机械能守恒典型例题带详解

合集下载

高一物理机械能守恒解析及典型例题

高一物理机械能守恒解析及典型例题

高一物理机械能守恒解析及典型例题(1)只有重力做功时机械能守恒.设一个质量为m 的物体自然下落,经过高度为1h 的A 点(初位置)时速度为1v ,下落到高度为2h 的B 点(末位置)时速度为2v (图8-42),由动能定理得:21222121mv mv W G -=.又由重力做功与重力势能的关系得:21mgh mgh W G -=则2121222121mgh mgh mv mv -=-或2221212121mgh mv mgh mv +=+ 这表明,在自由落体中,物体的动能与重力势能之和保持不变,则机械能守恒.事实上,上面推导过程中涉及重力做功与动能变化、势能变化的关系,与物体的运动轨迹形状无关,因而物体只受重力作曲线运动(如平抛运动、斜抛运动等)时,机械能也一定守恒.(2)只有弹力作用时机械能守恒.如图8-43所示,一个质量为m 的小球被处于压缩状态的弹簧弹开,速度由1v 增大到2v ,由动能定理得:1221222121k k N E E mv mv W -=-= 由弹力做功与弹性势能的关系得:21p p N E E W -=则2112p p k k E E E E -=-即2211p k p k E E E E +=+,物体的动能与弹性势能之和保持不变,机械能守恒.(3)既有重力做功,又有弹力做功,并且只有这两个力做功时,机械能也守恒.如图8—44所示,一根轻弹簧一端固定在天花板上,另一端固定一质量为m 的小球,小球在竖直平面内从高处荡下,在速度由1v 增大到2v 的过程中,由动能定理得21222121mv mv W W N G -=+ 又由重力做功与重力势能的关系得21p p G E E W -=由弹力做功与弹性势能的关系得''21p p N E E W -=则212221212121mv mv 'E 'E E E p p p p -=-+- 即2222211121'21'mv E E mv E E p p p p ++=++,物体的动能、重力势能和弹性势能之和保持不变,机械能守恒.(4)有除重力和弹力之外的力做功,将使机械能增大或减小,机械能不守恒.例如,升降机匀速提升重物时,重物的动能不变,势能在增大,总的机械能不守恒,原因是除重力做功外,升降机也对重物做功,且做正功,通过做功将电能转化为重物的机械能.又例如,在水平面上运动的汽车刹车后,逐渐减速并停止,汽车的重力势能不变,动能在减小,总的机械能在减少,原因是汽车受到摩擦力做功,且做负功,通过做功将机械能转化为内能.(5)有除重力和弹力之外的力做功,但力所做功的代数和为零,则机械能守恒.例如,汽车在水平面上匀速行驶时,虽然受牵引力与摩擦力的作用,但其动能和势能均不变,机械能守恒.原因是牵引力与摩擦力做功的代数和为零例2 一轻绳通过无摩擦的定滑轮与在倾角为30°的光滑斜面上的物体m1连接,另一端和套在竖直光滑杆上的物体m2连接.已知定滑轮到杆的距离为3m,物体m2由静止从AB连线为水平的位置开始下滑1m时,m1、m2恰受力平衡如图所示.试求:(1)m2在下滑过程中的最大速度.(2)m2沿竖直杆能够向下滑动的最大距离一物块由静止开始从粗糙斜面上的某点加速下滑到另一点,在此过程中重力对物体做的功等于( )A.物块动能的增加量B.物块重力势能的减少量与物块克服摩擦力做的功之和C.物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和D.物块动能的增加量与物块克服摩擦力做的功之和4.一个质量为0.3 kg 的弹性小球,在光滑水平面上以6 m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小Δv 和碰撞过程中墙对小球做功的大小W 为( )A .Δv =0B .Δv =12 m/sC .W =0D .W =10.8 J5.将一物体由地面竖直上抛,如果不计空气阻力,物体能够达到的最大高度为H ,当物体在上升过程中的某一位置时,它的动能是重力势能的2倍,则这一位置的高度为( )A .32HB .2HC .3HD .4H6 、(2010·成都市摸底测试)如图5-3-19所示为某同学设计的节能运输系统.斜面轨道的倾角为37°,木箱与轨道之间的动摩擦因数μ=0.25.设计要求:木箱在轨道顶端时,自动装货装置将质量m =2 kg 的货物装入木箱,木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩至最短时,自动装货装置立刻将货物御下,然后木箱恰好被弹回到轨道顶端,接着再重复上述过程.若g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)离开弹簧后,木箱沿轨道上滑的过程中的加速度大小;(2)满足设计要求的木箱质量.1.如图8—51所示,小球自a 点由静止自由下落,到b 点时与弹簧接触,到c 点时弹簧被压缩至最短,若不计弹簧的质量和空气阻力,小球由a →b →c 的运动过程中A .小球的动能逐渐减小B .