计量经济学-案例分析-第八章

合集下载

计量经济学第八章

计量经济学第八章

多元回归:
TSS y ' y nY 2
ˆ ESS ' X ' y nY 2 ˆ ˆ ˆ RSS u ' u y ' y ' X ' y
ˆ ( ' X ' y nY 2 ) /(k 1) F ˆ ( y ' y ' X ' y) /(n k )

回归方程:yt = 1 + 2x2t + 3x3t + 4x4t + ut 我们希望检验: 3+4 = 1: 约束回归 • yt = 1 + 2x2t + 3x3t + 4x4t + ut • s.t. 3+4 = 1

3+4 = 1 4 = 1- 3 yt = 1 + 2x2t + 3x3t + (1-3)x4t + ut 整理,得 (yt - x4t) = 1 + 2x2t + 3(x3t - x4t) + ut
( RUR RR ) / m F 2 (1 RUR ) /(n k )
16
在F-检验中确定约束个数

例 : H0: hypothesis 1 + 2 = 2 2 = 1 and 3 = -1 2 = 0, 3 = 0 and 4 = 0
约束个数m 1 2 3
不能用F-检验来检验非线性的假设, 如:H0: 2 3 = 2 or H0: 2 2 = 1
计量经济学
主讲人:薛明皋
2013年7月19日
1
第8章 多元回归分析:推断问题
§8-1 偏回归系数的假设检验 §8-2 总显著性检验 §8-3 回归系数相等的检验 §8-4 约束回归 §8-5 结构稳定性检验:邹至庄检验

15、第八章案例分析(协整检验:基于回归系数的jj检验法)

15、第八章案例分析(协整检验:基于回归系数的jj检验法)

15、第八章案例分析(协整检验:基于回归系数的jj检验法)协整检验——基于回归系数的JJ检验法一、研究目的传统的回归分析是建立在变量数据平稳的假定基础之上,而现实中,大多数经济变量都是非平稳的(例如产出、资本存量、收入等经济变量都具有长期增长的趋势)。

因此通过回归分析得到的回归模型缺乏统计意义上的逻辑论证,容易产生伪回归。

伪回归模型有很2高的值和t值,但参数估计值却毫无意义,从而可导致预测失败。

20世纪80年代以来,R计量经济学模型建模理论的一个重大发展就是协整理论的产生,它们为解决伪回归问题提供了坚实的基础。

本案例通过我国生产函数的数据来讨论JJ检验法的原理、方法及其应用。

二、协整的思想1、协整的思想1987年Engle和Granger提出了协整理论及其方法(Engle和Granger,1987),为非平稳时间序列的建模提供了另一种途径。

虽然一些经济变量的本身是非平稳序列,但是,它们的线性组合却有可能是平稳序列。

这种平稳的线性组合被称为协整方程且可被解释为变量之间的长期稳定的均衡关系。

假定一些经济指标被某些经济系统联系在一起,那么从长远看来这些变量应该具有均衡关系。

在短期内,因为外部影响或随机扰动,这些变量有可能偏离均值。

如果这种偏离是暂时的,那么随时间推移将会回到均衡状态,如果这种偏离是持久的,则变量之间不存在均衡关系。

协整(co-integration)就是这种均衡关系的统计表示。

2、协整的定义协整的定义如下:,kdb维向量的分量间被称为,阶协整,记为,如y,(,,)yyy?yCIdb(,)ttttkt12果满足:(1),要求的每个分量; y Id()yyId ()ttit,0,,bd(2)存在非零列向量,使得,。

βy Idb(),βt简称y是协整的,向量又称为协整向量。

βt三、JJ检验法与EG检验法的区别及其优点协整检验从检验的对象上可以分为两种:一种是基于回归系数的协整检验,即Johansen and Juselius(JJ)极大似然法;另一种是基于回归残差的协整检验,即:Engle and Granger 两步法(EG)。

计量经济学课后习题答案第八章_答案

计量经济学课后习题答案第八章_答案

第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。

加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。

除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。

3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。

如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。

这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。

4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。

试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。

解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi有奖学金1 来自城市无奖学金0 来自农村来自发达地区 1 男性0 来自欠发达地区0 女性Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i |= X i , D 1i =D 3i =1,D 2i =D 4i =0)=(β0+α1+α3)+β1X i (4) 来自发达地区的城市男生,未得到奖学金时的月消费支出: E(Y i |= X i ,D 2i =D 3i =D 4i =1, D 1i =0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。

