基于视频的实时运动目标检测与跟踪系统研究

合集下载

基于视频的运动目标检测跟踪模型的应用研究

基于视频的运动目标检测跟踪模型的应用研究
J L  ̄ N G Xi a o h u i , Z E NG Xi a o p i n g 2
( 1 . 2 . C h e n g d u A e r o n a u t i c P o l y t e c h n i c , C h e n g d u , S i c h u a n 6 1 0 1 0 0 , C h i n a ) A b s t r a c t T h i s p a p e r a d o p t s t h e b a c k g r o u n d r e c o n s t r u c t i o n l a g o r i t h m i n c a s e o f m o v i n g o b j e c t s . T h e i n l f u e n c e o f t h e
l e a r n i n g nd a s t a t i s t i c s o f f r a me, t he s e g me n t a t i o n t h r e s h o l d o f t h e l e v e l o f he t p i x e l g r a y—s c le a o f c o o r d i n a t e s b y t h e d e —
c h a n g e o f e x t e r n l a e n v i r o n me n t c a n b e w e l l s u p p r e s s e d e a r b e a c e g u i r e d b y t h e l a g o i r t h m. hr T ou g h c e r t a i n a mo u n t o f
响 。该 运动 目标 检 测算 法通过 一 定数 量 帧的 学 习、 统计 , 找到 各 坐标 点像 素灰度 等级 的分 割 阈值 。在对 当前 帧 图像 进行 背景 差分后 , 分割 出运 动 目标 区域 。若存 在 运动 目标 , 则根 据 串行边 界跟 踪算 法获得 运 动 目标 轮 廓 。获得 边 界后 , 模 型将 绘制 方框 显 示运动 物体 , 并 发 出警报 。该 运 动 目标检 测模 型 用 V i s u a l C+ +给 予 实

基于DSP视频运动目标的实时检测与跟踪系统研究

基于DSP视频运动目标的实时检测与跟踪系统研究

, 和 1+ ,- 1 F …, -I 两类( 分别 较差 ; 帧间差法的原理和算法 比较简单, 易于实现 素分为 C 1 D C + 2-’ ) 且实时性好, 处理速度快 , 对光照变化不大 , 图像 代表目标与背景) 。那么 ,。 c 类出现概率及均 c和 受噪声污染严重小的动 目标检测效果好。 值 分别 为 : 利用 T 公司高性能 DM 4 I 6 2专用图像处理 ∑ p = ( f ) 平台及合适算法,设计一应用于停车场车辆无人 l ( 一 f ’ f1 2 监控系统 , 以防车辆被盗事故的发生。
, 、
跟踪 方法 有 : 门 跟踪 目光 流 法 K l n滤 波 跟 波 , 、a ma
类 别方 差 自动 门 限法 由 O t 最小 二乘法 s u在
图 1系统 硬件 框 图
踪日主动 轮廓线跟 踪日模 板匹配 跟踪 阳多模 跟踪 原理的基础上导出。首先 , 、 、 如果图像的灰度级范围 法H 一些新算法如: ’ 等。 小波算法, 遗传算法等也备 是 01 … 1 ,2 , ,设灰度级 j 的像素点个数为 I. T, I图
关键 词 : MS 2 D 4 ; T 3 O M6 2 目标 检 测 ; 别 方 差 自动 门限采用灰度阀值法进行图 运动 目 的智能检测与跟踪是图像处理领 像分割 , 标 选取合适 阈 , 值 将图像 中的目 标和背景分 从而确定 目标的大致位置。公式如下 : 域的重要课题 , 在现代化武器战争中和民用上 , 割开来, 如: 机器人 、 交通监控 , 银行监控系统等 , 都发挥着 【 1crn (Y J kod当 ) T( bf , ,< am u g ) v> 巨大作用。 T为阈值,使用类别方差 自动门限法确定 T 目前, 常用的运动 目标检测方法有 : 帧差法m 、 背景减法日块匹配法日 、 . 光流法 运动能量法 的大小 。 等;