小球的重力势能逐渐减小C .小球的机械能守恒D .小球的加速度逐渐减小2.两个质量相同的小球A 、B ,分别用细线悬挂在等高的 、 1O 、2O 点,A 球的悬线比B球的长,如图8—52所示,把两球均拉到与悬线水平后由静止释放,以悬点所在平面为参考平面,到两球经最低点时的A. A球的速度等于B球的速度B.A球的动能等于B球的动能C.A球的机械能等于B球的机械能D.A球对绳的拉力等于B球对绳的拉力1.下列叙述中正确的是( )A.合外力对物体做功为零的过程中,物体的机械能一定守恒B.做匀速直线运动的物体机械能一定守恒C.做匀变速运动的物体机械能可能守恒D.当只有重力对物体做功时,物体的机械能守恒2.从地面竖直上抛两个质量不同而动能相同的物体(不计空气阻力),当上升到同一高度时,它们( )A.所具有的重力势能相等B.所具有的动能相等C.所具有的机械能相等D.所具有的机械能不等3.如下图所示,在粗糙斜面顶端固定一弹簧,其下端挂一物体,物体在A点处于平衡状态.现用平行于斜面向下的力拉物体,第一次直接拉到B点,第二次将物体先拉到C点,再回到B点.则这两次过程中( )A.重力势能改变量相等B.弹簧的弹性势能改变量相等C.摩擦力对物体做的功相等D.弹簧弹力对物体做功相等5.物体由静止出发从光滑斜面顶端自由滑下,当所用时间是下滑到底端所用时间的一半时,物体的动能与势能(以斜面底端为零势能参考平面)之比为( )A.1∶4B.1∶3C.1∶2D.1∶210.如下图所示,ABC是一段竖直平面内的光滑的1/4圆弧形轨道,圆弧半径为R,O为圆心,OA水平,CD是一段水平光滑轨道.一根长2R、粗细均匀的细棒,开始时正好搁在轨道两个端点上.现由静止释放细棒,则此棒最后在水平轨道上滑行的速度为 .11.如下图所示,在细线下吊一个小球,线的上端固定在O点,将小球拉开使线与竖直方向有一个夹角后放开,则小球将往复运动,若在悬点O的正下方A点钉一个光滑小钉,球在从右向左运动中,线被小钉挡住,若一切摩擦阻力均不计,则小球到左侧上升的最大高度是( )A.在水平线的上方B.在水平线上C.在水平线的下方D.无法确定12.如下图所示,OA、OB、BC均为光滑面,OA=OB+BC,角α>β,物体从静止由O点放开,沿斜面到A点所需时间为t1,物体从静止由O点放开沿OBC面滑到C点时间为t2,A、C在同一水平面上,则关于t1与t2的大小的下述说法中正确的是( )A.t1=t2B.t1>t2C.t1<t2D.条件不足,无法判定13.如下图所示,有许多根交于A点的光滑硬杆具有不同的倾角和方向.每根光滑硬杆上都套有一个小环,它们的质量不相等.设在t=0时,各小环都由A点从静止开始分别沿这些光滑硬杆下滑,那么这些小环下滑速率相同的各点联结起来是一个( )A.球面B.抛物面C.水平面D.不规则曲面16.如下图所示,分别用质量不计不能伸长的细线与弹簧分别吊质量相同的小球A 、B ,将二球拉开使细线与弹簧都在水平方向上,且高度相同,而后由静止放开A 、B 二球,二球在运动中空气阻力不计,到最低点时二球在同一水平面上,关于二球在最低点时速度的大小是( )A.A 球的速度大B.B 球的速度大C.A 、B 球的速度大小相等D.无法判定19.如下图所示,一轻质杆上有两个质量相等的小球A 、B ,轻杆可绕O 点在竖直平面内自由转动.OA=AB=l ,先将杆拉至水平面后由静止释放,则当轻杆转到竖直方向时,B 球的速度大小为 .3.22.如上图所示,质量相等的重物A 、B 用绕过轻小的定滑轮的细线连在一起处于静止状态.现将质量与A 、B 相同的物体C 挂在水平段绳的中点P ,挂好后立即放手.设滑轮间距离为2a ,绳足够长,求物体下落的最大位移.1.一物体从高处同一点沿不同倾角的光滑斜面滑到同一水平面,则( )A.在下滑过程中,重力对物体做的功相同B.在下滑过程中,重力对物体做功的平均功率相同C.在物体滑到水平面的瞬间,重力对物体做功的瞬时功率相同D.在物体滑到水平面的瞬间,物体的动能相同3.质量为m 的汽车以恒定功率P 在平直公路上行驶,汽车匀速行驶的速率为υ1,若汽车所受阻力不变,则汽车的速度为υ2(υ2<υ1=时,汽车的加速度大小是( ) A.2mv P 1mv P2121)(v mv v v P - )()(22121v v m v v P +- 6.如下图所示,木块A 放在木块B 上左端,用恒力F 将A 拉至B 的右端,第一次将B 固定在地面上,F 做功为W 1,生热为Q 1;第二次让B 可以在光滑地面上自由滑动,这次F 做的功为W 2,生热为Q 2,则应有( )A.W1<W2,Q1=Q2B.W1=W2,Q1=Q2C.W1<W2,Q1<Q2D.W1=W2,Q1<Q29.如下图所示,小球做平抛运动的初动能为6J,不计一切阻力,它落到斜面P点时的动能为( )A.10JB.12JC.14JD.8J8.有一槽状的光滑直轨道,与水平桌面成某一倾角固定.一可视为质点的滑块,从轨道顶端A 点由静止开始下滑,经中点C滑至底端B点.设前半程重力对滑块做功的平均功率为P1,后半程重力对滑块做功的平均功率为P2,则P1∶P2等于( )A.1∶1B.1∶2C.1∶2D.1∶(2+1)。

