【精品课件】超声波测距传感器
合集下载
超声波测距精讲.pptx

第7页/共18页
超声波发射电路模块
第8页/共18页
发射模块工作原理
发射电路主要由反向器74LS04和超声波发射换能器T组成, 单片机P1.0端口输出的40 KHz方波信号一路经反向器后送 到超声波换能器的一个电极,另一路经两级反向器后送到 超声波华能器的另一个电极。用这种推挽形式将方波信号 加到超声波换能器两端,可以提高超声波的发射强度。输 出端采用两个反向器并联,用以提高驱动能力。上拉电阻 R10,R11一方面可以提高反向器74LS04输出高电平的驱动 能力,另一方面可以增加超声波换能器的阻尼效果,缩短 其自由振荡的时间。
第13页/共18页
超声波发生子程序和接收中断程序
用单片机编程产生40kHz 方波,可用延时程序和循环语句实现。先定 义一个延时函数delays(),然后可用for 语句循环,并且循环一次同 时改变方波输出口的电平高低,从而产生方波。部分程序如下: void delays() {} //延时函数 void main() {for(a=0;a<200;a++) //产生100 个40KHz 的方波 {P36=!P36; //每循环一次,输出引脚取反 delays() ; } }
第4页/共18页
超声波信号的检测与处理
第5页/共18页
单片机系统及显示电路模块
第6页/共18页
显示模块工作原理
单片机采用AT89C51,采用12MHz高精度的晶振, 以获得较稳定时钟频率,减小测量误差。单片机 用P1.0端口输出超声波换能器所需的40kHz的方波 信号,利用外中断0口监测超声波接收电路输出的 返回信号。显示电路采用简单实用的4位共阳LED 数码管,段码用74LS244驱动,位码用PNP三极管 8550驱动。
超声波发射电路模块
第8页/共18页
发射模块工作原理
发射电路主要由反向器74LS04和超声波发射换能器T组成, 单片机P1.0端口输出的40 KHz方波信号一路经反向器后送 到超声波换能器的一个电极,另一路经两级反向器后送到 超声波华能器的另一个电极。用这种推挽形式将方波信号 加到超声波换能器两端,可以提高超声波的发射强度。输 出端采用两个反向器并联,用以提高驱动能力。上拉电阻 R10,R11一方面可以提高反向器74LS04输出高电平的驱动 能力,另一方面可以增加超声波换能器的阻尼效果,缩短 其自由振荡的时间。
第13页/共18页
超声波发生子程序和接收中断程序
用单片机编程产生40kHz 方波,可用延时程序和循环语句实现。先定 义一个延时函数delays(),然后可用for 语句循环,并且循环一次同 时改变方波输出口的电平高低,从而产生方波。部分程序如下: void delays() {} //延时函数 void main() {for(a=0;a<200;a++) //产生100 个40KHz 的方波 {P36=!P36; //每循环一次,输出引脚取反 delays() ; } }
第4页/共18页
超声波信号的检测与处理
第5页/共18页
单片机系统及显示电路模块
第6页/共18页
显示模块工作原理
单片机采用AT89C51,采用12MHz高精度的晶振, 以获得较稳定时钟频率,减小测量误差。单片机 用P1.0端口输出超声波换能器所需的40kHz的方波 信号,利用外中断0口监测超声波接收电路输出的 返回信号。显示电路采用简单实用的4位共阳LED 数码管,段码用74LS244驱动,位码用PNP三极管 8550驱动。
超声波传感器课件

数据处理与分析
使用相关软件对采集 到的数据进行处理和 分析。
数据处理与分析
数据清洗
去除异常值和噪声,确 保数据质量。
数据转换
将原始数据转换为更易 于分析的格式或图表。
数据分析
根据实验目的,对数据 进行统计分析或趋势分
析。
结果解释与结论
根据分析结果,得出结 论并解释实验现象。
06
问题与解答
常见问题及解决方案
02
03
04
工业自动化
用于检测生产线上的物体位置 和距离,实现自动化控制和定
位。
机器人技术
用于机器人导航、避障和定位 ,提高机器人的智能和自主性
。
医疗诊断
用于检测人体内部器官和病变 ,如超声成像和胎儿监测。
环境ห้องสมุดไป่ตู้测
用于检测空气污染、水质污染 等环境问题,实现环境监测和
保护。
02
超声波传感器的设计与制 造
气体检测
超声波传感器能够检测空气中的有害气体和粉尘,如一氧化碳、二氧化硫、PM2.5等。这对于保障公共安全和预 防环境污染具有重要意义。
