九年级数学第一学期期中测试卷附答案
2024-2025学年九年级数学上学期期中测试卷(冀教版,九上全部)(全解全析)

2024-2025学年九年级数学上学期期中模拟卷(冀教版)(满分120分,时间120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:冀教版九年级上册。
5.难度系数:0.65。
第Ⅰ卷一、选择题(本大题共16个小题,共38分,1~6小题每题3分,7~16小题每题2分.每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.在某市体育中考期间,在运动技能测试“排球垫球”项目中,某市直中学有8位学生的垫球数分别为39,53,55,48,52,53,48,48.这组数据的中位数和众数分别是()A .50,48B .52,48C .52,53D .48,482.甲、乙、丙、丁四名同学参加科技知识竞赛,他们平时测验成绩的平均分相同,方差分别是2 1.7S =甲,2 2.4S =乙,20.5S =丙,24S =丁,则成绩最稳定的是( )A .甲B .乙C .丙D .丁【答案】C【解析】解:∵22221.72.40.54S S S S ====甲乙丙丁,,,,∴2222s s s s <<<甲乙丁丙,∴成绩最稳定的同学是丙,故选:C .3.若38m n =,则m n n +的值是( )A .118B .311C .113D .8114.如图,河坝横断面迎水坡AB 的坡度是BC =,则坡面AB 的长度是( )A .B .6mC .D .9m5.如图,AB 为O e 的直径,点C ,D 在圆上,若64D Ð=°,则BAC Ð的度数为( )A .64°B .34°C .26°D .24°【答案】C【解析】解:连接BC ,AC AC =Q ,64D B \Ð=Ð=°,AB Q 为O e 的直径,90ACB \Ð=°,90BAC B \Ð=°-Ð26=°,故选:C .6.将方程21010x x -=+利用配方法转化为()25x c -=的形式,则c 的值为( )A .24B .25C .26D .1007.下表是小明填写的综合实践活动报告的部分内容,请你借助小明的测量数据,计算河流的宽度AB .题目测量河流宽度AB目标示意图测量数据1.5m BC =,10m BD =, 1.8mDE =则AB =( )m A .20B .30C .40D .50【答案】D【解析】解:∵BC AD DE AD ^^,,∴BC DE P ,∴ABC ADE V V ∽,8.已知菱形OABC 在平面直角坐标系中如图放置,点C 在x 轴上,若点A 的坐标为(3,4),经过点A 的双曲线交BC 于点D ,则OAD △的面积为( )A .8B .9C .10D .129.如图,在由小正方形组成的网格中,小正方形的边长均为1,点A ,B ,O 都在小正方形的顶点上,则AOBÐ的正弦值是( )A B C .13D .12【答案】B【解析】解:如图,过点B 作BC OA ^于点C .222222BO =+=,AO 12222AOB S =´´=V Q ,425525BC \==.10.如图,直线y kx =与双曲线m y x=相交于点A 和B ,已知点A 的坐标为()4,1,则不等式mkx x ³的解集为( )A .4x ³B .04x <£C .4x ³或4x £-D .4x ³或40x -£<11.如图,A 、B 、C 、D 均为圆周上十二等分点,若用直尺测量弦CD 长时,发现C 点、D 点分别与刻度1和4对齐,则A 、B 两点的距离是( )A .B .C .D .6占2个分点,COD Ð为等边三角形,413CD =-=,即OC 为直径,12.在矩形ABCD 中,已知45AB AD ==,,点E 为BC 上一点,连接AE 并延长交DC 的延长线于点F ,连接DE ,若2DEC BAE Ð=Ð,则EF 的长为( )A .B .C .3D .5EDN Ð,5AD ==,2CE =,13.关于x 的方程22240x mx m -+-=的两个根1x ,2x 满足1223x x =+,且12x x >,则m 的值为( )A .3-B .1C .3D .9【答案】C【解析】解:Q 方程22240x mx m -+-=的两个根1x ,2x ,122x x m \+=,2124x x m =-,14.如图,当反比例函数()0ky x x=>的图象L 将矩形ABCD 的内部(不含边界)的横、纵坐标都为整数的点分成数量相等的两部分,则k 的取值范围为( )A .1215k <<B .1014k <<C .410k <<D .1516k <<15.某数学兴趣小组借助无人机测量一条河流的宽度BC .如图,无人机在P 处测得正前方河流的点B 处的俯角DPB a Ð=,点C 处的俯角45DPC Ð=o ,点A ,B ,C 在同一条水平直线上.若45m AP =,tan 3a =,则河流的宽度BC 为( )A .30mB .25mC .20mD .15m16.如图,已知A ,B ,C 为O e 上的三点,且2120AC BC ACB ==Ð=°,.点P 从点A 出发,沿着逆时针方向运动到点B ,连接CP 与弦AB 相交于点D ,当ACD V 为直角三角形时,弧AP 的长为( )A .2pB .12πC .23p 或12πD .2p 或43p90ACP =°,∴AP 为直径,第Ⅱ卷二、填空题(本大题共3个小题,共10分;17小题2分,18~19小题各4分,每空2分,答案写在答题卡上)17.如图,在O e 中,AM 是O e 的直径,8AM =,点B 是 AM 的中点,点C 在弦AB 上,且AC =,点D 在 AB 上,且CD OB ∥,则CD 的长为.18.如图①所示,E 为矩形ABCD 的边AD 上一点,动点P ,Q 同时从点B 出发,点P 沿折线BE ED DC--运动到点C 时停止,点Q 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s ,设P ,Q 同时出发t 秒时,BPQ V 的面积为2cm y .已知y 与t 的函数关系图象如图②(曲线OM 为抛物线的一部分),则:(1)cos ABE Ð= ;(2)当t = 时,ABE QBP ∽△△.19.如图,点(3,0)A ,(0,4)B ,连接AB ,点D 为x 轴上点A 左侧的一点,点E ,F 分别为线段AB ,线段BO上的点,点B ,D 关于直线EF 对称.(1)若DE AO ^,则四边形BEDF 的形状是 ;(2)当AD 最长时,点F 的坐标为.EDB ,FBD FDB Ð=Ð,,3=,4OB =,5AB =.25BD =,三、解答题(本大题共7个小题,共72分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)解方程:(1)22125x x -+=;(2)()()3222x x x +=+.某校九年级男生进行了“引体向上”测试,每班随机抽取的人数相同,成绩分为“优秀”“良好”“及格”“不及格”四个等级,其中相应等级的得分分别为10分、8分、6分、4分.小聪将九(1)班和九(2)班的成绩整理并绘制了如图所示的不完整的统计图表.请你根据所给的信息解答下列问题:(1)请补充完成条形图和统计分析表;(2)若九(2)班少统计了一个学生“优秀”的成绩,则此次统计的数据中不受影响的是______(选填“平均数”“众数”“中位数”);(3)请你从两个方面分析出哪个班的男生“引体向上”成绩更好些.)班良好人数最多,对应分数为8,人,中位数是从小到大排列后的第8个,为优秀10分,分)平均数众数中位数从众数、中位数来看,九(2)班的分数大于九(1)班,说明九(2)班的高分层优于九(1)班,所以九(2)班的成绩要好些.(9分)22.(本小题满分9分)如图,ABCD Y 中,点E 是AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:AF AB =;(2)点G 是线段AF 上一点,满足,FCG FCD CG Ð=Ð交AD 于点H .①求证:AH CH DH GH ×=×;②若2,6AG FG ==,求GH 的长.图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角范围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15°,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)如图2,张亮站在摄像头前水平距离100cm 的点G 处,恰好能被识别(头的顶部在仰角线AD ), 求张亮的身高约是多少厘米;(2)夕夕身高136cm ,头部高度为18cm ,踮起脚尖可以增高3cm ,此时夕夕能被识别吗?请计算说明.(精确到0.1cm ,参考数据:sin150.26cos150.97°»°»,,tan150.27°»),160cm ,.同(1)知,四边形AOBP 是矩形,150cm AP OB \==,(6分)tan151500.2740.5(cm)PN AP \=×°»´=,16040.5119.5cm 136318121cm BN \=-=<+-=,(9分)\夕夕能被识别.(10分)24.(本小题满分10分)如图1,一汤碗的截面是以AB 为直径的半圆O (碗体厚度忽略不计),放置于水平桌面MN 上,碗中装有一些液体(图中阴影部分),其中液面截线∥CD MN .已知液面截线CD 宽8cm ,液体的最大深度为2cm .(1)求汤碗直径AB 的长;(2)如图2,在同一截面内,将汤碗(半圆O )沿桌面MN 向右作无滑动的滚动,使液体流出一部分后停止,再次测得液面截线CD 减少了2cm .①上述操作后,水面高度下降了多少?②通过计算比较半径12AB 和流出部分液体后劣弧 CD 的长度哪个更长.(参考数据:3tan 374°=)4cm ,34,如图,已知在平面直角坐标系中,矩形ABCD 的边AB x ∥轴,AD y ∥轴,点A 的坐标为(2,1),43AB AD ==,.(1)求直线BD 的解析式;(2)已知双曲线()0ky k x=>与折线ABC 的交点为E ,与折线ADC 的交点为F .①连接CE ,当3BCE S =V 时,求该双曲线的解析式,并求出此时点F 的坐标;②若双曲线()0ky k x=>与矩形ABCD 各边和对角线BD 的交点个数为3,请求k 的取值范围.3AD =,(6分)分)探究:如图1,若AC BC =,(1)当ACD V 与BDF V 全等时,求AD 的长;(2)当CDF V 为等腰三角形时,求CF 的长.延伸:如图2,若90DCF Ð=°,E 为BD 上一点,且45DEF Ð=°,(3)小东经过研究发现:“当点D 在AB 边上运动时,DE 的长度不变,是个定值.”你认为小东的结论是否正确,如果正确,请求出这个定值;如不正确,说明理由(4)若BF =sin B 的值.。