中考物理机械能守恒历年真题及答案解析

中考物理机械能守恒历年真题及答案解析

中考物理机械能守恒历年真题及答案解析第一题:小明将一块质量为2kg的物体从2m高的位置从静止落下,物体下落到离地面0.5m的位置时,其速度是多少?解析:在自由落体运动中,物体下落时机械能守恒,即重力势能转化为动能。

根据机械能守恒定律可知,重力势能的转化等于动能的增加。

重力势能的转化:mgh1 = mgh2,其中m为物体质量,g为重力加速度,h1为初始高度,h2为末位高度。

动能的增加:增量K = 1/2mv2,其中v为物体速度。

根据上述公式,我们可以得到以下计算过程:mgh1 = 1/2mv2 + mgh2取消质量m,化简公式:gh1 = v2 + gh2代入已知的数值:9.8 * 2 = v2 + 9.8 * 0.5解方程可得:v2 = 9.8 * 2 - 9.8 * 0.5v2 = 19.6 - 4.9v2 = 14.7v ≈ 3.83 m/s答案:物体下降到离地面0.5m的位置时,速度约为3.83 m/s。

第二题:一个质量为0.5kg的物体从地面上抛出,初速度为10m/s,抛出角度为60°,求最高点的高度和到达最高点时的速度。

解析:根据运动学中的抛体运动公式,我们可以解决这个问题。

物体的初速度分解为水平和竖直方向的分速度:Vx = V * cosθVy = V * sinθ其中,V为初始速度,θ为抛出角度。

在竖直方向上,物体的运动满足自由落体运动的规律,根据一维自由落体运动的公式可知:h = h0 + Vy*t - 1/2 * g * t^2Vy = V * sinθ在最高点上,物体的竖直速度为0,即Vy = 0,代入公式:0 = V * sinθ - g * t解方程可得:t = V * sinθ / g代入对应数值:t = 10 * sin60° / 9.8t = 5/9.8 ≈ 0.51s代入已知数据和计算出来的时间t,我们可以求得最高点的高度:h = h0 + Vy*t - 1/2 * g * t^2h = 0 + 10 * sin60° * 0.51 - 1/2 * 9.8 * (0.51)^2解算可得最高点的高度:h ≈ 2.5m答案:物体达到最高点时的速度为0m/s,最高点的高度约为 2.5m。