计量经济学案例分析报告

计量经济学案例分析报告

《计量经济学》实验报告实验课题:各章节案列分析姓名:茆汉成班级:会计学12-2班学号: 2012213572指导老师:蒋翠侠报告日期: 2015.06.18目录第二章简单线性回归模型案例 01 问题引入 02 模型设定 03 估计参数 (2)4 模型检验 (2)第三章多元线性回归模型案例 (4)1 问题引入 (4)2 模型设定 (4)3 估计参数 (5)4 模型检验 (5)第四章多重线性案例 (7)1 问题引入 (7)2 模型设定 (7)3 参数估计 (7)4 对多重共线性的处理 (8)第五章异方差性案例 (10)1 问题引入 (10)2 模型设定 (10)3 参数估计 (10)4 异方差检验 (11)5 异方差性的修正 (13)第六章自相关案例 (14)1 问题引入 (14)2 模型设定 (14)3 用OLS估计 (14)4 自相关其他检验 (15)5 消除自相关 (16)第七章分布滞后模型与自回归模型案例 (18)7.2案例1 (18)1 问题引入 (18)2 模型设定 (18)3 参数估计 (18)7.3案例2 (20)1 问题引入 (20)2 模型设定 (20)3、回归分析 (20)4模型检验 (22)第八章虚拟变量回归案例 (23)1 问题引入 (23)2 模型设定 (23)3 参数估计 (25)4 模型检验 (26)第二章简单线性回归模型案例1、问题引入居民消费在社会经济的持续发展中有着重要的作用。

适度的居民消费规模和合理的消费模型是人民生活水平的具体体现,有利于经济持续健康的增长。

随着社会信息化程度和居民的收入水平的提高,计算机的运用越来越普及,作为居民耐用消费品重要代表的计算机已经为众多的城镇居民家庭所拥有。

研究中国各地区城镇居民计算机拥有量与居民收入水平的数量关系。

影响居民计算机拥有量的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入水平。

从理论上说居民收入水平越高,居民计算机拥有量越多。

计量经济学课件第8章

计量经济学课件第8章
2
( x 2 i )( x 3 i ) ( x 2 i x 3 i )
2 2
2
5
如果X3与X2存在完全共线性,即 X 3 i X 2 i
X
3i
则:
X (
2
2i
, x3i x 2 i y i x 2 i )( x 2 i ) ( y i x 2 i )( x 2 i )

2

( y i x 2 i )( x 3 i ) ( y i x 3 i )( x 2 i x 3 i )
2
( x 2 i )( x 3 i ) ( x 2 i x 3 i )
2 2
2


3

( y i x 3 i )( x 2 i ) ( y i x 2 i )( x 2 i x 3 i )
其中, r 为 X 和 X 的样本相关系数。
12
20
8.4
多重共线性的补救措施
8.4.1 什么也不做
理由一、如果t统计量仍然显著,参数的符号也和预期 的一致,则不用补救;
理由二、剔除变量有可能导致设定偏误,后果可能更 严重; 理由三、出于理论上的考虑,重新回归会导致设定误 差。多重共线性本质上由样本引起。 所以,什么也不做,除非是极其严重的多重共线性
性的变量的参数估计几乎不受影响。
如果目的是预测,则多重共线性不是问题,R2 值越高,预测越准。
15
8.2.2 关于多重共线性的后果的两 个例子P142-144
16
8.3 多重共线性的诊断

克曼塔(Kmenta)的忠告: 1、多重共线性是一个程度问题而不是有无的问题 2、多重共线性是一种样本现象也是一种理论现象。 给定方程的多重共线性的严重程度随样本的不同 而不同;对于给定的样本,依赖数据导向技术来判断 多重共线性的严重程度. 而解决多重共线性的策略则依赖于方程的理论基础, 即找到一组理论上相关并且统计上不存在多重共线 性的变量.