九年级第一学期期中考试数学试卷(含参考答案)

九年级第一学期期中考试数学试卷(含参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题:本大题共10小题,每小题3分,共30分.1.在下列方程中是一元二次方程的是()A.x2-2x y+y2=0B. x2-2x=3C. x(x +3)= x2-1D. x + =02.将二次函数y= x2的图象向右平移2个单位,再向上平移1个单位,所得图象的表达式是()A.y=(x- 2)2+1B.y= (x +2)2+1C. (x- 2)2-1D.y= (x +2)2- 13.一元二次方程x2-2x +5=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断4.对于二次函数y= - (x- 2)2-3,下列说法正确的是()B A.当x >0时,y随x的增大而增大 B.当x =2时,y有最大值- 3C.图象的顶点坐标为(-2,-7)D.图象与x轴有两个交点5.用配方法解方程x2- 6x- 3=0时,原方程应变形为()A. (x +3)2=3B. (x +3)2=12C. (x- 3)2=3D. (x- 3)2=126.已知函数y=(x- 1)2+2,当函数值y随x的增大而减小时,x的取值范围是()A x <1 B. x >1 C. x >-2 D. - 2< x <47.若x1,x2是一元二次方程2x2- 9x +4=0的两根,则x1+ x2的值是()A. - 2B.2C.D. - 28.二次函数y=ax2+b x+c(a≠0)的图像如图所示,则函数值y>0时,x的取值范围是()A. x <-1B. x >3C. -1< x <3D. x <-1 或x >3第8题图第10题图9.某经济开发区,今年一月份工业产值达50亿元,第一季度总产值为175 亿元,二月、三月平均增长率是多少?若设平均每月的增长率为x,根据题意,可列方程为()A.50(1+x)2=175B.50+50(1+x)+50(1+x)2=175C.50 (1+x) +50(1+x)2= 175D.50+50(1+x)2=17510.已知二次函数y=ax2+b x+c(a≠0)的图像如图所示,对称轴为直线x=2.则下列结论中正确的是()A a bc>0 B.4a-b=0 C.9a+3b+c<0 D.5a+c>0二、填空题:本大题共5小题,每小题3分,共15分.11.方程x2= x的解是____________12.当k______时,y=( k +3)x2- k x+2是关于x的二次函数.13.抛物线y=2(x +1)2-3,的顶点坐标为________,对称轴为直线______14.已知x=1是方程x2+ax-b=0的一个根,则a-b+2023=_____15如图,一段抛物线:y=-x(x -2)(0≤x≤2),记为C1,它与x轴交于点O,A1;将C绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C6,若P(11,m)在第6段抛物线C6上,则m的值为=____三、解答题(一):本大题共3小题,第16 题10分,第17、18题7分,共24分.16.计算:用适当方法解方程:(1)(x +1)2=5x+5 (2)x2- 4x- 5=017.某次聚会上,同学们互相送照片,每人给每个同学一张照片,一共送出90张照片,问一共有多少位同学参加了聚会?18.已知抛物线y= x2- 2x- 3.(1)求抛物线与两坐标轴的交点坐标(2)求它的顶点坐标。
陕西省西安市长安区2024届九年级上学期期中学习评价数学试卷(含答案)

2023~2024学年度第一学期期中学习评价九年级数学纸笔测试第一部分(选择题共30分)一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项是符合题意的)1.若关于x 的一元二次方程20x x m --=的一个根是3x =,则m 的值是()A.6- B.3- C.3D.62.用配方法解方程2620x x --=,配方后的方程是()A.()232x -= B.()239x -= C.()239x += D.()2311x -=3.若菱形两条对角线的长度是方程2680x x -+=的两根,则该菱形的边长为()B.4C.5D.254.如图,直线123l l l ,直线AC 分别交1l 、2l 、3l 于点A 、B 、C ,直线DF 分别交1l 、2l 、3l 于点D 、E 、F ,已知23BC AC =,若3DE =,则DF 的长是()A.94B.92C.9D.65.阳光明媚的一天,身高为1.6m 的小颖想测量校内一棵大树的高度.如图,她沿着树影BA 由B 到A 走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得 3.2m BC =,0.8m CA =,于是计算出树的高度应为()A.8mB.6.4mC.4.8mD.10m6.如图,在菱形ABCD 中,84BAD ∠=︒,AB 的垂直平分线交对角线AC 于点F ,E 为垂足,连接DF ,则CDF ∠的度数是()A.42︒B.48︒C.54︒D.60︒7.如图,在下列方格纸中的四个三角形,是相似三角形的是()A.①和②B.①和③C.②和③D.②和④8.如图,在ABC △中,BD AC ⊥于点D ,E 为BC 的中点,DE DC =,81A ∠=︒,则ABC ∠的度数是()A.31︒B.39︒C.41︒D.49︒9.阅览室有十本名著,小红和小燕都想借阅,于是她们通过摸球游戏决定谁先看,游戏规则:在不透明的口袋中分别放入2个白色和1个黄色的乒乓球,它们除颜色外其余都相同,先由小红从中任意摸出1个乒乓球记下颜色后放回并摇匀,再由小燕从口袋中摸出1个乒乓球,记下颜色.若二人摸到乒乓球的颜色相同,则小红先看,否则小燕先看.则小燕先看的概率是()A.13 B.12C.49 D.5910.如图,已知正方形ABCD 的边长为4,P 是对角线BD 上一点,PE BC ⊥于点E ,PF CD ⊥于点F ,连接AP 、EF .给出下列结论:①2PD EC =;②四边形PECF 的周长为8;③EF 的最小值为2;④AP EF =;⑤AP EF ⊥.其中正确的结论有()A.5个B.4个C.3个D.2个第二部分(非选择题共90分)二、填空题(共5小题,每小题3分,计15分)11.如图,AB CD ,AC 与BD 相交于点E ,已知1AE=,2CE =,3DE =,则BD 的长为________.12.一个口袋中有若干个白球,小明想用学过的概率知识估计口袋中白球的个数,于是将4个黑球放入口袋中搅匀(黑球与口袋中的白球除颜色外其余都相同),从口袋中随机摸出一球,记下其颜色,再把它放回口袋并摇匀,不断重复上述过程,共摸了300次,其中有48次摸到黑球,估计口袋中大约有________个白球.13.若a 、b 是一元二次方程2290x x +-=的两个根,则223a a ab ++的值为________.14.如图,在矩形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将ADE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为________.15.如图,边长为12的大正方形中有两个小正方形,若两个小正方形的面积分别为1S 、2S ,则12S S +的值为________.三、解答题(共9小题,计75分.解答应写出过程)16.(本小题6分)如图,在ABC △中,AB AC =,请用尺规作图法在BC 上求作一点D ,使得DAB ABC △△.17.(本小题8分)解方程:(1)()()2333x x x +=+(2)()()32514x x -+=-18.(本小题8分)已知532a b c ==.(1)求a bc+的值;(2)若29a b c +-=,求2a b c -+的值.19.(本小题8分)如图,在菱形ABCD 中,E 、F 分别是AB 、BC 上的点,且BE BF =.求证:(1)ADE CDF ≅△△;(2)DEFDFE ∠=∠.20.(本小题8分)某校九年级1班为准备学校元旦演讲比赛,通过班级预赛共评选出两位男生和三位女生共5名推荐人选.(1)若该班随机选一名同学参加比赛,求选中男生的概率;(2)若该班随机选出两名同学组成一组选手参加比赛,求恰好选中一男一女的概率(用列表或树状图的方法求解).21.(本小题9分)已知关于x 的一元二次方程()22210x k x k +-+=有实数解.(1)求实数k 的取值范围;(2)设方程的两个实数根分别为1x 、2x ,若()()125114x x --=,求k 的值.22.(本小题9分)某商品专卖店,平均每天可售出40件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于35元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若该商品降价5元,那么平均每天销售数量是多少件?(2)若专卖店每天销售该商品盈利2400元,那么每件商品应降价多少元?23.(本小题9分)如图,在四边形ABCD 中,AB CD ,90D ∠=︒,ABC ∠的平分线BE 交CD 于点E ,F 是AB 的中点,连接AE 、EF ,且AE BE ⊥.求证:(1)四边形BCEF 是菱形;(2)2BE AEAD EF ⋅=⋅.24.(本小题10分)如图,在Rt ABC △中,90B ∠=︒,8cm AB =,6cm BC =.点P 从A 点出发沿AC 向C 点运动,速度为每秒2cm ,同时点Q 从C 点出发沿CB 向B 点运动,速度为每秒1cm ,当点P 到达顶点C 时,P 、Q 同时停止运动,设P 点运动时间为秒.(1)当为何值时,PQC △是以C ∠为顶角的等腰三角形?(2)当为何值时,PQC △的面积为25cm (3)当为何值时,PQC △与ABC △相似?2023~2024学年度第一学期期中学习评价九年级数学纸笔测试参考答案及评分标准一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.D2.D3.A4.C5.A6.C7.B8.B9.C 10.B二、填空题(共5小题,每小题3分,计15分)11.9212.2113.18-14.10315.68三、解答题(共9小题,计75分,解答应写出过程)16.