机械能守恒定律典型例题剖析

机械能守恒定律典型例题剖析

机械能守恒定律典型例题剖析例1、如图示,长为l 的轻质硬棒的底端和中点各固定一个质量为m 的小球,为使轻质硬棒能绕转轴O 转到最高点,则底端小球在如图示位置应具有的最小速度v=。

解:系统的机械能守恒,ΔE P +ΔE K =0因为小球转到最高点的最小速度可以为0,所以,例2.如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。

一柔软的细线跨过定滑轮,两端分别与物块A 和B 连结,A 的质量为4m ,B 的质量为m ,开始时将B 按在地面上不动,然后放开手,让A 沿斜面下滑而B 上升。

物块A 与斜面间无摩擦。

设当A 沿斜面下滑S 距离后,细线突然断了。

求物块B 上升离地的最大高度H.解:对系统由机械能守恒定律4mgSsin θ–mgS=1/2×5mv 2∴v 2=2gS/5细线断后,B 做竖直上抛运动,由机械能守恒定律mgH=mgS+1/2×mv 2∴H=1.2S 例3.如图所示,半径为R 、圆心为O 的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上.一根轻质长绳穿过两个小圆环,它的两端都系上质量为m 的重物,忽略小圆环的大小。

(1)将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°的位置上(如图).在两个小圆环间绳子的中点C 处,挂上一个质量M =m的重物,使两个小圆环间的绳子水平,然后无初速释放重物M .设绳子与大、小圆环间的摩擦均可忽略,求重物M 下降的最大距离.(2)若不挂重物M .小圆环可以在大圆环上自由移动,且绳子与大、小圆环间及大、小圆环之间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平衡状态?解:(1)重物向下先做加速运动,后做减速运动,当重物速度为零时,下降的距离最大.设下降的最大距离为h , 2由机械能守恒定律得解得(另解h=0舍去)(2)系统处于平衡状态时,两小环的可能位置为两小环同时位于大圆环的底端.b .两小环同时位于大圆环的顶端.c .两小环一个位于大圆环的顶端,另一个位于大圆环的底端.d .除上述三种情况外,根据对称性可知,系统如能平衡,则两小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称轴两侧α角的位置上(如图所示).对于重物,受绳子拉力与重力作用,有T=mg对于小圆环,受到三个力的作用,水平绳的拉力T 、竖直绳子的拉力T 、大圆环的支持力N.两绳子的拉力沿大圆环切向的分力大小相等,方向相反得α=α′,而α+α′=90°,所以α=45°例4.如图质量为m 1的物体A 经一轻质弹簧与下方地面上的质量为m 2的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。

机械能守恒定律典型例题精析(附答案)

机械能守恒定律典型例题精析(附答案)

机械能守恒定律一、选择题1.某人用同样的水平力沿光滑水平面和粗糙水平面推动一辆相同的小车,都使它移动相同的距离。

两种情况下推力做功分别为W1和W2,小车最终获得的能量分别为E1和E2,则下列关系中正确的是()。

A、W1=W2,E1=E2B、W1≠W2,E1≠E2C、W1=W2,E1≠E2D、W1≠W2,E1=E22.物体只在重力和一个不为零的向上的拉力作用下,分别做了匀速上升、加速上升和减速上升三种运动.在这三种情况下物体机械能的变化情况是( )A.匀速上升机械能不变,加速上升机械能增加,减速上升机械能减小B.匀速上升和加速上升机械能增加,减速上升机械能减小C.由于该拉力与重力大小的关系不明确,所以不能确定物体机械能的变化情况D.三种情况中,物体的机械能均增加3.从地面竖直上抛一个质量为m的小球,小球上升的最大高度为H.设上升过程中空气阻力F阻恒定.则对于小球的整个上升过程,下列说法中错误的是( )A.小球动能减少了mgHB.小球机械能减少了F阻HC.小球重力势能增加了mgHD.小球的加速度大于重力加速度g4.如图所示,一轻弹簧的左端固定,右端与一小球相连,小球处于光滑水平面上.现对小球施加一个方向水平向右的恒力F,使小球从静止开始运动,则小球在向右运动的整个过程中( )A.小球和弹簧组成的系统机械能守恒B.小球和弹簧组成的系统机械能逐渐增加C.小球的动能逐渐增大D.小球的动能先增大后减小二、计算题1.如图所示,ABCD是一条长轨道,其AB段是倾角为的斜面,CD段是水平的,BC是与AB和CD相切的一小段弧,其长度可以略去不计。