计量经济学第八章

计量经济学第八章

计量经济学夏凡第八章动态计量模型基础第一节分布滞后模型第二节单位根检验第三节协整与误差修正模型计量经济学夏凡引言⏹传统的时序模型●一般先从已知相关理论出发设定模型形式,再由样本数据估计模型中的参数⏹这种方法使建模过程对相关理论有很强的依赖性⏹动态计量经济学模型●20世纪70年代末,以英国计量经济学家Hendry为代表,将理论和数据信息有效结合,提出了动态计量经济学模型的理论与方法●为时序模型带来了重要的发展量经济学夏凡第一节分布滞后模型⏹几何分布滞后模型⏹多项式分布滞后模型⏹自回归分布滞后模型量经济学夏凡基本概念⏹分布滞后模型●⏹如果p是有限数,称为有限分布滞后模型⏹如果p是无限数,称为无限分布滞后模型npptxxxytptpttt,,2,111++=+++++=--εβββα计量经济学夏凡基本概念(续)⏹分布滞后模型的两个问题●由于存在滞后值,则要损失若干个自由度⏹如果滞后时期长,而样本较小,自由度损失就较大,有时甚至无法进行估计●通常一个变量的滞后变量之间共线性问题严重,影响估计量的精度⏹解决方法●对系数施加约束条件,减少待估参数的数目计量经济学夏凡几何分布滞后模型⏹几何分布滞后模型●又称Koyck滞后模型●反映变量的影响程度随滞后期的延长而按几何级数递减⏹经济变量间的因果关系,往往随着时间间隔的延伸而逐渐减弱●模型⏹●()1221ti ititttttxxxxyελβαεβλλββα++=+++++=∑∞=---1<λ计量经济学夏凡几何分布滞后模型(续1)⏹模型的第二种表达形式●⏹对(1)式取一期滞后,并两边同乘λ得●⏹(1)式减去(2)式得●⏹令,即可得到模型的第二种表达式●用y t-1代替了x的滞后变量⏹减小了多重共线性的程度()ttttuyxy+++-=-11λβλα()212211----++++=ttttxxyλεβλλβλαλ()111---++-=-tttttxyyλεεβλαλ1--=tttuλεε计量经济学夏凡几何分布滞后模型(续2)⏹模型的估计●模型中的随机扰动项通常存在一阶负相关关系⏹参数估计变得较复杂●可采用工具变量法和广义差分法相结合的估计方法计量经济学夏凡多项式分布滞后模型⏹多项式分布滞后模型●为解决几何分布滞后模型存在的问题,Almon提出了多项式分布滞后(PDL:Polynomial Distributed Lag)模型⏹用多项式表示滞后变量系数βi和滞后长度i的关系⏹一般,多项式阶数不超过3次计量经济学夏凡多项式分布滞后模型(续1)⏹对于模型●其解释变量之间存在多重共线性,不能采用OLS估计●将βi分解为⏹●其中,且●即将每个参数用一个多项式表示()()()()pqpipipi qqi<-++-+-+=ααααβ221pi,,2,1,0=()()Nkkpkpppp∈⎩⎨⎧-==-=1222/12/()30tpi ititxyεβα++=∑=-计量经济学夏凡多项式分布滞后模型(续2)⏹模型的估计●(3)式可改写为⏹●其中●则(4)式实际上比(3)式少了p-q个参数●可对模型施加约束条件⏹近端(near end)约束和远端(far end)约束⏹应用时,可同时指定上述两种约束,或其中之一,也可不含约束条件()4110tqtqtttzzzyμαααα+++++=()()qjxpizitjpijt,,1,0=-=-=∑计量经济学夏凡多项式分布滞后模型(续3)⏹PDL模型的确定因素●滞后期p、多项式次数q和约束条件⏹PDL模型的特点●优点⏹减少了待估参数,因此减小了多重共线性的程度⏹方程的变换并没有改变干扰项的形式,没有引入自相关问题,可用OLS直接估计变换后的方程●缺点⏹样本损失没有减少●只有(n-q)个观测值可用于估计计量经济学夏凡多项式分布滞后模型(续4)⏹操作命令●ls y x1 x2pdl(series_name,lags,order,options)⏹lags:代表滞后期p⏹order:表示多项式阶数q⏹options:指定约束类型,没有约束条件时缺省●1:近端约束●2:远端约束●3:同时采用近端和远端两种约束计量经济学夏凡多项式分布滞后模型(续5)⏹[例8-1]某水库1998年至2000年各旬的流量、降水量数据如下所示。