解:作图(略)……………………………………………………………………(5分)则点D 即为所求.…………………………………………………………………………(6分)17.解:(1)原方程可化为()()23330x x x +-+=.……………………………………(1分)即()()3230x x +-=,……………………………………………………………………(2分)∴30x +=或230x -=,………………………………………………………………(3分)∴13x =-,232x =.……………………………………………………………………(4分)(2)原方程可化为22561514x x x +--=-,即2210x x --=,……………………………………………………………………(1分)这里2a =,1b =-,1c =-.∵()()224142190b ac -=--⨯⨯-=>,………………………………………………(2分)∴()113224x --±==⨯,……………………………………………………………………(3分)∴11x =,212x =-.…………………………………………………………………………(4分)18.解:(1)∵532a b c==,∴532a b c +=+,……………………………………………………………………………………(2分)∴842a b c +==.………………………………………………………………………………(3分)(2)∵532a b c ==,∴532252a b c a +-⨯=+-,…………………………………………………………………………(5分)∴459a=.……………………………………………………………………………………(6分)∵532a b c==,∴25325429a b c a ⨯-+==-+,……………………………………………………………………(7分)∴8124a b c -+=.…………………………………………………………………………(8分)19.证明:(1)∵四边形ABCD 是菱形,∴AD CD AB BC ===,A C ∠=∠,………………………………………………(2分)∵BE BF =,∴AE CF =.……………………………………………………………………(3分)在ADE △与CDF △中,,,,AD CD A C AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE CDF ≅△△.(2)∵ADE CDF ≅△△,∴DE DF =,∴DEFDFE ∠=∠.20.解:(1)随机选一名同学参加比赛有5种等可能结果数,而选中男生的结果有2种,∴选中男生的概率为:25P =.………………………………………………………………(3分)(2)5名推荐人选中,两位男生分别记为A ,B ,三位女生分别记为c ,d ,e 列表为:A Bc d eA ABAc Ad Ae BBABc Bd BeccA cB cdceddA dB dcdee eAeBeced…………………………………………………………………………(6分)共有20种等可能的结果数,其中恰好选中一男一女的结果数为12种.所以恰好选中一男一女的概率为:123205P ==.………………………………………………(8分)21.解:(1)∵关于x 的方程()22210x k x k +-+=有实数根,∴()22242141b ac k k ∆=-=--⨯⨯……………………………………………………(2分)410k =-+≥,………………………………………………………………………………(3分)∴14k ≤.……………………………………………………………………………………(4分)(2)∵方程()22210x k x k +-+=的两个实数根分别为1x ,2x .∴()1221x x k +=--,212x x k =.……………………………………………………(5分)由()()125114x x --=,∴()1212514x x x x -++=,………………………………………………………………(6分)∴()252114k k +-+=,即24850k k +-=,…………………………………………(7分)∴152k =-,212k =(舍去),…………………………………………………………(8分)∴52k =-.……………………………………………………………………(9分)22.解:(1)若该商品降价5元,平均每天销售数量是405250+⨯=(件).………………(3分)(2)设每件商品应降价x 元,则每件盈利为:()50x -元,日销售量为:()402x +件,…………(5分)根据题意得:()()504022400x x -+=,……………………………………………………(7分)解这个方程得:110x =,220x =.…………………………………………………………(8分)由于每件盈利不少于35元,那么每件应降价10元.………………………………………………(9分)23.证明:(1)∵AE BE ⊥,F 是AB 的中点.∴EFBF AF ==,∴FEB FBE ∠=∠.……………………………………………………………………………………(1分)∵BE 是ABC ∠的平分线,∴FBE CBE ∠=∠,∴FEB CBE ∠=∠,……………………………………………………………………(2分)∴EFBC ,………………………………………………………………………………(3分)∵AB CD ,∴四边形BCEF 是平行四边形.………………………………………………………………(4分)∵EFBF =,∴四边形BCEF 是菱形.……………………………………………………………………(5分)(2)∵AB CD ,∴DEA EAB ∠=∠.……………………………………………………………………(6分)∵90D AEB ∠=∠=︒,∴ADE BEA △△,………………………………………………………………(7分)∴AE ABAD BE=,…………………………………………………………………………(8分)∴BE AEAD AB ⋅=⋅,即2BE AE AD EF ⋅=⋅.………………………………………………………………(9分)24.解:(1)∵8cm AB =,6cm BC =,∴10cm AC =.由题意2AP t =,102PC t =-,CQ t =,()05t <≤………………………………(1分)∵PQC △是以C ∠为顶角的等腰三角形,∴PC CQ =,……………………………………………………………………(2分)∴102t t -=,解得103t =.……………………………………………………………………………………(3分)(2)过点P 作PD BC ⊥于点D ,∴PD PC AB AC=,………………………………………………………………………………(4分)∴()()810285105t t AB PC PD AC --⋅===,…………………………………………(5分)∴()85115225PQC t S CQ PD t -=⋅=⋅=△,解得:1252t t ==.……………………………………………………………………(6分)(3)当11PQ C ABC △△时,11CP AC CQ BC=,…………………………………………(7分)∴102106t t -=,解得:3011t =.…………………………………………………………………………(8分)当22P Q C BAC △△时,22CP BCCQ AC=,…………………………………………(9分)∴102610t t -=,解得:5013t =.综上所述3011t =或5013t =时,PQC △与ABC △相似.…………………………(10分)11。
江苏徐州2024年上学期期中检测九年级数学试题(解析版)

2024~2025学年度第一学期期中检测九年级数学试题答案一、选择题1.【答案】A【详解】根据圆周角定理可知,∠AOB =2∠ACB =72°,则∠ACB =36°,故选A .2. 【答案】B【详解】解:A 、该图形不存在绕某点旋转180°后,与原图形重合,故该选项不符合题意; B 、该图形绕某点旋转180°,旋转后的图形与原图形重合,故该选项符合题意;C 、该图形不存在绕某点旋转180°后,与原图形重合,故该选项不符合题意;D 、该图形不存在绕某点旋转180°后,旋与原图形重合,故该选项不符合题意;故选:B .3. 【答案】B【详解】解:∵4,4,1a b c ==−=, ∴()22444410b ac ∆=−=−−××=,∴方程有两个相等的实数根.故选:B4. 【答案】C【详解】解:2660x x −−=,266x x −=,26915x x −+=, 即()2315x −=. 故选:C5. 【答案】A【详解】解:∵1x ,2x 是一元二次方程2230x x −−=的两个根,∴213x x ⋅=−. 故选:A6. 【答案】D【解析】【详解】解:根据抛物线平移的规律:左加右减(横坐标),上加下减(纵坐标),把抛物线22y x =向右平移3个单位长度可得()223y x =−, 再再向下平移5个单位长度可得()2235y x =−−.故选:D .7. 【答案】D【详解】解:A 、不在同一直线上的三点确定一个圆,故A 选项错误;B 、三角形的内心到三边的距离相等,是三条角平分线的交点,故B 选项错误;C 、在同圆或等圆中,能完全重合弧才是等弧,故C 选项错误;D 、等弧所对的圆心角相等,故D 选项正确.故选:D .8. 【答案】D【详解】解:∵()()2,3,0,3−−−, ∴抛物线的对称轴为直线2012x −+==−, ∴抛物线的顶点坐标为()1,4−−,即函数有最小值,∴抛物线开口向上,∴0a >,故①②正确;∵函数图象与x 轴的一个交点坐标是()1,0,∴函数图象与x 轴的另一个交点坐标是()3,0−,即函数图象与x 轴的交点坐标是()()1,03,0−、故③正确;∵()()15 2.51−−−>−−,()15,y −,()22.5,y 是函数图象上两点,∴12y y >,故④正确.故选:D二、填空题9.【答案】内【详解】解:∵O 的半径为5,4OP =,∴OP 小于O 的半径,∴点P 在O 内.的故答案为:内10. 【答案】1202x x ==, 【详解】解:∵220x x −=,∴()20x x −=, ∴0x =或20x −=,解得1202x x ==,, 故答案为:1202x x ==,. 11.