一质量为m的物体在A点从静止释放,沿轨道滑下,最后停在D点,现用一沿轨道方向的力推物体,使它缓慢地由D点回到A点,设物体与轨道的动摩擦因数为,A 点到CD 间的竖直高度为h ,CD (或BD )间的距离为s ,求推力对物体做的功W 为多少2.一根长为L 的细绳,一端拴在水平轴O 上,另一端有一个质量为m 的小球.现使细绳位于水平位置并且绷紧,如下图所示.给小球一个瞬间的作用,使它得到一定的向下的初速度.(1)这个初速度至少多大,才能使小球绕O 点在竖直面内做圆周运动(2)如果在轴O 的正上方A 点钉一个钉子,已知AO=2/3L ,小球以上一问中的最小速度开始运动,当它运动到O 点的正上方,细绳刚接触到钉子时,绳子的拉力多大3.如图所示,某滑板爱好者在离地h =1.8m 高的平台上滑行,水平离开A 点后落在水平地面的B 点,其水平位移s 1=3m ,着地时由于存在能量损失,着地后速度变为v =4m/s ,并以此为初速沿水平地面滑行s 2=8m 后停止,已知人与滑板的总质量m =60kg 。

物理机械能守恒定律题及解析

物理机械能守恒定律题及解析

物理机械能守恒定律题及解析
题目:一个质量为10kg的物体,从高度为5m的斜面顶端下滑,初始速度为零,斜面底端有一个垂直向上的弹簧。

物体压缩弹簧后被弹起,最后飞出斜面,求物体飞出斜面的速度和弹簧对物体做的功。

解析:根据机械能守恒定律,物体在运动过程中,其重力势能和动能之间相互转化,而总的机械能保持不变。

在本题中,物体在斜面上运动,重力势能转化为动能,而弹簧的弹力对物体做功,将一部分动能再次转化为弹簧的势能,最终物体飞出斜面时,其速度和弹簧的势能分别为:
1.物体飞出斜面的速度
根据机械能守恒定律,物体在斜面上的重力势能和动能之和保持不变,即:
mgh + 0 = 1/2 m v^2
其中,m为物体的质量,g为重力加速度,h为物体在斜面上的高度,v为物体在斜面上的速度。

根据题目给出的条件,可以计算出物体在斜面上的速度:
v = sqrt(2gh) = sqrt(2 x 9.8 x 5) = 7.98 m/s
2.弹簧对物体做的功
弹簧对物体做功,将物体的动能转化为弹簧的势能,根据机械能守恒定律,有:
1/2 m v^2 = W
其中,m为物体的质量,v为物体在斜面上的速度,W为弹簧对物体做的功。

根据题目给出的条件,可以计算出弹簧对物体做的功:
W = 1/2 m v^2 = 1/2 x 10 x 7.98^2 = 304.1 J
因此,弹簧对物体做的功为304.1焦耳。

机械能守恒典型例题带详解

机械能守恒典型例题带详解

第七章 机械能同步练习(一)例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度;(2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。

解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2021mv mgH =, 解得102202220⨯==g v H m=20m 。

(2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有221mv mgh =。

在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2022121mv mv mgh =+。

由以上两式解得104204220⨯==g v h m=10m 。

点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。

本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由221mv mgh =,mgH mv mgh =+221, 解得 2202==H h m=10m 。

例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?解析 这里提供两种解法。

解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 21414gL L Lg E ρρ=⋅=, 末态的机械能为 2222121Lv mv E ρ==。

根据机械能守恒定律有 E 2=E 1, 即224121gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2gLv =。

解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了AA ’的位置。

重力势能的减少量AB241221gL L Lg E p ρρ=⋅=∆-, 动能的增加量 221Lv E k ρ=∆。

机械能守恒例题

机械能守恒例题

机械能守恒例题例题1:一个质量为2 kg的物体以速度10 m/s从高度为5 m 的斜坡上滑下来,忽略摩擦力和空气阻力。

求物体滑到底部的速度。

解答:由机械能守恒可知,物体的总机械能在滑动过程中保持不变。

因为没有摩擦力和空气阻力,仅有的能量转化是重力势能转化为动能。

物体下滑结束时,重力势能为0,机械能转化为动能。

那么,按照能量守恒可以得到:mgh = 1/2 mv²其中,m为物体的质量,g为重力加速度,h为高度,v为速度。

代入已知数据,得到:2 kg × 9.8 m/s² × 5 m = 1/2 × 2 kg × v²v² = 98 m²/s²v = √(98) ≈ 9.9 m/s物体滑到底部的速度约为9.9 m/s。