《智能监控系统中运动目标的检测与跟踪》范文

《智能监控系统中运动目标的检测与跟踪》范文

《智能监控系统中运动目标的检测与跟踪》篇一一、引言随着科技的不断进步,智能监控系统在安全、交通、医疗等领域得到了广泛应用。

其中,运动目标的检测与跟踪是智能监控系统中的关键技术之一。

本文旨在深入探讨智能监控系统中运动目标的检测与跟踪方法及其应用。

二、运动目标检测技术1. 背景与意义运动目标检测是智能监控系统的基础,其目的是从视频序列中提取出感兴趣的运动目标。

该技术对于后续的目标跟踪、行为分析、目标识别等具有重要意义。

2. 常用方法(1)基于帧间差分法:通过比较视频序列中相邻两帧的差异,检测出运动目标。

该方法简单有效,但易受光照变化、噪声等因素影响。

(2)基于背景减除法:利用背景模型与当前帧进行差分,从而提取出运动目标。

该方法对动态背景具有较好的适应性,但需要预先建立准确的背景模型。

(3)基于深度学习方法:利用深度学习技术对视频进行目标检测,如基于卷积神经网络的目标检测算法。

该方法具有较高的检测精度和鲁棒性。

三、运动目标跟踪技术1. 背景与意义运动目标跟踪是在检测出运动目标的基础上,对其在连续帧中的位置进行估计和预测。

该技术对于提高监控系统的实时性和准确性具有重要意义。

2. 常用方法(1)基于滤波的方法:如卡尔曼滤波、粒子滤波等,通过建立目标运动模型,对目标位置进行预测和更新。

(2)基于特征匹配的方法:利用目标的形状、颜色等特征,在连续帧中进行匹配,从而实现目标跟踪。

(3)基于深度学习的方法:利用深度学习技术对目标进行识别和跟踪,如基于孪生神经网络的目标跟踪算法。

该方法具有较高的跟踪精度和鲁棒性。

四、智能监控系统中运动目标检测与跟踪的应用1. 安全监控领域:通过智能监控系统对公共场所、住宅小区等进行实时监控,及时发现异常情况,提高安全性能。

2. 交通管理领域:通过智能监控系统对交通流量、车辆行为等进行实时监测和分析,为交通管理和规划提供支持。

3. 医疗领域:在医疗领域中,智能监控系统可以用于病人监护、手术辅助等方面,提高医疗质量和效率。

基于计算机视觉的运动目标检测与追踪研究

基于计算机视觉的运动目标检测与追踪研究

基于计算机视觉的运动目标检测与追踪研究摘要:随着计算机视觉和人工智能的快速发展,基于计算机视觉的运动目标检测和追踪成为了当前研究的热点。

本文将介绍运动目标检测和追踪的概念,并详细探讨了一些常见的方法和技术,如基于深度学习的目标检测算法和多目标追踪。

最后,本文还对未来的研究方向进行了展望。

1. 引言随着计算机视觉和人工智能技术的进步,运动目标检测和追踪在许多领域中都具有重要应用。

例如,在视频监控和智能交通系统中,准确地检测和追踪运动目标可以提供更安全和高效的服务。

因此,研究如何利用计算机视觉的方法来实现运动目标检测和追踪变得尤为重要。

2. 运动目标检测运动目标检测是指通过计算机视觉技术识别图像或视频中的运动目标。

传统的方法主要基于图像处理和特征提取技术,如背景减除、边缘检测和目标轮廓提取。

然而,这些方法往往对光照变化和背景复杂的场景效果不佳。

近年来,基于深度学习的目标检测算法如Faster R-CNN、YOLO和SSD等取得了显著的进展。

这些算法能够自动学习目标的特征,从而在复杂场景下表现出更好的性能。

3. 运动目标追踪运动目标追踪是指跟踪运动目标在连续帧中的位置和运动状态。

与运动目标检测相比,追踪更具挑战性,因为目标在不同帧之间可能会发生形变、遮挡或运动模式的变化。

针对这些问题,研究者提出了各种追踪算法,如基于相关滤波器的方法、粒子滤波和深度学习方法等。

其中,多目标追踪是一种更复杂的问题,需要同时追踪多个运动目标。

针对多目标追踪,常见的方法有多目标跟踪器的设计和融合方法等。

4. 挑战和解决方案运动目标检测和追踪中存在一些挑战,例如复杂背景、目标形变、光照变化和目标遮挡等。

为了解决这些问题,研究者提出了一系列解决方案。