【答案】24π【详解】解:由题意圆锥底面圆直径是8,圆锥的母线长为6, ∴这个圆锥的侧面积18π624π2=××=; 故答案为:24π. 12. 【答案】(1,﹣4)【详解】解:∵原抛物线可化为:y =(x ﹣1)2﹣4,∴其顶点坐标为(1,﹣4).故答案为(1,﹣4).13. 【答案】8【详解】解:∵PA 、PB 分别与O 相切于点A 、B ,4,PA PB ∴==∵过点C 的切线分别交PA 、PB 于点D 、E ,,DC DA EC EB ∴==,∴PED 的周长PD DE PE PD DC CE PE =++=+++PD DA EB PE =+++448PA PB =+=+=,故答案为:8.14. 【答案】18【详解】解:∵m 是一元二次方程220x x −−=的一个根,∴220m m −−=,∴22m m −=,∴()22202020218m m m m −+=−−=−=. 故答案为:1815. 【答案】36°##36度【详解】如图,连接AD .∵AB 是直径,∴∠ADB =90°.∴90=905436DAB ABD ∠=°−∠°−°=°.∴∠C =∠DAB =36°.故答案为:36°.16. 【答案】50%【详解】解:设该店销售额平均每月的增长率为x ,则二月份销售额为()21x +万元,三月份销售额为()221x +万元,由题意可得:()221 4.5x +=, 解得:10.550%x ==,2 2.5x =−, 答:该店销售额平均每月的增长率为50%;故答案是:50%.17. 【答案】2【详解】解:如图,90C ∠=°,6BC =,8AC =,AC ∴=10,11112222AC r BC r AC r AC BC ∴⋅+⋅+⋅=⋅, 11118610862222r r r ∴×+×+×=××, 解得:2r =;故答案为:2.18. 【答案】2−【详解】解:如图,延长BA ,CD 交于点F ,连接FE ,分别过点F ,E 作FG BC ⊥,EG BC ⊥于点H ,G ,60ABC ∠=° ,,90BFC ∴∠=°,E 为AD 的中点,2AD =,112EF AE DE AD ∴====,30DCB ∠=° ,122BF BC ∴==,60ABC ∠=° ,30BFH ∴∠=°,112BH BF ∴==,FH ∴==BEC △面积122BC EG EG =⋅=,EG 最小,BEC 面积最小,此时1EG =,BEC ∴ 面积的最小值为 2.−故答案为:2−.三、解答题19. 【答案】(1)121,12x x ==(2)121,4x x ==【解析】【小问1详解】解:22310x x −+=,()()2110x x −−=,210,10x x −=−=, 所以该方程的解为:121,12x x ==.【小问2详解】解:()2133x x −=−,()21330x x −−+=,()()21310x x −−−=,()()1130x x −−−=,()()140x x −−=,10,40x x −=−=,所以该方程的解为:121,4x x ==.20. 【答案】(1)3;2 (2)10【解析】【小问1详解】解:如图,连接ODAB 是O 的直径,E 是CD 的中点,AB CD ∴⊥,8CD = ,4DE ∴=,5OD =,3OE ∴,532BE OB OE ∴=−=−=【小问2详解】解:AB 是O 的直径,E 是CD 的中点,AB CD ∴⊥,16CD = ,8CE DE ∴==,AB CD ⊥ ,222OD OE DE ∴=+,4BE =,()22248OD OD −+,10OD ∴=故O 的半径为1021 【答案】(1)223y x x =−++ (2)见解析 (3)①04y <≤;②2x ≥或0x ≤ 【小问1详解】解:将点()1,4A 和点()0,3C 代入2y ax 2x c =++得,243a c c ++= = ,解得:13a c =− =, ∴二次函数的解析式为223y x x =−++; 【小问2详解】解:当0y =时,2230x x −++=,解得:123,1x x ==−,∴二次函数与x 轴的交点为()()3,0,1,0−,画出函数图象,如下:.【小问3详解】解:① ∵()222314y x x x =−++=−−+,∴二次函数的对称轴为直线1x =,顶点坐标为(1,4), ∵抛物线开口向上,∴函数的最大值为4,此时1x =,∵2x =,3y =,∴当12x −<<时,y 的取值范围是04y <≤;故答案为:04y <≤②观察图象得:当3y ≤时,x 的取值范围是2x ≥或0x ≤. 故答案为:2x ≥或0x ≤22. 【答案】(1)每件衬衫应降价20元(2)每件衬衫降价151250元【解析】【小问1详解】解:设每天利润为w 元,每件衬衫降价x 元,根据题意得2(40)(202)260w x x x x =−+=−+28002(15)1250x +=−−+ 当1200w =时,22608001200x x −++=,解之得1210,20x x ==. 根据题意要尽快减少库存,所以应降价20元.答:每件衬衫应降价20元.【小问2详解】解:商场每天盈利()()40202w x x =−+22(15)1250x =−−+. 所以当每件衬衫应降价15元时,商场盈利最多,共1250元. 答:每件衬衫降价15元时,商场平均每天盈利最多共1250元.23. 【答案】(1)见解析 (2)23S π=−阴影. 【解析】【小问1详解】证明:连接OC ,∵CE AB ⊥,∴90ACE CAE ∠+∠=°, ∵OA OC =,∴OCA CAE ∠=∠, ∵ACD ACE ∠=∠, ∴90OCA ACD ∠+∠=°, ∴OC CD ⊥,∵OC 是O 的半径, ∴DC 是O 的切线;【小问2详解】解:在Rt OCD △中,点A 为OD 的中点, ∴CD OA OC ==,∴AOC △为等边三角形, ∴60DOC ∠=°,∵O 的半径为2,∴4OD =,∴C D =,∴216022223603DOC AOCS S S ππ×=−=×−=−阴影扇形△. 24. 【答案】(1)()4,0,()0,4(2)()1,6或()3,4 (3)()2,6【解析】【小问1详解】 解:当0y =时,2340x x −++=, 解得:124,1x x ==−, ∴()()4,0,1,0B A −, 当0x =时,4y =, ∴点()0,4C ; 故答案为:()4,0;()0,4;【小问2详解】解:设直线BC 的解析式为y kx b =+, 把点()4,0,()0,4代入得:404k b b += = ,解得:14k b =− =, ∴直线BC 的解析式为4y x =−+, 设点P 的坐标为()2,34m m m −++,则点G 的坐标为(),4m m −+, ∴()()224443m P m G m m m =−+=−−−+++,∵6PCB S = , ∴162PG OB ×=, 即()214462m m −+×=, 解得:1m =或3, ∴点P 的坐标为()1,6或()3,4;【小问3详解】 解:∵点()4,0B ,点()0,4C ,∴4OB OC ==,∴OBC OCB ∠=∠,∵90BOC ∠=°,∴45OBC OCB ∠=∠=°,∵PE x ⊥轴,PF BC ⊥,∴90BEG PFG ∠=∠=°, ∴45PGF BGE ∠=∠=°,∴PFG △是等腰直角三角形,∴PF FG ==, 设点P 的坐标为()2,34n n n −++,则点G 的坐标为(),4n n −+, ∴()()224443n P n G n n n =−+=−−−+++,∴PFG △的周长PG PF FG =++))222444n n n n n n =−++−+−+ )()241n n −++ )()2124n =+−−+,∴当2n =时,PFG △的周长最大,最大值为4+,此时点P 的坐标为()2,6.25. 【答案】(1)见解析;(2m <<;(3)3m ≤<. 【解析】【详解】解:如图:点,P P ′即为所求.(2)①如图:以AB 为边作等边三角形MAB ,分别作AM AB 、的中垂线交于点O ,圆O 交CD 于点P 、P ′,则P 、P ′为所求点.②如图,设点P 是CD 的中点,当等边三角形PAB 的外接圆与CD 相切时,AAAA 的值最小;②∵ABP 为等边三角形,则60PAB ∠=°,∴906030DAP DAB PAB ∠=∠−∠=°−°=°,∴tan 4tan30PD AD PAD ⋅∠=⋅= ∵矩形ABCD 中,点P 是CD 的中点,∵2AB CD PD m === ∴111222PD CD AB m ===,2m =∴m =如图4,当圆为矩形ABCD 的外接圆时,m 值最大,此时点P P ′()与点D C ()重合, 如图:连接BD ,则60ADB∠=°,∴28BD AD ==∴AB即m = 综上,mm <<. (3)如图,在x 轴上方作OKC ,使得OKC 是以OC 为斜边的等腰直角三角形,作KE AB ⊥于E ,交OC 于F .∵点B 坐标为()3,m ,∴3OC =∴OK KC ==当OK KC ==K 为圆心,KC 为半径的圆与AB相切,即23,KE AB KE KC AE EB ⊥==, ∴32OFOC ==, ∴1322KF OC ==,∴此时32m BC EF EK KF ===+==AAAA 上只有一个点P满足,1452OPC OKC ∠=∠=°;当BK KC ==时,在AB 上恰好有两个点P 满足1452OPC OKC ∠=∠=°,∴32EK =, ∴33322m BC EF EK KF ===+=+=,综上所述,要使得45OPC ∠=°的位置有两个满足条件的m 的值的范围为3m ≤<.故答案为3m ≤<.。
2024年最新人教版九年级数学(上册)期中考卷及答案(各版本)