工业自动化与智能制造
机器人定位
在工业自动化生产线上,超声波传感器常用于机器人的定位和避障。通过向目标物体发射超声波并接 收回声信号,机器人可以精确地判断出目标物体的距离和位置,从而实现高效、精准的操作。
VS
新工艺
新型工艺如纳米压印、光刻技术等在超声 波传感器的制造中得到应用,这些新工艺 能够实现更精细的加工和更高的集成度, 提高传感器的分辨率和响应速度。
多功能化与集成化的发展
多功能化
超声波传感器正朝着多功能化的方向发展, 除了基本的检测功能外,还集成了温度、湿 度、压力等多种传感器,实现多参数的检测 和监控。
《超声波式传感器》课件

线路板和控制芯片
传感器上的线路板和控制芯片负责信号处理和数据传输。
优缺点分析
优点
非接触式,精度高,测量范围广。
缺点
受环境因素影响,检测路线受限。
应用实例
航空天领域
超声波式传感器用于飞机导航系 统和无人机避障。
工业自动化
超声波式传感器用于物体检测和 测距。
消费电子
超声波式传感器用于手势识别和 智能家居控制。
超声波式传感器
超声波式传感器是一种非接触式传感器,适用于各种应用场景。本课件将介 绍其工作原理、结构组成、优缺点分析、应用实例和发展前景。
介绍
1 什么是超声波式传感器
超声波式传感器利用超声波的发射和接收来测量距离和探测物体的位置。
2 常见的应用场景
超声波式传感器广泛应用于航空航天、工业自动化和消费电子等领域。
发展前景
1 技术不断革新
超声波式传感器的技术不断发展,性能不断提升。
2 应用领域不断拓展
超声波式传感器在医疗、安防等领域有着广泛的应用前景。
3 市场需求增长
随着智能设备的普及,对超声波式传感器的需求不断增长。
总结
1 超声波式传感器的应用前景广阔
在不同领域都有着无限的可能性。
2 发展潜力巨大
随着技术的不断进步,超声波式传感器有望 成为未来重要的技术发展领域的代表之一。
工作原理
1 超声波的发射和接收
传感器通过发射超声波脉冲并接收反射回来的信号来计算距离。
2 时间测量和距离计算
传感器测量超声波的往返时间,并根据声速计算出物体与传感器之间的距离。
结构组成
超声波传感器的主体结构
传感器主体通常由外壳、传感器元件和连接线组成。
超声波测距精选PPT演示文稿

19
距离计算
距离计算公式: D=S/2=(V×t)/2
20
开始
系统初始化 发送超声波 等待发射超声波
计算距离 显示结果
21
重新开始
初始化
超声测距器单片机程序
/*--------------------------------------
MCU AT89C51 XAL 12MHz
--------------------------------------*/
❖ uchar tab2[]={0x01,0x02,0x04,0x08,};
❖ extern void cs_t(void);
❖ extern void delay(uint);
❖ data uchar dispram[5];
❖ void dΒιβλιοθήκη splay()❖ { int j;
❖ for(j=0;j<=3;j++)
❖ {P0=tab1[dispram[j]];
❖
P2=tab2[j];delay(2);
❖
}
❖
}
❖ data uchar testok;
22
主程序
❖ void main(void) ❖{ ❖ data uint i; ❖ data ulong time; ❖ P0 = 0xff; /*初始化*/ ❖ P2 = 0xff; ❖ TMOD = 0x11; /*工作方式选择*/ ❖ IE = 0x80; /*CPU开中断*/ ❖ while (1) ❖{ ❖ cs_t(); /*产生 40KHz的方波*/ ❖ delay(1); ❖ testok = 0; ❖ EX0 = 1; /*开外部中断0 */ ❖ ET0 = 1; /*开定时/计数器0 */ ❖ while(!testok) display(); ❖
距离计算
距离计算公式: D=S/2=(V×t)/2
20
开始
系统初始化 发送超声波 等待发射超声波
计算距离 显示结果
21
重新开始
初始化
超声测距器单片机程序
/*--------------------------------------
MCU AT89C51 XAL 12MHz
--------------------------------------*/
❖ uchar tab2[]={0x01,0x02,0x04,0x08,};