例如,对于复杂背景,可以采用自适应背景建模和深度学习方法来提高检测和追踪的准确性。

对于目标形变和光照变化,可以使用形变估计和颜色模型来进行调整。

另外,目标遮挡问题可以使用多目标追踪和深度学习等方法来解决。

视频监控系统中的运动目标跟踪与轨迹分析

视频监控系统中的运动目标跟踪与轨迹分析

视频监控系统中的运动目标跟踪与轨迹分析随着科技的不断进步,视频监控系统在我们的生活中扮演着越来越重要的角色。

视频监控系统不仅为我们提供了安全保障,还可以对运动目标进行跟踪与轨迹分析,以帮助我们更好地理解事件的发生和发展。

本文将探讨视频监控系统中的运动目标跟踪与轨迹分析的原理和应用。

运动目标跟踪是视频监控系统中的一个关键技术,它可以通过分析连续的视频帧来识别和跟踪目标的运动。

一般情况下,目标的跟踪可以分为两个阶段:目标检测和目标跟踪。

目标检测是指在每一帧中找到目标物体的位置和尺寸。

常见的目标检测算法有基于颜色、纹理或形状等特征进行匹配的方法和深度学习方法。

目标跟踪是指在连续的视频帧中追踪目标物体的运动轨迹。

常见的目标跟踪算法有卡尔曼滤波器、粒子滤波器和相关滤波器等。

在目标跟踪的基础上,轨迹分析可以提供关于目标运动模式、速度、行为等信息。

通过对目标的轨迹进行分析,可以判断目标是否具有可疑行为,进一步提高监控系统的安全性和效率。

轨迹分析的方法包括轨迹拟合、轨迹聚类和轨迹关联等。

轨迹拟合是指通过拟合轨迹的数学模型,预测目标的未来位置。

轨迹聚类是指将轨迹分为不同的群组,以便对目标进行分类和识别。

轨迹关联是指将多个目标的轨迹进行匹配和关联。

视频监控系统中的运动目标跟踪与轨迹分析具有广泛的应用。

在交通领域,可以利用目标的轨迹分析交通流量和拥堵情况,优化交通信号控制系统。

在工业领域,可以通过跟踪和分析工人的运动轨迹,提高生产效率和安全性。

在安防领域,可以通过跟踪和分析目标的运动轨迹,快速发现可疑的行为并采取措施。

此外,运动目标跟踪与轨迹分析还可以应用于体育比赛、行人检测、智能家居等领域。

然而,视频监控系统中的运动目标跟踪与轨迹分析仍然面临一些挑战和难题。

首先,目标的形状、大小和运动速度的多样性会对目标的跟踪和分析造成困扰。

其次,背景的变化和光照条件的变化也会干扰目标的跟踪和分析。

此外,复杂的场景中可能存在交叉和遮挡等问题,使得目标的识别和轨迹分析变得更加困难。

视频数据中的运动物体检测研究

视频数据中的运动物体检测研究

视频数据中的运动物体检测研究随着科技的飞速发展和数字化信息技术的不断进步,视频数据的规模和数量日益庞大。

运动物体检测作为视频数据处理中的关键环节,是了解运动物体的形态、行为习惯和动态变化的重要基础。

一、运动物体检测的研究意义运动物体检测在多个领域中发挥着重要作用。

例如在交通领域中,运动物体检测可以用于城市交通疏导、预警和控制等方面。

在智能监控和安防领域中,运动物体检测可以实现目标检测、行为识别和预测等功能。

在机器人技术中,运动物体检测可以实现机器人的控制和导航等功能。

在这些领域中,运动物体检测可以提高人们的生产力和效率,降低劳动强度,提高生活质量和安全性。

二、运动物体检测的方法与技术现有的运动物体检测方法主要分为基于前景检测和基于运动目标检测两种。

基于前景检测的运动物体检测方法主要是基于图像处理和运动物体跟踪技术,通过在视频帧之间的大量比较和图像分析,将视频序列中的前景和背景进行分离,进而检测运动物体。

这种方法的优点是能够对目标进行跟踪和预测,缺点是对背景复杂、光照变化较大的场景难以处理。

基于运动目标检测的运动物体检测方法主要是通过运动物体的动态特征对其进行检测和跟踪,包括目标的大小、形状、运动轨迹和速度等因素进行分析和处理。

这种方法优点是能够对目标的运动状态和轨迹进行高精度检测,缺点是检测速度较慢。

近年来,随着深度学习的技术的不断发展,基于深度学习的运动物体检测方法已成为了一个研究热点。

这种方法主要通过卷积神经网络(CNN)对运动目标进行检测和跟踪,在目标检测方面取得了很好的效果。