2024年最新人教版九年级数学(上册)期中考卷一、选择题(每题3分,共30分)1. 若一个数的立方根是±2,则这个数是()A. 4B. 8C. 16D. 322. 下列各数中,不是有理数的是()A. 2B. 0.5C. 3/4D. √23. 下列等式中,正确的是()A. 3x + 4y = 7B. 2x 3y = 5C. 4x + 5y = 9D. 5x 6y = 84. 下列各式中,正确的是()A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + b^2 = c^2D. a^2 b^2 = c^25. 下列各式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a b)^2 = a^2 2ab +b^2 C. (a + b)^2 = a^2 2ab + b^2 D. (a b)^2 = a^2 + 2ab +b^26. 下列各式中,正确的是()A. (a + b)(c + d) = ac + ad + bc + bdB. (a b)(c d) =ac ad bc + bd C. (a + b)(c d) = ac + ad bc bd D. (ab)(c + d) = ac ad + bc bd7. 下列各式中,正确的是()A. a^3 + b^3 = (a + b)(a^2 ab + b^2)B. a^3 b^3 = (a b)(a^2 + ab + b^2)C. a^3 + b^3 = (a b)(a^2 ab + b^2)D.a^3 b^3 = (a + b)(a^2 + ab + b^2)8. 下列各式中,正确的是()A. a^4 b^4 = (a + b)(a^2 ab + b^2)B. a^4 b^4 = (a b)(a^2 + ab + b^2)C. a^4 b^4 = (a + b)(a^2 + ab + b^2)D. a^4 b^4 = (a b)(a^2 ab + b^2)9. 下列各式中,正确的是()A. (a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3B. (a b)^3 =a^3 3a^2b + 3ab^2 b^3 C. (a + b)^3 = a^3 3a^2b + 3ab^2 + b^3 D. (a b)^3 = a^3 + 3a^2b 3ab^2 b^310. 下列各式中,正确的是()A. (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4B. (a b)^4 = a^4 4a^3b + 6a^2b^2 4ab^3 + b^4C. (a + b)^4 = a^4 4a^3b + 6a^2b^2 + 4ab^3 + b^4D. (a b)^4 = a^4 + 4a^3b6a^2b^2 4ab^3 + b^4二、填空题(每题4分,共40分)11. 若一个数的平方根是±3,则这个数是_________。
2024-2025学年第一学期九年级数学期中测评卷(21-23章) 答案

2024-2025学年第一学期期中测评卷九年级数学(卷面分值:100分 考试时间:100分钟)一、选择题(每题3分,共27分,请将选择题的答案写在下面的表格中)题号 1 2 3 4 5 6 7 8 9 答案1.下列是一元二次方程的是( )0.2=++c bx ax A 0.23=−x x B 052.=−y x C 01.2=−x D2.函数32+=x y 的图像经过点(-2,m ),则m 的值为( )1.A 7.B 5.C 4.D3.下列图形中,是中心对称图形但不是轴对称图形的是( )4.若抛物线142−+=x ax y 与x 轴有两个交点,则a 的取值范围是( )4.>a A 4.−>a B 04.≠−a a C 且> 4.−<a D5.如果将方程0262=+−x x 配方成b a x =+2)(的形式,则a-b 的值为( )10.−A 10.B 5.C 9.D6.关于函数342++=x x y 的图像和性质,下列说法错误的是( )A.函数图像开口向上B.当x >-2时,y 随x 的增大而增大C.函数图像的顶点坐标是(-2,-1)D.函数图像与x 轴没有交点7.三角形的两边长分别是3和6,第三边长是方程0862=+−x x 的根,则该三角形的周长等于( )11.A 13.B 1311.或C 12.D8.已知方程0252=+−x x 的两根分别是21x x ,,则2221x x +的值为( )18.A 19.B 20.C 21.D9.如图所示为长20米、宽 15米的矩形空地,现计划要在中间修建三条等宽的小道,其余面积种植绿植,种植面积为 400平方米,若设小道的宽为 xx 米,则根据题意,列方程为( )40021520.2=−×+x x A 40021520.=−×x B400)15)(220.(=−−x x C 400)215)(20.(=−−x x D二.填空题(每空3分,共18分)10.将方程1322+=−x x x 化为一般式,其结果是____________. 11.若m 是方程0752=−−x x 的根,则152+−m m 的值等于________.12.已知关于x 的方程0142=−+x kx 没有实数根,则k 的取值范围是________. 13.将二次函数2)1(3+−=x y 的图像先向右平移2个单位长度,再向下平移4个单位长度,所得到的函数解析式为____________.14.已知抛物线c ax y +=2与22x y =的形状相同,开口方向相反,且经过点(-1,5),则其解析式为_____________.15.超市搞促销活动,将某商品经过两次降价,售价由86元降至52元,若两次降价的百分率相同均为x,可列方程为_____________.三.解答题(共6小题,共55分) 16.(10分)解方程091012=+−x x )( 6)6()2(+=+x x x17.(8分)已知关于x 的一元二次方程024)12(2=−++−m x m x . 求证:无论 m 取何值,这个方程总有实数根.18.(10分)已知抛物线的顶点坐标为(-1,3),且经过点(2,12). (1)求函数解析式.(2)当21≤≤−x 时,求函数的最大值.19.(8分)冬季易引发流感,刚开始有2人患流感,经过两轮传染共有288人患病,求每轮传染中平均一个人传染几个人?20.(9分)某商品售价为每件60元,每周可卖出300件,为提高利润,商家决定涨价销售,经过一段时间发现,每涨价5元,每周少卖50件,已知商品的进价为每件40元,当售价定为多少时利润最大?求最大利润.21.(10分)如图为抛物线c=2,图像经过点(-1,8).直线3−y+x=axy与抛物+线交于B,C两点.点A,B在x轴上.(1)求抛物线与直线的函数解析式.(2)求△ABC的面积.。
九年级(上)期中数学试卷附答案解析

九年级(上)期中数学试卷一、选择题:(共10小题,每小题4分,满分40分,每小题只有一个正确选项,请将答案填入答题卷的相应位置)1.下列方程中一定是一元二次方程的是()A.x2=0 B.x+﹣2x2=0 C.ax2+bx+c=0 D.x2+2y+3=02.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线互相平分且相等的四边形是正方形D.对角线相等的四边形是矩形3.一个人做“抛硬币”的游戏,抛10次,正面出现4次,反面出现6次,正确的说法是()A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频数是60% D.出现反面的频率是60%4.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=()A.(+1):2 B.(3+):2 C.(﹣1):2 D.(3﹣):25.顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形 C.矩形 D.正方形6.某品牌服装原价800元,连续两次降价x%后售价为512元,下面所列方程中正确的是()A.512(1+x%)2=800 B.800(1﹣2x%)=512 C.800(1﹣x%)2=512 D.800﹣2x%=5127.如图,在△ABC中,DE∥BC,,AE=4cm,则AC的长为()A.8cm B.10cm C.11cm D.12cm8.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处 B.P处C.Q处 D.M处9.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E 为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)10.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0二、填空题:(共6小题,每小题4分,满分24分.请将答案填入答题卷的相应位置)11.一个六边形的边长分别为3、4、5、6、7、8,另一个与它相似的六边形的最短边长是6,则其最大边长是.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是.13.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长为.14.已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC=cm.15.如图,要使△ABC∽△ACD,需补充的条件是.(只要写出一种)16.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(填序号)三、解答题:(共7小题,满分86分.请将解答过程写在答题卷的相应位置.作图或添辅助线用铅笔画完,需用水笔再描黑.)17.解下列方程:(1)x2﹣2x=0(2)2(x+1)2﹣8=0(3)x2﹣4x+3=0(4)(2x+1)2=3(2x+1)18.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.19.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.20.如图,在Rt△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连结EC.(1)求证:AD=EC;(2)求证:四边形ADCE是菱形;(3)若AB=AO,求的值.21.某市百货大楼服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?22.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.23.在矩形ABCD中,点E是边CD上任意一点(点E与点C、D不重合),过点A作AF ⊥AE,交边CB的延长线于点F,连接EF,与边AB相交于点G.(1)如果AD:AB=1:1(如图1),判断△AEF的形状,并说明理由;(2)如果AD:AB=1:2(如图2),当点E在边CD上运动时,判断出线段AE、AF数量关系如何变化,并说明理由;(3)如果AB=3,AD:AB=k,当点E在边CD上运动时,是否存在k值使△AEG为等边三角形?若存在,请直接写出k的值以及DE的长度.参考答案与试题解析一、选择题:(共10小题,每小题4分,满分40分,每小题只有一个正确选项,请将答案填入答题卷的相应位置)1.