❖ extern void cs_t(void);
❖ extern void delay(uint);
❖ data uchar dispram[5];
❖ void dΒιβλιοθήκη splay()❖ { int j;
❖ for(j=0;j<=3;j++)
❖ {P0=tab1[dispram[j]];
❖
P2=tab2[j];delay(2);
❖
}
❖
}
❖ data uchar testok;
22
主程序
❖ void main(void) ❖{ ❖ data uint i; ❖ data ulong time; ❖ P0 = 0xff; /*初始化*/ ❖ P2 = 0xff; ❖ TMOD = 0x11; /*工作方式选择*/ ❖ IE = 0x80; /*CPU开中断*/ ❖ while (1) ❖{ ❖ cs_t(); /*产生 40KHz的方波*/ ❖ delay(1); ❖ testok = 0; ❖ EX0 = 1; /*开外部中断0 */ ❖ ET0 = 1; /*开定时/计数器0 */ ❖ while(!testok) display(); ❖
超声波传感器-PPT课件.ppt

在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
原理简述
超声波传感器是利用超声波的特性研制而成的传感 器。超声波是一种振动频 率高于声波的机械波,由换能 晶片在电压的激励下发生振动产生的,它具有频率高、波 长短、绕射现象小,特别是方向性好、能够成为射线而定 向传播等特点。超声波对液体、固体的穿透本领很大,尤 其是在阳光不透明的固体中,它可穿透几十米的深度。超 声波碰到杂质或分界面会产生显著反射形成反射成回波, 碰到活动物体能产生多普勒效应。
超声波传感器主要采用直接反射式的检测模式。位于传 感器前面的被检测物通过将发射的声波部分地发射回传感 器的接收器,从而使传感器检测到被测物。
在工业方面,超声波的典型应用是对金属的无损探伤和 超声波测厚两种。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
压电式超声波接收器是有时就用同一个换能兼做发生和 接受器两种用途。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
压电陶瓷芯片
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
超 声 波 流 量 计 现 场 使 用
石料测量
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
原理简述
超声波传感器是利用超声波的特性研制而成的传感 器。超声波是一种振动频 率高于声波的机械波,由换能 晶片在电压的激励下发生振动产生的,它具有频率高、波 长短、绕射现象小,特别是方向性好、能够成为射线而定 向传播等特点。超声波对液体、固体的穿透本领很大,尤 其是在阳光不透明的固体中,它可穿透几十米的深度。超 声波碰到杂质或分界面会产生显著反射形成反射成回波, 碰到活动物体能产生多普勒效应。
超声波传感器主要采用直接反射式的检测模式。位于传 感器前面的被检测物通过将发射的声波部分地发射回传感 器的接收器,从而使传感器检测到被测物。
在工业方面,超声波的典型应用是对金属的无损探伤和 超声波测厚两种。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
压电式超声波接收器是有时就用同一个换能兼做发生和 接受器两种用途。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
压电陶瓷芯片
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
超 声 波 流 量 计 现 场 使 用
石料测量
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
《超声波传感器》课件 (2)

机器人技术
超声波传感器被用于机器人导航和障碍物避免, 使机器人能够感知周围环境并做出相应的动作。
安防监控
超声波传感器可用于安防监控系统,如入侵检测、 人员计数和距离报警等方面。
超声波传感器的优点
1 非接触式测量
2 高精度
超声波传感器能够在非接触状态下进行测量, 不会对目标物造成损害。