三、运动物体检测在实际应用中的问题尽管运动物体检测技术具有广泛的应用前景和较好的研究基础,但在实际应用中还存在一些问题:1、复杂背景干扰问题。

在城市环境中,背景复杂多变,易受到自然光影、干扰设备和人为因素的影响,会造成假阳性检测,影响检测的精度和准确率。

2、运动目标超出探测范围问题。

运动物体具有一定的运动能力和行动自由度,有可能超出探测范围,导致漏检和探测错误。

《2024年智能监控系统中运动目标的检测与跟踪》范文

《2024年智能监控系统中运动目标的检测与跟踪》范文

《智能监控系统中运动目标的检测与跟踪》篇一一、引言随着科技的不断进步,智能监控系统在各个领域得到了广泛的应用。

其中,运动目标的检测与跟踪是智能监控系统中的关键技术之一。

本文将详细介绍智能监控系统中运动目标的检测与跟踪技术,包括其基本原理、实现方法、应用场景以及面临的挑战和解决方案。

二、运动目标检测技术1. 背景介绍运动目标检测是智能监控系统中的第一步,它的主要任务是在视频序列中准确地检测出运动目标。

运动目标检测的准确性与实时性直接影响到后续的跟踪、识别、分析等任务。

2. 基本原理运动目标检测的基本原理是通过分析视频序列中的像素变化来检测运动目标。

常见的运动目标检测方法包括帧间差分法、背景减除法、光流法等。

其中,背景减除法是目前应用最广泛的方法之一。

3. 实现方法背景减除法通过建立背景模型,将当前帧与背景模型进行差分,得到前景掩膜,从而检测出运动目标。

实现过程中,需要选择合适的背景建模方法、更新策略以及阈值设定等。

三、运动目标跟踪技术1. 背景介绍运动目标跟踪是在检测出运动目标的基础上,对其在连续帧中的位置进行估计和预测。

运动目标跟踪对于实现智能监控系统的自动化、智能化具有重要意义。

2. 基本原理运动目标跟踪的基本原理是利用目标在连续帧中的相关性,通过一定的算法对目标进行定位和跟踪。

常见的运动目标跟踪方法包括基于滤波的方法、基于特征的方法、基于深度学习的方法等。

3. 实现方法基于深度学习的运动目标跟踪方法是目前的研究热点。

该方法通过训练深度神经网络来学习目标的外观特征和运动规律,从而实现准确的跟踪。

实现过程中,需要选择合适的神经网络结构、训练方法和损失函数等。

四、应用场景智能监控系统中的运动目标检测与跟踪技术广泛应用于各个领域,如安防监控、交通监控、智能机器人等。

在安防监控中,该技术可以实现对可疑目标的实时监测和报警;在交通监控中,该技术可以实现对交通流量的统计和分析,提高交通管理水平;在智能机器人中,该技术可以实现机器人的自主导航和避障等功能。

《2024年基于光流法的运动目标检测与跟踪技术》范文

《2024年基于光流法的运动目标检测与跟踪技术》范文

《基于光流法的运动目标检测与跟踪技术》篇一一、引言在计算机视觉和智能监控领域,运动目标检测与跟踪技术是一项至关重要的技术。

该技术通过实时获取并分析视频序列中的图像信息,对运动目标进行准确检测与跟踪,进而实现目标识别、行为分析、异常检测等功能。

光流法作为一种经典的运动目标检测与跟踪方法,具有广泛的应用前景。

本文将重点介绍基于光流法的运动目标检测与跟踪技术,分析其原理、方法及优缺点,并探讨其在实际应用中的发展前景。

二、光流法原理光流是指图像中像素点在单位时间内运动的速度和方向。

光流法基于图像序列中像素强度的变化来计算光流,从而实现对运动目标的检测与跟踪。

其基本原理是:在连续的视频帧之间,如果某个区域发生运动,那么该区域的像素强度变化将与周围区域产生差异。

通过分析这些差异,可以确定运动目标的轨迹和位置。

三、光流法在运动目标检测中的应用基于光流法的运动目标检测方法主要包括以下步骤:首先,通过计算图像序列中像素的光流,得到每个像素的运动矢量场;然后,根据预设的阈值或其他条件,从运动矢量场中提取出运动目标的轮廓信息;最后,通过形态学处理等手段对提取出的轮廓信息进行优化和整合,得到完整的运动目标区域。

