视频图像中运动目标检测方法研究

合集下载

视频图像中运动目标检测算法的提高

视频图像中运动目标检测算法的提高
S h oo t i n g Co nf ro n t a t i o n S ys t e m i s p r o po s e d i n t h i s a r t i c l e . The a l g o r i t h mi s d i s c u s s e d ro f m t wo a s pe c t s , t h e e ic f i e n c y a n d t h e a c c u r a c y e f f e c t e d b y t he i n t e r f e r e n c e .To i mp r o ve t h e e ic f i e nc y o f t h e a l g o r i t h m ,t h e l a r g e i ma g e s f r o m t he v i d e o s t r e a m a r e ir f s t d o wn - s c a l e d , S O t ha t t h e l o c a t i o n of t h e mo v i ng t a r g e t s c a n b e q u i c kl y d e t e r mi ne d. Af t e r t h a t , t h e
c a me r a s h a k i n g a n d l i g h t c h a n g i n g c a n b e e l i mi na t e d b y b l e nd i n g t he c u r r e n t i ma ge wi t h t h e b a c kg r o u n d .Co mb i n i n g wi t h b a c k g r o u n d s u b ra t c t i o n , b a c k g r o u nd u p d a t e c a r l e f f e c t i v e l y i mp r o v e t h e a c c u r a c y o f t h e a l g o r i t h m.

基于视频的运动目标检测概述

基于视频的运动目标检测概述

基于视频的运动目标检测概述视频的运动目标检测是计算机视觉领域中的重要问题之一,是计算机对连续帧图像中的运动目标进行自动检测和跟踪的过程。

它在许多应用中起着关键作用,如视频监控、自动驾驶、人机交互等。

本文将对视频的运动目标检测进行概述,重点介绍其基本原理、常用方法以及现有的挑战和发展方向。

首先,视频的运动目标检测可以分为两个主要步骤:目标检测和目标跟踪。

目标检测是指在每一帧中找到属于运动目标的像素或区域,而目标跟踪是指在连续帧之间跟踪目标的位置和形状。

这两个步骤通常是连续进行的,以实现对视频中目标的准确检测和跟踪。

在目标检测中,有许多经典的方法。

其中一种常见的方法是基于背景建模的方法,它假设背景是静态的,通过建模背景来提取前景目标。

背景建模方法包括基于帧差法、基于基于高斯混合模型(GMM)的方法等。

另一种常见的方法是基于特征的方法,它通过提取图像中的特征,如颜色、纹理和形状等,来区分目标和背景。

基于特征的方法包括基于像素级的方法、基于区域的方法和基于深度学习的方法等。

在目标跟踪中,也有许多经典的方法。

其中一种常见的方法是基于卡尔曼滤波器的方法,它通过估计目标的状态变量和噪声方差来预测和更新目标的位置。

另一种常见的方法是基于粒子滤波器的方法,它通过使用一组粒子(即候选目标的样本)来估计目标的位置和形状。

此外,还有一些基于外观模型的方法,它们以目标在每一帧中的外观为基础,进行目标跟踪。

然而,视频的运动目标检测仍然存在一些挑战。

首先,复杂的场景和背景变化可能导致目标检测的错误和漏检。

其次,目标的运动速度和尺度变化可能导致目标的丢失和跟踪的困难。

此外,视频中的遮挡、部分遮挡和目标变形等问题也会影响目标的检测和跟踪精度。

因此,如何提高运动目标的检测和跟踪的精度和鲁棒性仍然是一个挑战。

未来,视频的运动目标检测在几个方面有着巨大的发展潜力。

首先,深度学习技术已经在图像目标检测和跟踪中取得了巨大的成功,将其应用于视频的运动目标检测可以进一步提高准确性和鲁棒性。

视频检测和运动目标跟踪方法总结

视频检测和运动目标跟踪方法总结

视频检测和运动目标跟踪方法总结目前常用的视频检测方法可分为如下几类:光流法,时域差分法,背景消减法,边缘检测法,运动矢量检测法[2]。

一、光流法光流法[1]是一种以灰度梯度基本不变或亮度恒定的约束假设为基础对运动目标进行检测的有效方法。

光流是指图像中灰度模式运动的速度,它是景物中可见的三维速度矢量在成像平面上的投影,表示了景物表面点在图像中位置的瞬时变化,一般情况下,可以认为光流和运动场没有太大区别,因此就可以根据图像运动来估计相对运动。