下列方程中一定是一元二次方程的是()A.x2=0 B.x+﹣2x2=0 C.ax2+bx+c=0 D.x2+2y+3=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、符合一元二次方程的定义,正确;B、不是整式方程,故错误.C、方程二次项系数可能为0,故错误;D、方程含有两个未知数,故错误;故选A.2.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的平行四边形是矩形C.对角线互相平分且相等的四边形是正方形D.对角线相等的四边形是矩形【考点】命题与定理.【分析】利用菱形的判定、矩形的判定及正方形的判定方法分别判断后即可确定正确的选项.【解答】解:A、对角线互相垂直且平分的四边形是菱形,故错误,是假命题;B、对角线相等的平行四边形是矩形,正确,是真命题;C、对角线互相平分且相等、垂直的四边形是正方形,故错误,是假命题;D、对角线相等的平行四边形是矩形,故错误,是假命题,故选B.3.一个人做“抛硬币”的游戏,抛10次,正面出现4次,反面出现6次,正确的说法是()A.出现正面的频率是4 B.出现反面的频率是6C.出现反面的频数是60% D.出现反面的频率是60%【考点】频数与频率.【分析】根据频率=频数÷数据总数,分别求出出现正面,反面的频率.【解答】解:∵某人抛硬币抛10次,其中正面朝上4次,反面朝上6次,∴出现正面的频率为=40%;出现反面的频率为60%.故选:D.4.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=()A.(+1):2 B.(3+):2 C.(﹣1):2 D.(3﹣):2【考点】黄金分割.【分析】根据黄金比是进行解答即可.【解答】解:∵点C是线段AB的黄金分割点,(AC>BC),∴AC=AB,∴AC:AB=(﹣1):2.故选:C.5.顺次连接对角线相等的四边形的各边中点,所形成的四边形是()A.平行四边形B.菱形 C.矩形 D.正方形【考点】中点四边形.【分析】菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH 为平行四边形,再由EH=EF,利用邻边相等的平行四边形是菱形即可得证.【解答】解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B6.某品牌服装原价800元,连续两次降价x%后售价为512元,下面所列方程中正确的是()A.512(1+x%)2=800 B.800(1﹣2x%)=512 C.800(1﹣x%)2=512 D.800﹣2x%=512【考点】由实际问题抽象出一元二次方程.【分析】根据降价后的价格=原价(1﹣降低的百分率),本题可先用800(1﹣x%)表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【解答】解:当商品第一次降价x%时,其售价为800﹣800x%=800(1﹣x%);当商品第二次降价x%后,其售价为800(1﹣x%)﹣800(1﹣x%)x%=800(1﹣x%)2.∴800(1﹣x%)2=512.故选C.7.如图,在△ABC中,DE∥BC,,AE=4cm,则AC的长为()A.8cm B.10cm C.11cm D.12cm【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得到∴=,则EC=2AE=8,然后计算AE+EC即可.【解答】解:∵DE∥BC,∴=,∴EC=2AE=8,∴AC=AE+EC=4+8=12(cm).故选D.8.如图1,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止.设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则当x=9时,点R应运动到()A.N处 B.P处C.Q处 D.M处【考点】动点问题的函数图象.【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【解答】解:当点R运动到PQ上时,△MNR的面积y达到最大,且保持一段时间不变;到Q点以后,面积y开始减小;故当x=9时,点R应运动到Q处.故选C.9.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E 为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0)B.(6,3)C.(6,5)D.(4,2)【考点】相似三角形的判定;坐标与图形性质.【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE ∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC ∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE ∽△ABC,故本选项不符合题意;故选:B.10.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是()A.k<B.k<且k≠0C.﹣≤k<D.﹣≤k<且k≠0【考点】根的判别式.【分析】根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:由题意知:2k+1≥0,k≠0,△=2k+1﹣4k>0,∴≤k<,且k≠0.故选:D.二、填空题:(共6小题,每小题4分,满分24分.请将答案填入答题卷的相应位置)11.一个六边形的边长分别为3、4、5、6、7、8,另一个与它相似的六边形的最短边长是6,则其最大边长是16.【考点】相似多边形的性质.【分析】根据相似多边形的对应边的比相等可得.【解答】解:两个相似的六边形,一个最短边长是3,另一个最短边长为6,则相似比是3:6=1:2,根据相似六边形的对应边的比相等,设后一个六边形的最大边长为x,则8:x=1:2,解得:x=16.即后一个六边形的最大边长为16.故答案为16.12.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是﹣1.【考点】一元二次方程的解.【分析】根据一元二次方程的解的定义,将x=0代入已知方程就可以求得a的值.注意,二次项系数a﹣1≠0.【解答】解:∵关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,∴x=0满足该方程,且a﹣1≠0.∴a2﹣1=0,且a≠1.解得a=﹣1.故答案是:﹣1.13.已知a,b,c,d是成比例线段,其中a=3cm,b=2cm,c=6cm,求线段d的长为4cm.【考点】比例线段.【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb,将a,b及c的值代入即可求得d.【解答】解:已知a,b,c,d是成比例线段,根据比例线段的定义得:ad=cb,代入a=3cm,b=2cm,c=6cm,解得:d=4,则d=4cm.故答案为:4cm.14.已知Rt△ABC中,∠ABC=90°,BD是斜边AC上的中线,若BD=3cm,则AC=6cm.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半可得AC=2BD.【解答】解:∵BD是斜边AC上的中线,∴AC=2BD=2×3=6cm.故答案为:6.15.如图,要使△ABC∽△ACD,需补充的条件是∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB.(只要写出一种)【考点】相似三角形的判定.【分析】要使两三角形相似,已知有一组公共角,则可以再添加一组角相等或添加该角的两边对应成比例.【解答】解:∵∠DAC=∠CAB∴当∠ACD=∠B或∠ADC=∠ACB或AD:AC=AC:AB时,△ABC∽△ACD.16.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是①④(填序号)【考点】相似三角形的判定与性质;含30度角的直角三角形;翻折变换(折叠问题).【分析】由条件可得∠APE=30°,则∠PEF=∠BEF=60°,可得EF=2BE,PF=PE,EF=2BE=4EQ,从而可判断出正确的结论.【解答】解:由折叠可得PE=BE,PF=BF,∠PEF=∠BEF,∠EFB=∠EFP,∵AE=AB,∴BE=PE=2AE,∴∠APE=30°,∴∠PEF=∠BEF=60°,∴∠EFB=∠EFP=30°,∴EF=2BE,PF=PE,∴①正确,②不正确;又∵EF⊥BP,∴EF=2BE=4EQ,∴③不正确;又∵PF=BF,∠BFP=2∠EFP=60°,∴△PBF为等边三角形,∴④正确;所以正确的为①④,故答案为:①④.三、解答题:(共7小题,满分86分.请将解答过程写在答题卷的相应位置.作图或添辅助线用铅笔画完,需用水笔再描黑.)17.解下列方程:(1)x2﹣2x=0(2)2(x+1)2﹣8=0(3)x2﹣4x+3=0(4)(2x+1)2=3(2x+1)【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】(1)先分解因式,即得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即得出两个一元一次方程,求出方程的解即可;(3)先分解因式,即得出两个一元一次方程,求出方程的解即可;(4)移项后分解因式,即得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2;(2)2(x+1)2﹣8=0,2(x+1+2)(x+1﹣2)=0,x+1+2=0,x+1﹣2=0,x1=﹣3,x2=1;(3)x2﹣4x+3=0,(x﹣3)(x﹣1)=0,x﹣3=0,x﹣1=0,x1=3,x2=1;(4)(2x+1)2=3(2x+1),(2x+1)2﹣3(2x+1)=0,(2x+1)(2x+1﹣3)=0,2x+1=0,2x+1﹣3=0,x1=﹣,x2=1.18.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.19.三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由.【考点】游戏公平性;概率公式;列表法与树状图法.