该方法可以有效地从背景中分离出运动目标,为后续的跟踪和分析提供基础。

四、光流法在运动目标跟踪中的应用基于光流法的运动目标跟踪方法主要利用光流信息对运动目标进行连续的定位和跟踪。

具体而言,首先在初始帧中检测并确定运动目标的初始位置;然后根据后续帧中的光流信息,计算目标在连续帧之间的位置变化;最后通过一定的算法对目标的轨迹进行预测和更新,实现目标的跟踪。

该方法可以有效地解决因背景干扰、光照变化等因素导致的跟踪问题。

五、光流法的优缺点及改进方向优点:1. 适用于各种类型的运动目标,包括刚性物体和非刚性物体;2. 可以处理背景动态变化的情况;3. 在没有先验知识的情况下,能够自主地检测和跟踪运动目标。

缺点:1. 计算量大,实时性较差;2. 对光照变化和噪声较为敏感;3. 在复杂场景下,容易出现误检和漏检的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2.1 国内外研究现状.................................................................................... 2 1.2.2 发展趋势................................................................................................ 4 1.3 主要研究内容及本文结构............................................................................... 6 2 系统结构与关键技术.................................................................................................. 8 2.1 系统结构........................................................................................................... 8 2.2 图像处理技术................................................................................................... 9 2.2.1 图像获取................................................................................................ 9 2.2.2 视频信号制式及图像色彩模型.......................................................... 10 2.2.3 图像滤波.............................................................................................. 13 2.2.4 形态学处理.......................................................................................... 16 2.2.5 连通分量分析...................................................................................... 18 3 运动目标检测算法研究............................................................................................ 20 3.1 常用运动目标检测算法分析......................................................................... 20 3.1.1 帧间差分法.......................................................................................... 20 3.1.2 背景减除法.......................................................................................... 22 3.1.3 光流法.................................................................................................. 23 3.2 基于累积差分更新的背景减除法................................................................. 23 3.2.1 背景模型建立与更新.......................................................................... 24 3.2.2 运动目标提取...................................................................................... 27 3.3 检测算法流程及实验结果............................................................................. 28 3.3.1 检测算法流程...................................................................................... 28 3.3.2 检测算法实验结果.............................................................................. 30 4 运动目标跟踪算法研究............................................................................................ 33 4.1 常用运动目标跟踪算法分析......................................................................... 33 4.1.1 卡尔曼滤波算法.................................................................................. 33 4.1.2 CAMShift算法 ..................................................................................... 35
1.1 研究背景及意义............................................................................................... 1 1.2 国内外研究现状及发展趋势........................................................................... 2
Key Words:Intelligent Video Surveillance; Object Detection; Object Tracking; Open CV; SOPC
II
西华大学硕士学位论文
目录
摘 要.............................................................................................................................I Abstract ............................................................................................................................. II 1 绪论.............................................................................................................................. 1
首先,分析研究了常用的运动目标检测算法及各自的优缺点,提出了一种基于累积 差分更新的背景减除法,该算法结合累积差分的概念,对自适应背景建模法作出改进, 较好地消除了场景变化以及噪声影响等的干扰,关于目标提取的阀值判断,提出了一种 两主峰间差值的灰度直方图阀值分割法。
接着,分析比较了连续自适应均值漂移 CAMShift 算法与 Kalman 滤波算法,提出 了一种基于几何特征的 Kalman 滤波与目标直方图匹配相结合的运动目标跟踪算法,以 目标灰度质心及外接矩形框长宽作为目标几何特征参数,分别使用两组卡尔曼滤波预测 后,根据目标灰度模板相似度进行目标匹配。
And then, the moving object detection and tracking system based on USB camera is implemented by VC++ 6.0 Integrated Development Environment. The MFC application program wizard and Intel OpenCV code are utilized to develop system. According to inputted video from either USB camera or AVI files, the system can detect and track object in scene.
分类号密级 :
密级

UDC








目 标 检
硕士学位论文




系 统
基于视频的实时运动目标检测与跟踪系统研究


作 者 姓 名: 李 月 静
西 华
学 科、专 业 : 信号与信息处理



号 : 212009081002007

士 学
指 导 教 师: 谢


位 论
完 成 日 期 : 2012 年 3 月
若有不实之处,本人愿意承担相关法律责任。
学位论文作者签名: 日期:
相关文档
最新文档