超声波传感器具有高精度的测量能力,能够 实现毫米级的测距精度。
《超声波传感器》PPT课 件 (2)
欢迎来到《超声波传感器》PPT课件第2页。本节将介绍超声波传感器的定义, 原理,应用领域,优点,局限性,市场前景和发展趋势。
超声波传感器的定义
超声波传感器是一种利用超声波进行测距和检测目标的设备。它通过发射超声波脉冲并接收其反射信号来实现 距离测量和障碍物检测。
3 无法穿透障碍物
超声波无法穿透某些物质,如金属和玻璃, 对于这些物体的测量会有局限性。
4 多路径效应
超声波在某些环境中可能会受到多路径效应 的影响,导致测量结果不准确。
超声波传感器的市场前景
1
增长迅速
随着工业自动化和智能设备的发展,声波传感器在各个领域的应用越来越广泛,市场潜力巨大。
3
技术不断进步
超声波传感器技术正在不断进步,新的应用和功能不断涌现。
超声波传感器的发展趋势
增强感知能力
超声波传感器将越来越具备环境 感知和物体识别的能力,实现更 智能化的应用。
微型化设计
无线通信
超声波传感器将越来越小巧轻便, 适应各种复杂场景和紧凑空间的 应用需求。
超声波传感器将实现无线通信技 术,方便远程监控和数据传输。
3 适用于不同环境
超声波传感器在各种环境下都能正常工作, 包括室内、室外、水下等。
《超声波测距传感器》课件

《超声波测距传感器 》PPT课件
• 引言 • 超声波测距传感器的工作原理 • 超声波测距传感器的应用 • 超声波测距传感器的技术发展 • 结论
目录
Part
01
引言
主题简介
超声波测距传感器
利用超声波进行距离测量的传感器。
工作原理
通过发送超声波并测量其往返时间,计算目标物体的距离。
应用领域
机器人定位、自动驾驶、无人机避障等。
应用场景
在安全监控、智能家居、智能交 通等领域,用于检测入侵者、自 动门控制、车辆流量监测等。
优势与挑战
移动物体检测具有实时性好、响 应速度快、可靠性高等优点,但 同时也存在对噪声和干扰敏感的 问题。
液位测量
液位测量概述
01
超声波测距传感器常用于液位测量,通过测量液面与传感器之
间的距离,实现对液位的精确控制。
应用场景
02
在化工、食品、医药等领域,用于储罐液位监控、管道流量控
制等。
优势与挑战
03
液位测量具有测量精度高、稳定性好等优点,但同时也需要注
意传感器与液体介质的兼容性和防腐蚀等问题。
Part
04
超声波测距传感器的技术发展
技术进步与挑战
超声波测距传感器技术不断进步,测 量精度和稳定性不断提高。
面临的挑战包括如何进一步提高测量 精度、降低成本以及优化性能参数等
相比于其他传感器,超声 波测距传感器具有较高的 精度和稳定性。
实时性
能够快速响应并测量距离 ,适用于需要实时反馈的 场景。
成本优势
相比于激光雷达等高精度 测距设备,超声波测距传 感器成本较低。
主题的背景
STEP 01
技术发展
STEP 02
• 引言 • 超声波测距传感器的工作原理 • 超声波测距传感器的应用 • 超声波测距传感器的技术发展 • 结论
目录
Part
01
引言
主题简介
超声波测距传感器
利用超声波进行距离测量的传感器。
工作原理
通过发送超声波并测量其往返时间,计算目标物体的距离。
应用领域
机器人定位、自动驾驶、无人机避障等。
应用场景
在安全监控、智能家居、智能交 通等领域,用于检测入侵者、自 动门控制、车辆流量监测等。
优势与挑战
移动物体检测具有实时性好、响 应速度快、可靠性高等优点,但 同时也存在对噪声和干扰敏感的 问题。
液位测量
液位测量概述
01
超声波测距传感器常用于液位测量,通过测量液面与传感器之
间的距离,实现对液位的精确控制。
应用场景
02
在化工、食品、医药等领域,用于储罐液位监控、管道流量控
制等。
优势与挑战
03
液位测量具有测量精度高、稳定性好等优点,但同时也需要注
意传感器与液体介质的兼容性和防腐蚀等问题。
Part
04
超声波测距传感器的技术发展
技术进步与挑战
超声波测距传感器技术不断进步,测 量精度和稳定性不断提高。
面临的挑战包括如何进一步提高测量 精度、降低成本以及优化性能参数等
相比于其他传感器,超声 波测距传感器具有较高的 精度和稳定性。
实时性
能够快速响应并测量距离 ,适用于需要实时反馈的 场景。
成本优势
相比于激光雷达等高精度 测距设备,超声波测距传 感器成本较低。
主题的背景
STEP 01
技术发展
STEP 02
【精品】传感器技术及应用第五章超声波传感器PPT课件

5.3 超声波检测技术的应用