优点:光流不仅携带了运动目标的运动信息,而且还携带了有关景物三维结构的丰富信息,它能够检测独立运动的对象,不需要预先知道场景的任何信息,并且能够适用于静止背景和运动背景两种环境。

缺点:当目标与背景图像的对比度太小,或图像存在噪音时,单纯地从图像灰度强度出发来探测目标的光流场方法将会导致很高的虚警率。

且计算复杂耗时,需要特殊的硬件支持。

二、时域差分法时域差分法分为帧差法和改进的三帧双差分法。

1.帧差法帧差法[8]是在图像序列中的相邻帧采用基于像素点的时间差分, 然后阈值化来提取出运动区域。

视频流的场景具有连续性,在环境亮度变化不大的情况下,图像中若没有物体运动,帧差值会很小;反之若有物体运动则会引起显著的差值。

优点:时域相邻帧差法算法简单,易于实现,对背景或者光线的缓慢变化不太敏感,具有较强的适应性,能够快速有效地从背景中检测出运动目标。

缺点:它不能完全提取运动目标所有相关像素点,在运动实体内部不容易产生空洞现象。

而且在运动方向上被拉伸,包含了当前帧中由于运动引起的背景显露部分,这样提取的目标信息并不准确。

2.三帧双差分法三帧双差分法与相邻帧差法基本思想类似,但检测运动目标的判决条件上有所不同。

三帧双差分较两帧差分提取的运动目标位置更为准确。

三、背景消减法背景消减法[4]是将当前帧与背景帧相减,用阈值T判断得到当前时刻图像中偏离背景模型值较大的点,若差值大于T则认为是前景点(目标);反之,认为是背景点,从而完整的分割出目标物体。

视频图像序列中运动目标区域检测算法研究

视频图像序列中运动目标区域检测算法研究
e s i g c n b b an d Th x rme tr s l s o h tt s ag r h r p s d i h s p p rh s v r o d e fc . e s i eo tie. n a e e p i n e u t h ws t a h l o im p o e t a e a e y g o fe t e i t o n i
结 果 表 明 所 提 出 的算 法 具 有 较 理 想 的 效 果 。 关键词 视频 图像 ;背 景 差分 ; 景 更 新 ;自适 应 阈值 背
TP 9 31 中图 tcin i d oI g e u n e sa c f Mo ig0b t e AraDee t Vie ma eS q e c o n
总 第 2 4期 7
21 0 2年 第 8期
计算机 与数字工程
C mp tr& Dii lE gn eig o ue gt n iern a
Vo. 0 No 8 14 .
1 07
视 频 图像 序 列 中运 动 目标 区域 检 测 算 法研 究
杜岳涛 张 学 智
西安 703) 1 0 2 ( 安 工 业 大 学 电 子 信 息 工程 学 院 西
1 引言
视 觉 是 人类 从 大 自然 中获 取 信 息 的最 主 要 的手 段 。据
法, 它事先将 背景图像储存下来 , 由于运动物体和 背景在灰 度或色彩上存在差别 , 通过 将背景 图像 和 当前 图像做 差分 运 算 , 减 的 结 果 中 每 一 像 素 的 值 和 一 个 预 先 设 定 的 阈 值 相
据库 的检索等相关领域 的研究 带来很 大 的推动作 用 , 也会
在 方 法 论 的角 度 促 进 计 算 机 视 觉 、 式 识 别 等 计 算 机 科 学 模 分 支 甚 至 整 个 计 算 机 科 学 的发 展 。 传 统 目标 区 域 提 取 方 法 有 光 流 法 、 间 差 分 法 、 景 差 时 背 分 法 [ 。光 流 方 法 时 间 开 销 比较 大 , 其 抗 噪 性 能 比较 差 , 3 ] 且 复杂 背 景 下 也 不 太 适 用 ; 间 差 分 法 在 运 动 实 体 内部 容 易 时