例题2:一个弹簧质量为0.5 kg的弹簧枪,其劲度系数为200N/m。

如果将该枪拉到后撤距离为0.2 m,求弹簧枪子弹射出的速度。

解答:根据机械能守恒可知,物体的总机械能在射击过程中保持不变。

弹簧拉伸的势能转化为子弹的动能。

弹簧的弹性势能可以表示为:E = 1/2 kx²其中,k为弹簧的劲度系数,x为弹簧的压缩或拉伸距离。

子弹的动能可以表示为:E' = 1/2 mv²其中,m为子弹的质量,v为子弹的速度。

由于机械能守恒,可以得到:E = E'1/2 kx² = 1/2 mv²代入已知数据,得到:1/2 × 200 N/m × (0.2 m)² = 1/2 × 0.5 kg × v²v² = (200 N/m × (0.2 m)²) / 0.5 kgv² = 16 m²/s²v = √(16) = 4 m/s弹簧枪子弹射出的速度为4 m/s。

高中力学中的机械能守恒定律有哪些典型例题

高中力学中的机械能守恒定律有哪些典型例题

高中力学中的机械能守恒定律有哪些典型例题在高中力学的学习中,机械能守恒定律是一个非常重要的知识点。

它不仅在解决物理问题时经常用到,也是理解能量转化和守恒的关键。

下面,我们就来一起探讨一些机械能守恒定律的典型例题。

例题一:自由落体运动一个质量为 m 的物体从高度为 h 的地方自由下落,忽略空气阻力,求物体下落至地面时的速度 v。

解析:在自由落体运动中,物体只受到重力的作用,重力势能逐渐转化为动能。

初始时刻,物体的机械能为重力势能 mgh,下落至地面时,物体的机械能为动能 1/2mv²。

因为机械能守恒,所以有 mgh =1/2mv²,解得 v =√2gh 。

这个例题是机械能守恒定律的最基本应用之一,它清晰地展示了重力势能如何转化为动能。

例题二:竖直上抛运动一个质量为 m 的物体以初速度 v₀竖直上抛,忽略空气阻力,求物体上升的最大高度 h。

解析:物体竖直上抛时,动能逐渐转化为重力势能。

在初始时刻,物体的机械能为动能 1/2mv₀²,当物体上升到最大高度时,速度为 0,机械能为重力势能 mgh。

由于机械能守恒,所以 1/2mv₀²= mgh,解得 h = v₀²/ 2g 。

这个例题与自由落体运动相反,是动能转化为重力势能的过程。

例题三:光滑斜面运动一个质量为 m 的物体从光滑斜面的顶端由静止开始下滑,斜面的高度为 h,斜面的长度为 L,求物体滑到底端时的速度 v。

解析:物体在斜面上运动时,重力势能转化为动能。

初始时刻,物体的机械能为重力势能 mgh,滑到底端时,物体的机械能为动能1/2mv²。

因为斜面光滑,没有摩擦力做功,机械能守恒。

根据几何关系,物体下落的高度 h 与斜面长度 L 和斜面倾角θ 有关,h =Lsinθ。

所以mgh = 1/2mv²,解得 v =√2gh =√2gLsinθ 。

这个例题展示了在斜面这种常见的情境中机械能守恒定律的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 机械能同步练习(一)例1 以20m/s 的速度将一物体竖直上抛,若忽略空气阻力,g 取10m/s 2,试求: (1) 物体上升的最大高度;(2) 以水平地面为参考平面,物体在上升过程中重力势能和动能相等的位置。

解析 (1) 设物体上升的最大高度为H ,在物体整个上升过程中应用机械能守恒定律,有2021mv mgH =, 解得102202220⨯==g v H m=20m 。

(2) 设物体重力势能和动能相等的位置距地面的高度为h ,此时物体的速度为v ,则有221mv mgh =。

在物体被抛出到运动至该位置的过程中应用机械能守恒定律,有2022121mv mv mgh =+。

由以上两式解得104204220⨯==g v h m=10m 。

点拨 应用机械能守恒定律时,正确选取研究对象和研究过程,明确初、末状态的动能和势能,是解决问题的关键。

本题第(2)问也可在物体从重力势能与动能相等的位置运动至最高点的过程中应用机械能守恒定律,由221mv mgh =,mgH mv mgh =+221, 解得 2202==H h m=10m 。