【分析】(1)根据三张卡片的正面分别写有数字2,5,5,再根据概率公式即可求出答案;(2)根据题意列出图表,再根据概率公式求出和为7和和为10的概率,即可得出游戏的公平性.【解答】解:(1)∵三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,∴从中任意抽取一张卡片,该卡片上数字是5的概率为:;故答案为:;(2)根据题意列表如下:2 5 52 (2,2)(4)(2,5)(7)(2,5)(7)5 (5,2)(7)(5,5)(10)(5,5)(10)5 (5,2)(7)(5,5)(10)(5,5)(10)∵共有9种可能的结果,其中数字和为7的共有4种,数字和为10的共有4种,∴P(数字和为7)=,P(数字和为10)=,∴P(数字和为7)=P(数字和为10),∴游戏对双方公平.20.如图,在Rt△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连结EC.(1)求证:AD=EC;(2)求证:四边形ADCE是菱形;(3)若AB=AO,求的值.【考点】四边形综合题;直角三角形斜边上的中线;三角形中位线定理;平行四边形的判定与性质;菱形的判定与性质.【分析】(1)先判定四边形ABDE为平行四边形,再判定四边形ADCE为平行四边形,即可得出AD=EC;(2)根据四边形ADCE为平行四边形,且AD=CD,即可得出平行四边形ADCE为菱形;(3)先判定OD为△ABC的中位线,得出,再根据AB=AO,得出即可.【解答】解:(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE为平行四边形,∴AE=BD,∵在Rt△ABC中,AD是斜边BC上的中线,∴AD=CD=BD,∴AE=CD,又∵AE∥CD,∴四边形ADCE为平行四边形,∴AD=EC;(2)由(1)可知,四边形ADCE为平行四边形,且AD=CD,∴平行四边形ADCE为菱形;(3)∵四边形ADCE为平行四边形,∴AC与ED互相平分,∴点O为AC的中点,∵AD是边BC上的中线,∴点D为BC边中点,∴OD为△ABC的中位线,∴,∵AB=AO,∴,即的值为.21.某市百货大楼服装柜在销售中发现:“七彩”牌童装平均每天可售出20件,每件盈利40元.为了迎接元旦,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【考点】一元二次方程的应用.【分析】设每件童装应降价x元,原来平均每天可售出20件,每件盈利40元,后来每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,由此即可列出方程(40﹣x)(20+2x)=1200,解方程就可以求出应降价多少元.【解答】解:设每件童装应降价x元,则(40﹣x)(20+2x)=1200,解得x1=10,x2=20,因为扩大销售量,增加盈利,减少库存,所以x只取20.答:每件童装应降价20元.22.如图1,在正方形ABCD中,点E为BC上一点,连接DE,把△DEC沿DE折叠得到△DEF,延长EF交AB于G,连接DG.(1)求∠EDG的度数.(2)如图2,E为BC的中点,连接BF.①求证:BF∥DE;②若正方形边长为6,求线段AG的长.【考点】正方形的性质;翻折变换(折叠问题).【分析】(1)由正方形的性质可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折叠的性质得出∠DFE=∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”证明Rt△DGA≌Rt△DGF,由全等三角形对应角相等得出∠3=∠4,得出∠2+∠3=45°即可;(2)①由折叠的性质和线段中点的定义可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性质得出∠5=∠DEC,然后利用同位角相等,两直线平行证明即可;②设AG=x,表示出GF、BG,根据点E是BC的中点求出BE、EF,从而得到GE的长度,再利用勾股定理列出方程求解即可;【解答】(1)解:如图1所示:∵四边形ABCD是正方形,∴DC=DA.∠A=∠B=∠C=∠ADC=90°,∵△DEC沿DE折叠得到△DEF,∴∠DFE=∠C,DC=DF,∠1=∠2,∴∠DFG=∠A=90°,DA=DF,在Rt△DGA和Rt△DGF中,,∴Rt△DGA≌Rt△DGF(HL),∴∠3=∠4,∴∠EDG=∠3+∠2=∠ADF+∠FDC,=(∠ADF+∠FDC),=×90°,=45°;(2)①证明:如图2所示:∵△DEC沿DE折叠得到△DEF,E为BC的中点,∴CE=EF=BE,∠DEF=∠DEC,∴∠5=∠6,∵∠FEC=∠5+∠6,∴∠DEF+∠DEC=∠5+∠6,∴2∠5=2∠DEC,即∠5=∠DEC,∴BF∥DE;②解:设AG=x,则GF=x,BG=6﹣x,∵正方形边长为6,E为BC的中点,∴CE=EF=BE=×6=3,∴GE=EF+GF=3+x,在Rt△GBE中,根据勾股定理得:(6﹣x)2+32=(3+x)2,解得:x=2,即线段AG的长为2.23.在矩形ABCD中,点E是边CD上任意一点(点E与点C、D不重合),过点A作AF ⊥AE,交边CB的延长线于点F,连接EF,与边AB相交于点G.(1)如果AD:AB=1:1(如图1),判断△AEF的形状,并说明理由;(2)如果AD:AB=1:2(如图2),当点E在边CD上运动时,判断出线段AE、AF数量关系如何变化,并说明理由;(3)如果AB=3,AD:AB=k,当点E在边CD上运动时,是否存在k值使△AEG为等边三角形?若存在,请直接写出k的值以及DE的长度.【考点】四边形综合题.【分析】(1)由AD:AB=1:1可以得出四边形ABCD是正方形,由其性质就可以得出△ABF≌△ADE,从而得出AF=AE,得出△AEF的形状;(2)根据条件可以得出△ABF∽△ADE,由相似三角形的性质就可以得出结论;(3)如图3,当△AEG是等边三角形时,由勾股定理就可以表示出AG、AE、FG,BG的值建立方程求出k值,就可以求出DE的长度.【解答】解:(1)△AEF为等腰直角三角形理由:如图1,∵AD:AB=1:1,∴AD=AB.∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°.∵AF⊥AE,∴∠FAE=90°,∴∠FAE=∠BAD,∴∠FAE﹣∠BAE=∠BAD﹣∠BAE,即∠BAF=∠DAE.在△ABF和△DAE中,,∴△ABF≌△ADE,∴AF=AE,∴△AEF为等腰直角三角形;(2)如图2,∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°∵AF⊥AE,∴∠FAE=90°,∴∠FAE=∠BAD,∴△ABF∽△ADE,∴.∵,∴,即AF=2AE;(3)∵四边形ABCD是矩形,∴∠D=∠ABF=∠BAD=90°∵AF⊥AE,∴∠FAE=90°.∵△AEG是等边三角形,∴AE=AG,∠GAE=∠AEG=60°.∴∠FAG=∠DAE=∠AFE=30°,∴AG=FG.∵AB=3,AD:AB=k,∴AD=3k.在Rt△ADE中由勾股定理,得DE=k,AE=2k,∴AG=FG=2k,∴BG=k.∵AB=3,∴GB=3﹣2k,∴k=3﹣2k,解得:k=,∴DE=1.答:k=,DE=1.。
人教版初三上册《数学》期中考试卷及答案【可打印】

一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(2,3)关于x轴的对称点坐标是()。
A.(2,3)B.(2,3)C.(2,3)D.(2,3)2. 已知一组数据:1,2,3,4,5,那么这组数据的众数、中位数、平均数分别是()。
A. 3,3,3B. 3,3,3.5C. 3,3,4D. 3,3,4.53. 下列函数中,属于一次函数的是()。
A. y=2x+1B. y=x^2C. y=2/xD. y=3sinx4. 已知正比例函数y=kx(k≠0),当x=2时,y=4,那么k的值为()。
A. 2B. 4C. 2D. 45. 在平面直角坐标系中,点A(3,2),点B(3,2),那么线段AB的中点坐标是()。
A.(0,0)B.(0,1)C.(0,1)D.(1,0)二、判断题(每题1分,共5分)1. 直角三角形的两个锐角互余。
()2. 在同一平面内,垂直于同一直线的两条直线互相平行。
()3. 一元二次方程的根一定是实数。
()4. 圆的周长与半径成正比。
()5. 一组数据的方差越大,说明这组数据的波动越小。
()三、填空题(每题1分,共5分)1. 在等腰三角形中,若底边长为10,腰长为13,则这个等腰三角形的周长是______。
2. 在平面直角坐标系中,点P(m,n)关于原点的对称点坐标是______。
3. 已知一元二次方程ax^2+bx+c=0(a≠0),若方程有两个相等的实数根,则判别式△=______。
4. 在等差数列{an}中,若a1=3,d=2,则第10项a10=______。
5. 在平面直角坐标系中,点A(m,n),点B(m,n),则线段AB的长度是______。
四、简答题(每题2分,共10分)1. 请简述一元二次方程的根的判别式。
2. 请简述圆的性质。
3. 请简述等差数列的性质。
4. 请简述三角形的内角和定理。
5. 请简述平行线的性质。
五、应用题(每题2分,共10分)1. 已知一个等腰三角形的底边长为8,腰长为5,求这个等腰三角形的周长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一学期九年级数学期中调研测试卷
考试时间100分钟,试卷满分100分
下列各题所附的四个选项中,有且只有一个是正确的. 一、选择题(每小题2分,共24分)
1. 若式子 x – 2 在实数范围内有意义,则x 的取值范围是( )
A .x < 2
B .x ≤ 2
C .x > 2
D .x ≥ 2 2.在下列二次根式中,与2是同类二次根式的是( )
A . 4
B . 6
C .8
D .12
3.老师对小明在本学期的5次数学测试成绩进行统计分析,判断小明的数学成绩是否稳定,老师需要知道小明这5次数学成绩的( )
A .平均数
B .方差
C .众数
D .频数 4.用配方法解方程x 2 – 4x + 1= 0时,方程变形正确的是( )
A .(x + 2)2 = 3
B .(x + 2)2 = 5
C .(x – 2)2 = 3
D .(x – 2)2 = 5 5.下列等式一定成立的是( )