视频监控中的运动目标检测与跟踪

视频监控中的运动目标检测与跟踪

视频监控中的运动目标检测与跟踪随着科技的不断发展,视频监控系统在我们生活中起到了越来越重要的作用。

其中,运动目标检测与跟踪是视频监控系统中的关键技术之一。

本文将详细介绍视频监控中的运动目标检测与跟踪的原理和应用。

在视频监控系统中,运动目标指的是图像序列中不断变化的区域,例如人、车辆等。

而运动目标检测与跟踪则是指在视频中自动识别和跟踪这些运动目标的过程。

首先,运动目标检测是指在视频序列中找出运动目标所在的位置。

常见的运动目标检测算法包括帧间差、光流法和背景建模等。

帧间差方法通过比较连续帧之间的像素差异来检测目标的运动。

光流法则利用像素间的灰度变化来估计运动目标的移动。

背景建模则通过建立静止背景图像来检测运动目标。

其次,运动目标跟踪是指在检测到的运动目标中,跟踪其运动轨迹并实时更新位置信息。

常见的运动目标跟踪算法包括卡尔曼滤波器、粒子滤波器和相关滤波器等。

卡尔曼滤波器通过预测和观测更新的方式来估计目标的位置。

粒子滤波器则通过在候选区域中采样来估计目标的位置。

相关滤波器利用目标模板和候选区域之间的相关性来跟踪目标。

在实际应用中,运动目标检测与跟踪技术被广泛应用于视频监控系统中。

首先,它可以用于实时监测人员和车辆的行为,以便及时发现异常情况。

例如,当有人携带危险物品进入监控区域时,系统可以立即发出警报并采取相应措施。

其次,它可以用于交通管理系统中,监测交通流量和违规行为。

例如,当有车辆逆向行驶或超速行驶时,系统可以自动拍摄照片或录像作为证据。

此外,运动目标检测与跟踪技术还可用于视频分析和智能监控系统中,为用户提供更加智能的安防服务。

然而,运动目标检测与跟踪技术也存在一些挑战和局限性。

首先,复杂的背景和光照变化会对运动目标检测产生干扰。

例如,当目标混杂在复杂的背景中时,算法往往会出现误检测现象。

其次,目标遮挡和形状变化也会对运动目标跟踪产生困难。

例如,当目标部分被其他物体遮挡时,算法往往会失去目标的轨迹。

视频图像中的运动人体检测和人脸识别

视频图像中的运动人体检测和人脸识别

视频图像中的运动人体检测和人脸识别视频图像中的运动人体检测和人脸识别随着科技的发展和智能设备的普及,视频图像处理技术也日益发展。

视频图像中的运动人体检测和人脸识别技术,作为计算机视觉和图像处理领域的重要研究方向,已经在各个领域得到广泛应用,如安防领域、智能交通领域、人机交互等。

本文将对视频图像中的运动人体检测和人脸识别技术进行探讨。

一、视频图像中的运动人体检测技术运动人体检测技术是指识别视频图像中人体运动目标的过程。

在视频图像中,人体的运动是一个复杂而多变的过程,由于光照、环境、姿态等因素的干扰,运动人体检测技术面临着一定的挑战。

1、运动特征提取运动特征提取是运动人体检测的基础。

通过分析视频图像序列中的像素变化情况,可以提取出目标人体与背景的运动特征。

常用的运动特征包括:光流特征、运动轨迹特征、运动速度特征等。

光流特征是指在连续的图像帧之间,由像素的亮度变化引起的位移的矢量场。

通过计算相邻图像帧之间的像素差异,可以获得目标人体的光流特征。

运动轨迹特征是将目标人体在视频序列中的运动轨迹转化为特征向量,常用的运动轨迹特征包括:形状轨迹、颜色轨迹等。

运动速度特征则是指目标人体在视频序列中的运动速度信息。

通过分析目标人体在连续图像帧中的运动速度变化,可以提取出目标人体的运动速度特征。

2、运动目标检测在从视频图像中提取出运动特征之后,接下来就是运动目标检测的过程。

运动目标检测的目的是将目标人体与背景进行区分,通过运动模型、背景建模等方法,可以准确地检测出视频图像中的运动人体目标。

运动模型是一种基于物体运动的模型,通过对目标人体的运动模式进行建模,可以根据模型推测出目标人体的位置和运动状态。

背景建模则是通过对视频序列中的背景像素进行建模,通过对比当前帧图像与背景模型的差异,可以提取出目标人体。

3、运动人体跟踪基于运动的人体跟踪是指在视频图像中,根据目标人体的运动特征和运动目标检测结果,实时地跟踪目标人体的过程。

视频监控系统中的运动目标跟踪与轨迹分析

视频监控系统中的运动目标跟踪与轨迹分析

