起进行比较。

第八步:利用模型进行控制或制定政策。

案例分析二我国城市居民家庭消费函数——一元线性回归模型一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。

居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。

改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。

但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。

例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。

为了研究全国居民消费水平及其变动的原因,需要作具体的分析。

影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。

为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。

二、模型设定我们研究的对象是各地区居民消费的差异。

居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。

而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。

所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。

因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。

因此建立的是2002年截面数据模型。

影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。

因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。

为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。

从2002年《中国统计年鉴》中得到表2.5的数据:表2.52002年中国各地区城市居民人均年消费支出和可支配收入如图2.12:图2.12从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型:12i i i Y X u ββ=++ 三、估计参数假定所建模型及随机扰动项i u 满足古典假定,可以用OLS 法估计其参数。

运用计算机软件EViews 作计量经济分析十分方便。

利用EViews 作简单线性回归分析的步骤如下: 1、建立工作文件首先,双击EViews 图标,进入EViews 主页。

在菜单一次点击File\New\Workfile ,出现对话框“Workfile Range ”。

在“Workfile frequency ”中选择数据频率:Annual (年度) Weekly ( 周数据 )Quartrly (季度) Daily (5 day week ) ( 每周5天日数据 ) Semi Annual (半年) Daily (7 day week ) ( 每周7天日数据 ) Monthly (月度) Undated or irreqular (未注明日期或不规则的) 在本例中是截面数据,选择“Undated or irreqular ”。

并在“Start date ”中输入开始时间或顺序号,如“1”在“end date ”中输入最后时间或顺序号,如“31”点击“ok ”出现“Workfile UNTITLED ”工作框。

其中已有变量:“c ”—截距项 “resid ”—剩余项。

在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并4000600080001000012000400060008000100001200014000XY在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。

若要将工作文件存盘,点击窗口上方“Save ”,在“SaveAs ”对话框中给定路径和文件名,再点击“ok ”,文件即被保存。

2、输入数据在数据编辑窗口中,首先按上行键“↑”,这时对应的“obs”字样的空格会自动上跳,在对应列的第二个“obs”有边框的空格键入变量名,如“Y ”,再按下行键“↓”,对因变量名下的列出现“NA ”字样,即可依顺序输入响应的数据。

其他变量的数据也可用类似方法输入。

也可以在EViews 命令框直接键入“data X Y ”(一元时) 或 “data Y 1X 2X … ”(多元时),回车出现“Group”窗口数据编辑框,在对应的Y 、X 下输入数据。

若要对数据存盘,点击 “fire/Save As”,出现“Save As ”对话框,在“Drives ”点所要存的盘,在“Directories ”点存入的路径(文件名),在“Fire Name ”对所存文件命名,或点已存的文件名,再点“ok ”。

若要读取已存盘数据,点击“fire/Open”,在对话框的“Drives”点所存的磁盘名,在“Directories”点文件路径,在“Fire Name”点文件名,点击“ok”即可。

3、估计参数方法一:在EViews 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation specification ”对话框,选OLS 估计,即选击“Least Squares”,键入“Y C X ”,点“ok ”或按回车,即出现如表2.6那样的回归结果。

表2.6在本例中,参数估计的结果为:^282.24340.758511i i Y X =+ (287.2649) (0.036928) t=(0.982520) (20.54026)20.935685r = F=421.9023 df=29方法二:在EViews 命令框中直接键入“LS Y C X ”,按回车,即出现回归结果。

若要显示回归结果的图形,在“Equation ”框中,点击“Resids ”,即出现剩余项(Residual )、实际值(Actual )、拟合值(Fitted )的图形,如图2.13所示。

图2.13四、模型检验1、经济意义检验所估计的参数^20.758511β=,说明城市居民人均年可支配收入每相差1元,可导致居民消费支出相差0.758511元。

这与经济学中边际消费倾向的意义相符。

2、拟合优度和统计检验用EViews 得出回归模型参数估计结果的同时,已经给出了用于模型检验的相关数据。

拟合优度的度量:由表2.6中可以看出,本例中可决系数为0.935685,说明所建模型整体上对样本数据拟合较好,即解释变量“城市居民人均年可支配收入”对被解释变量“城市居民人均年消费支出”的绝大部分差异作出了解释。

对回归系数的t 检验:针对01:0H β=和02:0H β=,由表2.6中还可以看出,估计的回归系数^1β的标准误差和t 值分别为:^1()287.2649SE β=,^1()0.982520t β=;^2β的标准误差和t 值分别为:^2()0.036928SE β=,^2()20.54026t β=。

取0.05α=,查t 分布表得自由度为231229n -=-=的临界值0.025(29) 2.045t =。

因为^10.025()0.982520(29) 2.045t t β=<=,所以不能拒绝01:0H β=;因为^20.025()20.54026(29) 2.045t t β=>=,所以应拒绝02:0H β=。

这表明,城市人均年可支配收入对人均年消费支出有显著影响。

相关文档
最新文档