A.32 + 42 =
3 +
4 B.
5 –
3
= 2 C.4
⨯
3 =
4 ⨯ 3 D.4
÷
2
= 2
6.已知x = 2是方程x 2 – a x + 1 = 0的一个解,则a 的值是( )
A .52
B .32
C .1
2 D .2 7.下列可使两个直角三角形全等的条件是( )
A .一条边对应相等
B .两条直角边对应相等
C .一个锐角对应相等
D .两个锐角对应相等
8.若关于x 的方程m x 2 – 2 x + 1 = 0有两个不相等的实数根,则m 的取值范围是( )
A .m > 1
B .m >
1且m ≠ 0 C .1<m D .1<m 且m ≠ 0
9.等腰梯形上底与高相等,下底是高的3倍,则底角为( )
A .90°
B .60°
C .45°
D .30°
10.矩形的两条对角线的夹角为60°,一条对角线的长为2,则矩形的周长为( )
A .1+ 3
B .1+2 3
C .2+ 3
D .2+2 3
11.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折法共有( )
A .1种
B .2种
C .4种
D .无数种 12.当 – 1< x < 1时,(x – 1)2 + ||x + 1 的值是( )
A .– 2
B .0
C .2
D .2x 二、填空题(每小题3分,共12分)
13.一组数据1,2,3,6,它们的极差为 .
14.写出一个一元二次方程使它有一个根为1,则这个方程可以为 .
15.某厂八月份生产某种机器100台,计划九、十月份共生产该种机器280台.设九、十月份每月的平均增长率为x ,根据题意列出的方程是 .
16.如图,两张宽度为2 cm 的纸条如图叠放在一起,重叠部分的菱形(阴影部分)面积为 cm 2.
三、计算与解方程(每小题5分,共20分)
17.计算: 12
– 412 +
38.
18.计算: 1
220ab 3 · (– 2 a
5b ) (a ≥0,b ≥0).
19.解方程: 2(x + 3)2 = x + 3.
20.解方程: 2x 2 – 5x + 2 = 0.
四.证明题(每小题6分,共12分)
21.已知:如图,A 是△EFC 边EF 上一点,四边形ABCD
且∠EAD =∠BAF .
求证:△CEF 是等腰三角形.
22.如图,在梯形ABCD 中,AD ∥BC ,M ,N 分别是AD ,BC 的中点,
E ,
F 分别是BM ,CM 的中点.
(1)证明四边形MENF 是平行四边形; (2)若使四边形MENF 是菱形,还需在梯形ABCD 中添加什么条件?
请你写出这个条件.
五、解答题(本题7分)
23.某商场经销一种销售成本为每件40元的商品.据市场分析,销售单价为50元,月销售量为500件,销售单价每提高1元,月销售量就减少10件,针对这种商品的销售行情,商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元? 六、(本题8分)
24.一次期中考试中,A 、B 、C 、D 、E 五位同学的数学、英语成绩的有关信息如下表所示:(单位:
分)
N A
B C
D M
E F
(1)求这五位同学在本次考试中数学成绩的平均分和英语成绩的标准差;
(2)为了比较不同学科考试成绩的好与差,采用标准分是一个合理的选择,标准分的计算公式是:标
准分=(个人成绩-平均成绩)÷成绩标准差.从标准分看,标准分大的考试成绩更好.请问A 同学在本次考试中,数学与英语哪个学科考得更好? 友情提示:一组数据的标准差计算公式是S
x 为n 个数据
1x 、2x …n x 的平均数.
七、(本题8分)
25.证明:在一个角的内部,到角的两边距离相等的点,在这个角的平分线上(要求画出图形,写出已知、求证、证明). 八、(本题9分)
26.在正方形ABCD 中,点P 为直线CD 上一动点,连接AP ,作BE ⊥AP ,DF ⊥AP ,垂足分别为E ,F . (1)如图,当点P 在点C 左侧时.求证:EF = DF – BE ; (2)当点P 在直线CD 的其它位置上时(除点C 、D 外),线段BE ,DF ,EF 之间有怎样的数量关系? 画出图形,写出你的猜想,不需证明.
参考答案及评分标准
一、选择题
二、填空题(每小题3分,共12分)
13.5 14.答案不唯一.如x2 –x=0 15.100(1+x) +100(1+x)2 =280 16.42三、(每小题5分,共20分)
17.原式=
2
2
–22+62…………3分18.原式=–a102 ab4 …………3分
=9
22………………5分=–10ab
2 a………………5分
19.(x+3)(2x+6–1)=19, ………3分解得x1 =–3,x2 =5
2.………5分
20.a=2,b=–5,c=2,b2 –4ac=9,………2分x=5±9
2⨯2
.………3分
解得x1 =2,x2 =1
2.………5分
四、(每小题6分,共12分)
21∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC.………1分
∴∠EAD=∠F,∠BAF=∠E.………………3分
∵∠EAD=∠BAF,∴∠F=∠E.………………4分
∴CE=CF.∴△CEF是等腰三角形.………6分
22.(1)在△MBC中,N,E,F分别是BC,BM,CM的中点,∴EN∥MF,
且EN=MF.∴四边形MENF是平行四边形.………………4分
(2)若使四边形MENF是菱形,需在梯形ABCD中添加条件:AB=CD.……………6分
(答案不惟一,其它答案参照给分)
五、(本题7分)
23.设销售单价定为每件x元.
根据题意,得(x–40)[500–(x–50)⨯10]=8000.………3分
即x2 –140x+ 4800=0.解得x l =60,x2 =80.……………5分
当销售单价定为每件60元时,月销售量为[500–(60–50)⨯10] =400件,
月销售成本为40⨯400=16000>10000,而月销售成本不能超过10000元,
∴x l =60舍去.当销售单价定为每件80元时,月销售成本为40⨯[500–(80–50)⨯10]=8000(元).∴销售单价应定为每件80元.……………7分
六、(本题8分)
24.(1)数学成绩的平均分为70,英语成绩的标准差为6.……………4分
(2)A同学在本次考试中,数学标准分
2
2,英语标准分
1
2.∴数学考得更好.………8分
七、(本题8分)
25.已知:如图,PD⊥OA,PE⊥OB,垂足分别为D,E,且PD=PE.求证:点P在∠AOB的平分线上.……………4分(画图正确2分,
O
A
B
P
D
已知,求证正确2分)
证明Rt△ODP≌Rt△OEP(HL)……………7分
得到∠DOP=∠EOP,∴点P在∠AOB的平分线上.……………8分八、(本题9分)
26.(1)证明Rt△ABE≌Rt△DAF,……………3分
∴BE=AF,AE=DF.……………4分
∴EF =DF –BE.……………5分
(2)点P在CD上,EF =BE–DF;……………7分
点P在CD延长线上,EF =BE+DF.……………9分。