视频监控系统中的运动目标跟踪与轨迹分析随着科技的不断进步,视频监控系统在我们的生活中扮演着越来越重要的角色。

视频监控系统不仅为我们提供了安全保障,还可以对运动目标进行跟踪与轨迹分析,以帮助我们更好地理解事件的发生和发展。

本文将探讨视频监控系统中的运动目标跟踪与轨迹分析的原理和应用。

运动目标跟踪是视频监控系统中的一个关键技术,它可以通过分析连续的视频帧来识别和跟踪目标的运动。

一般情况下,目标的跟踪可以分为两个阶段:目标检测和目标跟踪。

目标检测是指在每一帧中找到目标物体的位置和尺寸。

常见的目标检测算法有基于颜色、纹理或形状等特征进行匹配的方法和深度学习方法。

目标跟踪是指在连续的视频帧中追踪目标物体的运动轨迹。

常见的目标跟踪算法有卡尔曼滤波器、粒子滤波器和相关滤波器等。

在目标跟踪的基础上,轨迹分析可以提供关于目标运动模式、速度、行为等信息。

通过对目标的轨迹进行分析,可以判断目标是否具有可疑行为,进一步提高监控系统的安全性和效率。

轨迹分析的方法包括轨迹拟合、轨迹聚类和轨迹关联等。

轨迹拟合是指通过拟合轨迹的数学模型,预测目标的未来位置。

轨迹聚类是指将轨迹分为不同的群组,以便对目标进行分类和识别。

轨迹关联是指将多个目标的轨迹进行匹配和关联。

视频监控系统中的运动目标跟踪与轨迹分析具有广泛的应用。

在交通领域,可以利用目标的轨迹分析交通流量和拥堵情况,优化交通信号控制系统。

在工业领域,可以通过跟踪和分析工人的运动轨迹,提高生产效率和安全性。

在安防领域,可以通过跟踪和分析目标的运动轨迹,快速发现可疑的行为并采取措施。

此外,运动目标跟踪与轨迹分析还可以应用于体育比赛、行人检测、智能家居等领域。

然而,视频监控系统中的运动目标跟踪与轨迹分析仍然面临一些挑战和难题。

首先,目标的形状、大小和运动速度的多样性会对目标的跟踪和分析造成困扰。

其次,背景的变化和光照条件的变化也会干扰目标的跟踪和分析。

此外,复杂的场景中可能存在交叉和遮挡等问题,使得目标的识别和轨迹分析变得更加困难。

视频数据中的运动物体检测研究

视频数据中的运动物体检测研究

视频数据中的运动物体检测研究随着科技的飞速发展和数字化信息技术的不断进步,视频数据的规模和数量日益庞大。

运动物体检测作为视频数据处理中的关键环节,是了解运动物体的形态、行为习惯和动态变化的重要基础。

一、运动物体检测的研究意义运动物体检测在多个领域中发挥着重要作用。

例如在交通领域中,运动物体检测可以用于城市交通疏导、预警和控制等方面。

在智能监控和安防领域中,运动物体检测可以实现目标检测、行为识别和预测等功能。

在机器人技术中,运动物体检测可以实现机器人的控制和导航等功能。

在这些领域中,运动物体检测可以提高人们的生产力和效率,降低劳动强度,提高生活质量和安全性。

二、运动物体检测的方法与技术现有的运动物体检测方法主要分为基于前景检测和基于运动目标检测两种。

基于前景检测的运动物体检测方法主要是基于图像处理和运动物体跟踪技术,通过在视频帧之间的大量比较和图像分析,将视频序列中的前景和背景进行分离,进而检测运动物体。

这种方法的优点是能够对目标进行跟踪和预测,缺点是对背景复杂、光照变化较大的场景难以处理。

基于运动目标检测的运动物体检测方法主要是通过运动物体的动态特征对其进行检测和跟踪,包括目标的大小、形状、运动轨迹和速度等因素进行分析和处理。

这种方法优点是能够对目标的运动状态和轨迹进行高精度检测,缺点是检测速度较慢。

近年来,随着深度学习的技术的不断发展,基于深度学习的运动物体检测方法已成为了一个研究热点。

这种方法主要通过卷积神经网络(CNN)对运动目标进行检测和跟踪,在目标检测方面取得了很好的效果。

三、运动物体检测在实际应用中的问题尽管运动物体检测技术具有广泛的应用前景和较好的研究基础,但在实际应用中还存在一些问题:1、复杂背景干扰问题。

在城市环境中,背景复杂多变,易受到自然光影、干扰设备和人为因素的影响,会造成假阳性检测,影响检测的精度和准确率。

2、运动目标超出探测范围问题。

运动物体具有一定的运动能力和行动自由度,有可能超出探测范围,导致漏检和探测错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