计量经济第八章

计量经济第八章

线性预测子
线性预测子是广义线性模型中自 变量与参数的线性组合,用于预 测响应变量的数学期望。
广义线性模型的参数估计
1 2 3
最大似然估计
最大似然估计是广义线性模型参数估计的常用方 法,通过最大化似然函数得到参数的估计值。
迭代加权最小二乘法
迭代加权最小二乘法是一种迭代算法,用于求解 广义线性模型的参数估计值,通过不断迭代更新 参数估计值直到收敛。
利用核函数对数据进行局部加权,得 到概率密度的估计,适用于任意形状 的数据分布。
局部加权回归
在回归分析中,通过给不同数据点赋 予不同的权重,使得模型更加关注于 局部数据的拟合效果,从而提高模型 的预测精度。
半参数方法的基本思想
结合参数和非参数方法的特点,既考 虑数据的总体分布,又充分利用数据 的局部信息。
因果推断的方法
因果推断的方法包括回归分析、倾向得分匹配、工具变量法等。
工具变量法和断点回归法
工具变量法
工具变量法是一种用于处理内生性问题的计量经济学方法。 它通过寻找一个与内生解释变量相关、但与误差项不相关的 工具变量,用工具变量替代内生解释变量进行回归分析,从 而得到一致的估计量。
断点回归法
断点回归法是一种非参数回归方法,适用于处理具有断点特 征的数据。它通过比较断点两侧的数据差异来推断因果关系 ,可以有效避免参数回归中可能存在的模型误设问题。
因果分析法
因果分析法是通过研究时间序列 与其他相关因素之间的因果关系, 建立相应的数学模型进行预测的 方法。常用的因果分析法包括回 归分析、计量经济模型等。
05 面板数据分析
CHAPTER
面板数据的基本概念
面板数据的定义
面板数据是指在时间序列上取多个截面,在这些截面上同时选取样 本观测值所构成的样本数据。

计量经济学第八章完整课件

计量经济学第八章完整课件

对于矩阵形式: Y=X+
采用工具变量法(假设X2与随机项相关,用工具 变量Z替代)得到的正规方程组为:
ZY ZXβ
参数估计量为:
β~ (ZX)1 ZY
其中
1 1
X
11
X 12
Z
Z1
Z2
X k1 X k 2
1
X
1n
Zn
X kn
称为工具变量矩阵
3、工具变量法估计量是一致估计量
工具变量法是GMM的一个特例。 6、要找到与随机扰动项不相关而又与随机解释 变量相关的工具变量并不是一件很容易的事
可以用Xt-1作为原解释变量Xt的工具变量。
五、案例——中国居民人均消费函数
例4.4.1 在例2.5.1的中国居民人均消费函数的估 计中,采用OLS估计了下面的模型:
CONSP 0 1GDPP
通常把这种过去时期的,具有滞后作用的变量 叫做滞后变量(Lagged Variable),含有滞后变量 的模型称为滞后变量模型。
滞后变量模型考虑了时间因素的作用,使静态 分析的问题有可能成为动态分析。含有滞后解释变 量的模型,又称动态模型(Dynamical Model)。
1、滞后效应与与产生滞后效应的原因
Cov( X 2i, i ) E(x2i i ) 0 Cov( X 2i, is ) E(x2i is ) 0
s0
3. 随机解释变量与随机误差项同期相关 (contemporaneously correlated)。
Cov( X 2i, i ) E(x2i i ) 0
二、实际经济问题中的随机解释变量问题
第一步,用OLS法进行X关于工具变量Z的回归:
Xˆ i ˆ0 ˆ1Zi
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章案例分析
改革开放以来,随着经济的发展中国城乡居民的收入快速增长,同时城乡居民的储蓄存
款也迅速增长。

经济学界的一种观点认为,20世纪90年代以后由于经济体制、住房、医疗、养老等社会保障体制的变化,使居民的储蓄行为发生了明显改变。

为了考察改革开放以来中
国居民的储蓄存款与收入的关系是否已发生变化,以城乡居民人民币储蓄存款年底余额代表
居民储蓄(Y),以国民总收入GNI代表城乡居民收入,分析居民收入对储蓄存款影响的数量关系。