例2 如图所示,总长为L 的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时下端A 、B 相平齐,当略有扰动时其一端下落,则当铁链刚脱离滑轮的瞬间,铁链的速度为多大?解析 这里提供两种解法。

解法一(利用E 2=E 1求解):设铁链单位长度的质量为ρ,且选取初始位置铁链的下端A 、B 所在的水平面为参考平面,则铁链初态的机械能为 21414gL L Lg E ρρ=⋅=, 末态的机械能为 2222121Lv mv E ρ==。

根据机械能守恒定律有 E 2=E 1, 即224121gL Lv ρρ=,解得铁链刚脱离滑轮时的速度 2gLv =。

解法二(利用△E k =-△E p 求解):如图所示,铁链刚离开滑轮时,相当于原来的BB ’部分移到了AA ’的位置。

重力势能的减少量241221gL L Lg E p ρρ=⋅=∆-, 动能的增加量 221Lv E k ρ=∆。

根据机械能守恒定律有 △E k =-△E p , 即224121gL Lv ρρ=, 解得铁链刚脱离滑轮时的速度 2gLv =。

点拨 对于绳索、链条之类的物体,由于发生形变,其重心位置相对物体来说并不是固定不变的,能否确定重心的位置,常是解决该类问题的关键。

可以采用分段法求出每段的重力势能,然后求和即为整体的重力势能;也可采用等效法求出重力势能的改变量。

再有,利用△E k =-△E p 列方程时,不需要选取参考平面,且便于分析计算。

例3 如图5—51所示,跨过同一高度处的光滑轻小定滑轮的细线连接着质量相同的物体A 和B ,A 套在光滑水平杆上,定滑轮离水平杆的高度h=0.2m ,开始时让连接A 的细线与水平杆的夹角θ=53°。

由静止释放A ,在以后的运动过程中,A 所能获得的最大速度为多少?(sin53°=0.8,cos53°=0.6,g 取10m/s 2,且B 不会与水平杆相碰。

)解析 物体A 被拉至左侧定滑轮的正下方时获得最大速度,此时物体B 的瞬时速度为0。

以物体A 所在水平面为参考平面,在从物体A 刚被释放到物体A 运动至左侧定滑轮正下方的过程中,对系统应用机械能守恒定律,有)sin (212h h mg mv -=θ, 解得A 所能获得的最大速度为)2.053sin 2.0(102)sin (20-⨯⨯=-=h h g v θm/s=1m/s 。

点拨 求解本题的关键是正确选取研究对象,而且要能判断出获得最大速度时所处的位置。

分析时还可从系统何时具有最小重力势能着手,即只有当物体A 被拉至左侧定滑轮的正下方时,物体B 的位置最低,此时系统有最小重力势能,也就有最大动能,又此时物体B 的瞬时速度为0,故物体A 具有最大动能,则具有最大速度。

例4如图所示,在一根长为L 的轻杆上的B 点和末端C 各固定一个质量为m 的小球,杆可以在竖直面上绕定点A 转动,现将杆拉到水平位置后从静止释放,求末端C 摆到最低点时的速度大小?AB 三分之二杆长,杆的质量与摩擦不计。

解析:由于两小球、轻杆和地球组成的系统在运动过程中,势能和动能相互转化,且只有系统内两小球的重力做功,故系统机械能守恒.选杆在水平位置时为零势能点.则有 E 1=0.而 E 1=E 2,点拨:运用机械能守恒定律,应注意研究对象(系统)的选取和定律守恒的的条件.在本例题中出现的问题是,整个系统机械能守恒,但是,系统的某一部分(或研究对象)的机械能并不守恒.因而出现了错误的结果.例5物体自光滑球面顶点从静止开始下滑.求小物体开始脱离球面时α=?如图所示.解析:从运动学方面,物体先做圆周运动,脱离球面后做抛体运动.在动力学方面,物体在球面上时受重力mg 和支承力N ,根据牛顿第二定律物体下滑过程中其速度v 和α均随之增加,故N 逐步减小直到开始脱离球面时N 减到零.两个物体即将离开而尚未完全离开的条件是N=0.视小物体与地球组成一系统.过程自小物体离开顶点至即将脱离球面为止.球面弹性支承力N 为外力,与物体运动方向垂直不做功;内力仅有重力并做功,故系统机械能守恒.由机械能守恒解得结果:点拨:解题前将过程分析清楚很重要,如本题指出,物体沿球面运动时,N 减小变为零而脱离球面.若过程分析不清将会导致错误.例6 如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与水平地面垂直,顶上有一个定滑轮,跨过定滑轮的细线两端分别与物块A 和B 连接,A 的质量为4m ,B 的质量为m 。