视频图像中运动目标检测方法研究毕业论文题目视频图像中运动目标检测方法研究摘要在很多现代化领域,运动目标检测都显示出了其重要的作用。

尤其是近二十年的社会经济的飞速发展,运动目标检测都彰显了其重要性,在航空、通信、航海等各个方面都有关键性的作用,从而使运动目标检测方法的研究成为各国的研究热门课题。

通过阅读大量的相关论文、期刊及其网络资源,了解了高斯背景建模及背景更新的基本原理及思想。

在本文中,首先介绍了运动目标检测方法的相关基础知识,如图像的二值化、图像的形态学处理、颜色空间模型。

然后重点说明了三种常用的运动目标检测方法的研究,简要阐述了三种研究方法的基本思想。

在老师的帮助下进行了相应的实验,最终得出了三种运动目标检测方法的优点和缺点,着重探究了高斯背景建模及其背景更新基本原理及思想。

最后,通过相关的程序及软件对混合高斯背景模型进行了相关的实验,进而发现了混合高斯背景建模算法存在的不足之处,如:高斯背景建模的计算量大、运动目标较大时检测效果差等问题,并对对这些问题提出了相关设想及改进。

关键词:运动目标检测;二值化;图像的形态学处理;高斯背景建模;背景更新IABSTRACTIn many modern fields, moving target detection are showing its important role. Especially nearly twenty years of rapid development of social economy, the moving target detection has shown its importance, in various aviation, communication, navigation and so on have a key role, so the study of moving target detection method has become a research hot topic in countries.By reading relevant papers, a large number of journals and cyber source, understand the basic principle and thought of Gauss background modeling and updating the background. In this paper, firstly introduces the basic knowledge of moving target detection method, such as the two values image, morphological image processing, color space model. Then focus on the study of three methods used for moving object detection, a brief description of the basic ideas of the three kinds of research methods. By the experiment, the results of three kinds of method of moving target detection has advantages and disadvantages, this paper emphatically explores Gauss background modeling and background updating basic principle and thought.Finally, through the program and software related to mixed Gauss background model for the relevant experiments, and found the shortcomings, the presence of mixed Gauss background modeling algorithm such as: the problem of computing Gauss background modeling, moving target volume larger detection effect is poor, and on these problems put forward relevant ideas and improvement.Keywords: moving object detection; two values;I Imorphological image processing; Gauss background modeling; background updateI I I1 前言1.1国内外研究现状运动目标检测在机器人、视频监控、交通道路检测、军事战争、模拟现实等众多的领域都有极其重要的应用和良好的发展前景。

[1]近年来运动目标检测的研究方法在计算机方面一直都处于热门性研究话题,国内外等众多的学者在运动目标检测等方面进行了不懈的努力。

运动目标检测在国外,早在二十世纪美国有关部门就运动目标检测进行了监控系统项目的研究,其主要的目的是实现在一定的环境下对运动目标的检测,该系统采取了帧差分法的检测方法。

此外世界知名的计算机公司如IBM以及Microsoft等也纷纷进行了监控系统研究的实验,他们研究出来的智能监控系统极大的推进了视频监控的研究,并使得智能监控系统能够应用于现实实际的需要,推进力社会现代化的进程。

中国科学院是国内所有研究运动目标检测的机构中的引领者,而北京自动化研究所在运动目标检测方面则是做出了较大的贡献,交通场景的监控和行为模式识别是重点研究方向,在检测系统中有着重要的地位。

[2]图1. 1、图1. 2是我们日常生活中常见的监控的场景。

为了适应社会发展的需要,于2002年第一次成功举办了全国智能视觉监控会议,这次会议的主要内容是研究视觉监控技术,加强了运动目标检测经验的交流,推动了运动目标检测技术在我国的快速发展。

2003年第二届全国智能视觉监控会议同样在模拟识别国家重点实验室成功举办,推动了智能视觉监控系统的设计及开发在推广,并在同年的5月出版了一期针对动态场景的视觉监控专刊。

运动目标检测的迅速发展也吸引了一些高校的注意,一些著名高校,如:北京航天航天大学、上海交通大学、北京大学都对视频运动目标的检测做了大量的研究,并取得了骄人的成绩,进一步推动了运动目标检测的发展。

尽管近二十年运动目标检测在国内取得了骄人的成绩,但是目前在运动目标检测方法这方面依然有很大的不足,当前国内市场上能够见到的大部分智能监控产品来源于国外,如德国、美国、日本等。