在生产实践中,有时只需要知道液面是否升到或降到某个或 几个固定高度,则可采用图5-7所示的超声波定点式液位计, 实现定点报警或液面控制。图5-7(a)、(b)为连续波阻抗式液 位计的示意图。由于气体和液体的声阻抗差别很大,当探头 发射面分别与气体或液体接触时,发射电路中通过的电流也 就明显不同。因此利用一个处于谐振状态的超声波探头,就 能通过指示仪表判断出探头前是气体还是液体。图5-7(c)、(d) 为连续波透射式液位计示意图。图中相对安装的两个探头, 一个发射,另一个接收。当发射探头发生频率较高的超声波 时,只有在两个探头之间有液体时,接收探头才能接收到透 射波。由此可判断出液面是否达到探头的高度。
1. 时差法测流量 采用测量两接头超声波传播时间和相位上的变化等方法,可
求得流体的流速和流量。图5-8所示为超声波测流体流量原理 图。 当A为发射探头、B为接收探头时,超声波传播速度为c+vcos, 于是顺流传播时间t1为
上一页 下一页 返回
5.3 超声波检测技术的应用
L
t1 c vcos
流体的平均流速为
2Lv cos
t c2
v c2 t
2L cos
(5-9) (5-10)
该测量方法精度取决于Δt的测量精度,同时应注意c并不是常 数,而是温度的函数。
2. 相位差法测流量
当A为发射探头、B为接收探头时,接收信号相对发射信号的 相位角φ1(当φ1很小时)为
1
c
L
vcos
式中 ω——超声波的角频率。
传感器技术及应用第五章 超声波传感器
5.1 超声检测的物理基础
振动在弹性介质内的传播称为波动,简称波。频率在20~ 2104 Hz之间,能为人耳所闻的机械波,称为声波;低于20 Hz的机械波,称为次声波;高于2104 Hz的机械波,称为超 声波,如图5-1所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性能指标
• 主要有三个参数: • 工作频率
• 工作温度
• 灵敏度
• 以西安新敏电子公司产品为例,可看超声波测距 传感器常用参数:
back
超声波测距仪(车用雷达)
• 硬件组成:AT89C51 单片机最小系统、超声波探头、超 声波、发射接收系统、DS18B20 测温系统、显示装置
• 测距原理:根据公式s = v ×t 可知,只要知道速度v 和声波 在空气中行走的时间t , 即可相乘得到距离s . 简化声波在 空气中速度v 与温度的关系,有v = 331. 5 + 0.607 t . 在0 ℃时v = 331. 5 m/ s. 常温20 ℃时v =343. 64 m/ s. 因温度 所引起的速度影响将在软件里处理. 测定超声波被障碍物 反射接收时刻与超声波发出时刻差值Δt , 此Δt 即为声波在 空气中的传播时间. 在利用MCS251 系列单片机AT89C51 中定时器T0 计时, 通过软件数字处理得距离s = vt/ 2
系统设计组成
• 1.超声波发射接收部分 • 2.放大电路 • 3.整形电路 • 4.测温电路
谢谢观赏!
超声Байду номын сангаас测距传感器
简介
• 超声波传感器是利用超声波的特性研制而成的传 感器。超声波是一种振动频率高于声波的机械波, 由换能晶片在电压的激励下发生振动产生的,它 具有频率高、波长短、绕射现象小,特别是方向 性好、能够成为射线而定向传播等特点。超声波 对液体、固体的穿透本领很大,尤其是在阳光不 透明的固体中,它可穿透几十米的深度。超声波 碰到杂质或分界面会产生显著反射形成反射成回 波,碰到活动物体能产生多普勒效应。因此超声 波检测广泛应用在工业、国防、生物医学等方面。
超声波测距传感器
• 1.产品结构 • 2.性能分析 • 3.实际应用
产品结构
• 超声波测距传感器主要由压电晶片组成,既可以 发射超声波,也可以接收超声波。超声波测距传 感器有许多不同的结构,可分直式测距传感器 (纵波)、斜式测距传感器(横波)、表面式测 距传感器(表面波)、兰姆波式测距传感器(兰 姆波)、双式测距传感器(一个反射、一个接收) 等
工作原理
• 超声波是一种在弹性介质中的机械振荡,有两种 形式:横向振荡(横波)及纵和振荡(纵波)。 在工业中应用主要采用纵向振荡。超声波可以在 气体、液体及固体中传播,其传播速度不同。另 外,它也有折射和反射现象,并且在传播过程中 有衰减。在空气中传播超声波,其频率较低,一 般为几十KHZ,而在固体、液体中则频率可用得较 高。在空气中衰减较快,而在液体及固体中传播, 衰减较小,传播较远。