表8.1为1978-2003年中国的国民总收入和城乡居民人民币储蓄存款年底余额及增加额的数据。

单位:亿元
2004
鉴数值,与用年底余额计算的数值有差异。

为了研究1978—2003年期间城乡居民储蓄存款随收入的变化规律是否有变化,考证城
乡居民储蓄存款、国民总收入随时间的变化情况,如下图所示:
图8.5
从图8.5中,尚无法得到居民的储蓄行为发生明显改变的详尽信息。

若取居民储蓄的增量
(YY ),并作时序图(见图 8.6)
从居民储蓄增量图可以看出,城乡居民的储蓄行为表现出了明显的阶段特征:
2000年有两个明显的转折点。

再从城乡居民储蓄存款增量与国民总收入之间关系的散布图
看(见图8.7),也呈现出了相同的阶段性特征。

为了分析居民储蓄行为在 1996年前后和2000年前后三个阶段的数量关系,引入虚拟变 量D 和D2°D 和D 2的选择,是以1996>2000年两个转折点作为依据,1996年的GNI 为66850.50 亿元,2000年的GNI 为国为民8254.00亿元,并设定了如下以加法和乘法两种方式同时引入 虚拟变量的的模型:
YY = 1+ 2GNI t
3
GNI t
66850.50 D 1t
+
4
GNh 88254.00 D
2t
i
D
1
t 1996年以后 D
1 t 2000年以后 其中:
D
1t
_
t 1996年及以前
2t
0 t 2000年及以前
对上式进行回归后,有:
Dependent Variable: YY Method: Least Squares Date: 06/16/05 Time: 23:27
120000 8.7
1996年和
100000-
40000
2WM
GNi
o eOB2&ISEea9a9l2949698[Ma2
20CUC
ir-“-
1CC0C

8.6
*OOCO
mnoot , RtKXD Tconr
GF*
Sample (adjusted): 1979 2003
Included observations: 25 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
C -830.4045 172.1626 -4.823374 0.0001 GNI
0.144486 0.005740 25.17001 0.0000 (GNI-66850.50)*DUM1
-0.291371 0.027182 -10.71920 0.0000 (GNI-88254.00)*DUM2
0.560219
0.040136
13.95810
0.0000
R-squared
0.989498 Mean dependent var 4168.652 Adjusted R-squared 0.987998 S.D. dependent var 4581.447 S.E. of regression 501.9182 Akaike info criterion 15.42040 Sum squared resid 5290359. Schwarz criterion 15.61542 Log likelihood -188.7550 F-statistic 659.5450 Durbin-Watson stat
1.677712
Prob(F-statistic)
0.000000
即有:
YY = -830.4045 + 0.1445GNI t - 0.2914 GNI t -66850.50 6 + 0.5602 GNI t -88254.00 D ?t
se= ( 172.1626) ( 0.0057) ( 0.0272) t = (-4.8234)
(25.1700) (-10.7192)
由于各个系数的t 检验均大于2,表明各解释变量的系数显著地不等于 存款年增加额的回归模型分别为:
(0.0401)
(13.9581)
2 2
R 0.9895 R 0.9880 F 659.5450 DW 1.6777 t 1996 1996<t 2000 t 2000
0,居民人民币储蓄
YY = -830.4045 + 0.1445GNI t+ 1t
YY YY = 18649.8312- 0.1469GNI t+ 2t
YY =- 30790.0596 + 0.4133GNI t+ 3t
这表明三个时期居民储蓄增加额的回归方程在统计意义上确实是不相同的。

1996 年以前收入每增加1 亿元,居民储蓄存款的增加额为0.1445 亿元;在2000 年以后,则为0.4133 亿元,已发生了很大变化。

上述模型与城乡居民储蓄存款与国民总收入之间的散布图是吻合的,与当时中国的实际经济运行状况也是相符的。

需要指出的是,在上述建模过程中,主要是从教学的目的出发运用虚拟变量法则,没有考虑通货膨胀因素。

而在实证分析中,储蓄函数还应当考虑通货膨胀因素。

相关文档
最新文档