而且国内大部分运动目标检测产品的可靠性依然有待提高,重要的是设备的维护和安装等问题需要国外人员的参与和协助,运动目标检测方法技术的突破存在着困难。

[3]1图1. 1 常见的监控场景图1. 2 常见的监控场景1.2选题的目的及意义随着历史的不断进步,二十一世纪是信息时代。

信息获取的途径和应用都实现了本质上的飞跃。

我们获取信息的途径已经转化为图像信息,尤其是运动目标所表达信息。

很多领域,图像尤其是视频所表达的信息往往要更加的生动形象,身体的协作使得我们能够迅速的获取、应用视觉传递的信息,我们利用视觉的变化来觉察环境信息的利用率是很高的。

[4]根据一些学者的研究,我们人类获得自然界的信息有大部分是来自运动的目标。

由此可以看出,运动目标已经成为我们获得信息的主要途径,几年来表现的尤其明显,运动目标为代表的信息已经广泛应用于航空航天、医疗机械、道路交通、虚拟现实等各个方面。

大家都知道大自然是运动的,人类的活动是2运动的,进而我们所关心的目标也是运动的,如:流动的人群、天空的飞鸟以及流动的河流等运动目标。

运动目标检测是计算机方向的热门性课题,目前在航空航天、医疗、道路交通、虚拟现实等领域已经有了一定程度的应用。

运动目标检测不仅是图像处理的重要组成成分,而且还是监控系统的核心组成部分。

运动目标检测的主要目的是将感兴趣的部分信息标识出来,并将信息进行加工以及分析。

伴随着时代的不断进步和发展,从背景图像中检测出来运动目标,并且将运动目标从背景图像中分割提取出来,是运动目标检测的主要作用,使背景图像与运动目标相分离,为我们提供相应的信息。

[5]1.3 存在的问题尽管我们在运动目标检测方面已经取得了骄人的成绩,可以依然存在一些问题影响到运动目标检测效果,基于视频序列的图像在背景更新方面有待完善,甚至有些背景不能够实现更新的功能或者说更新不及时。

光线的改变、波动的水面、以及飘扬的旗帜都会影响到背景的更新。

1.4 本论文章节安排第一章为绪论主要介绍了运动目标检测的国内外研究现状,选题的目的及其意义,目前运动目标检测存在的一些问题。

第二章为图像的预处理主要介绍了图像的预处理知识,首先简单介绍了二值化相关知识,其次为形态学处理的相关原理,形态学处理的相关内容包含二值膨胀与腐蚀、开与闭运算。

最后是简要阐述了颜色空间模型和图像的灰度图像的基础知识。

第三章为常用的三种检测方法主要介绍三种常用的运动目标检测方法,光流法、帧间差分法、背景差分法的基本原理。

第四章为背景建模与背景更新主要介绍了单高斯背景建和经典背景模型,混合高斯背景建模以及改进的混合高斯背景建模的基本思想,经典背景模型包含了平均背景模型和非参数背景模型。

重点介绍了混合高斯背景建模。

第五章为实验结果与分析在本章的实验中依次验证了光流法、帧间差分法、背景差分法、单高斯背景建模、混合高斯背景建模、改进的混合高斯背景建模的运动目标检测效果,3给出了实验中相关的图像和数字,并进行了简单的实验分析。

第六章为结束语最后总结了全文,运动目标检测目前依然存在不足,并进行了未来的展望。

2图像的预处理2.1引言本章主要介绍了图像的预处理知识和形态学处理,图像的预处理包括图像的二值化,形态学处理则包含了二值膨胀与腐蚀、开与闭运算。

然后介绍了颜色空间模型和图像的灰度化等。

图像的二值化是运动目标检测方法研究的基础,二值膨胀与腐蚀是形态学变换中最常用的两种方法,而开与闭运算是一种重要的形态学变换。

颜色空间模型有RGB(Red,Green,Blue)颜色模型,HSV (Hue,Saturation,Value)颜色模型等。

[6]2.2图像的二值化图像的二值化是我们研究运动目标检测研究方法的重要前提,但是由于风速或人为操作等原因,我们得到的图像总是和真实的图像都会有一定的误差,这时就只有对图像进行预处理才能使我们得到的图像尽可能的和原图像相一致,为了图像的后期处理和应用,对图像进行归一化处理是我们最常用的的方法,图像的归一化处理二值化的阀值是非常重要的,通常我们会设置适当的阀值来使背景图像与运动目标相分离。

相关文档
最新文档