开始时,将B 按在地面上不动,然后放开手,让A 沿斜面下滑而B 上升,所有摩擦均忽略不计。

当A沿斜面下滑距离s 后,细线突然断了。

求物块B 上升的最大高度H 。

(设B 不会与定滑轮相碰)解析 设细线断裂前一瞬间A 和B 速度的大小为v ,A 沿斜面下滑s 的过程中,A 的高度降低了s sin θ,B 的高度升高了s 。

对A 和B 以及地球组成的系统,机械能守恒,有物块A 机械能的减少量等于物块B 机械能的增加量,即2221421sin 4mv mgs mv mgs +=⋅-θ。

细线断后,物块B 做竖直上抛运动,物块B 与地球组成的系统机械能守恒,设物块B 继续上升的高度为h ,有221mv mgh =。

由以上两式联立解得 5s h =, 故物块B 上升的最大高度为 s s s h s H 565=+=+=。

点拨 在细线断裂之前,A 和B 以及地球组成的系统机械能守恒。

两个物体用同一根细线跨过定滑轮相连由于细线不可伸长,两个物体速度的大小总是相等的。

细线断裂后,B 做竖直上抛运动,由于只有重力做功,B 与地球组成的系统机械能守恒。

在处理实际问题时,要根据问题的特点和求解的需要,选取不同的研究对象和运动过程进行分析。

例7 如图所示,质量均为m 的小球A 、B 、C ,用两条长为l 的细线相连,置于高为h 的光滑水平桌面上,l >h ,球刚跨过桌边。

若A 球、B 球相继着地后均不再反跳,忽略球的大小,则C 球离开桌边时的速度有多大?解析 设A 球着地时的速度为v 1,A 、B 、C 三球与地球组成的系统机械能守恒,有21321v m mgh ⋅⋅=, gh v 321=。

设B 球着地时的速度为v 2,A 球着地后,B 、C 两球与地球组成的系统机械能守恒,有2122221221v m v m mgh ⋅⋅-⋅⋅=,gh gh gh v gh v 3532212=+=+=。

所以,C 球离开桌边时的速度为gh v v C 352==。

点拨 在应用机械能守恒定律分析多个物体的运动时,研究对象的选取至关重要。

另外,上述求解过程采用了“系统减小的重力势能等于增加的动能”来列式,当然也可采用“系统末态的机械能等于初态的机械能”来列式。

请同学们试着做一下,并将这两种解法作一比较。

例8 电动机通过一条绳子吊起质量为8kg 的物体。

绳的拉力不能超过120N ,电动机的功率不能超过1 200W ,要将此物体由静止起,用最快的方式将物体吊高90m (已知物体在被吊高90m 以前已开始以最大速度匀速上升),所需时间为多少?(g 取10 m/s 2)解析 起吊最快的方式是:开始时以最大拉力起吊,达到最大功率后维持最大功率起吊。

在匀加速运动过程中,加速度为θ B AlABChl8108120⨯-=-=m mg F a m m/s 2=5 m/s 2, 末速度 1202001==m m t F P v m/s=10m/s , 上升时间 5101==a v t t s=2s , 上升高度 52102221⨯==a v h t m=10m 。

在功率恒定的过程中,最后匀速运动的速度为1082001⨯==mg P v m m m/s=15m/s , 由动能定理有 22122121)(t m m mv mv h h mg t P -=--, 解得上升时间2001)1015(821)1090(108)(21)(222212-⨯⨯+-⨯⨯=-+-=m t m P v v m h h mg t s=5.75s 。

所以,要将此物体由静止起,用最快的方式将物体吊高90m ,所需时间为t=t 1+t 2=2s+5.75s=7.75s 。

点拨 分析用最快的方式将物体吊起的具体过程,是求解本题的基础。

本题与汽车以恒定的加速度起动属于同一题型,请同学们作一对比。

学习物理,要善于比较联想、总结归纳,做到举一反三、触类旁通。

相关文档
最新文档