电工学实验-电源的等效变换及戴维南定理

合集下载

电路定理——戴维南,诺顿,等效

电路定理——戴维南,诺顿,等效

P 20V (4A) 80W
产生功率 80W
例3.2.1 图(a)所示电路,已知i=1A;试求电压u
解用电流为1A电流源替换网络N 列节点方程: 解得:
4 3 1 1 1 u 1 2 3 2 6 3
u 2V
例3.2.2 图(a)所示电路,电路中仅电阻R可变,已知 R=R1时,测得电流i1=5A、i2=4A;当R=R2时,测得电流 i1=3.5A,i2=2A;当R=R3时,测得i2=8A,问此时测得的电 流i1等于多少?
u u u Ro i u oc
' "
例1、求图(a)所示单口网络的戴维南等效电路。 i
解:在端口标明开路电压uoc参考方向,注意到i=0,
u oc 1V (2) 2A 3V
将单口网络内电压源短路,电流源开路,得图(b)
Ro 1 2 3 6
(1 ) R2 u2 us R1 (1 ) R2
1 i1 us R1 (1 ) R2
例3.1.2 求电流 i1 与激励 u s 的函数关系
齐次定理: i1 Gus 设: i1 1A 节点1、2电压记1V 3V
电压源的电压等于该网络的开路电压uoc,这个 电阻等于从此单口网络两端看进去,当网络内部所有 独立源均置零(No)时的等效电阻R0 i =0 N
+
R0 戴维南等效电阻
3.3 等效电源定理
u _ oc
No
也称为输出电阻
例3.3.1 图(a)所示电路,求当RL分别等于2Ω、4Ω及16Ω时, 该电阻上电流i.
将已知条件代入得:
6 K U N 4 4 R U N 0 3 K 2 R U 2 N

项目12两种电源模型的等效变换和戴维南定理验证

项目12两种电源模型的等效变换和戴维南定理验证

03
掌握电源模型等效变换的方法和步骤。
实验目的和步骤
01 实验步骤
02
1. 搭建电压源电路,测量并记录相关电压和电流数据

03
2. 将电压源电路转换为等效的电流源电路。
实验目的和步骤
3. 搭建电流源电路,测量并记录相关 电压和电流数据。
4. 对比两种电源模型下的实验数据, 验证等效变换的正确性。
其中,电压源的电压等于该网络的开路电压,电阻等于该网络内部所有独 立源置零(电压源短路、电流源开路)后的等效电阻。
定理条件和适用范围
定理条件
线性含源一端口网络。
适用范围
适用于任何线性含源一端口网络,无论其内部结构和参数如何。
定理意义和应用价值
定理意义
简化了电路分析和计算过程,提供了一种求解复杂电路的有效方法。
在项目过程中,团队成员积极协作,充分发挥各自的专业优势,共同解决了实验过程中 遇到的技术难题,提高了团队整体的研究能力和水平。
存在问题与不足
在实验过程中,由于设备精度和 实验条件的限制,部分实验数据 的测量存在一定的误差,对实验 结果的准确性产生了一定影响。
对于某些特殊电路结构,戴维南 定理的适用性有待进一步研究和 探讨。目前的研究主要集中在简 单电பைடு நூலகம்和常规电路的分析上,对 于复杂电路和特殊电路的处理方 法还有待完善。
实验目的和步骤
1
3. 根据戴维南定理,计算等效电源的参数;
2
4. 将实验电路中的电源替换为等效电源,再次测 量并记录实验数据;
3
5. 分析实验数据,验证戴维南定理的正确性。
实验数据和结果分析
电源电压:10V
电源内阻:2Ω
实验数据和结果分析

实验2戴维南

实验2戴维南

戴维南定理
二、实验原理:
图2—2
补偿法测量电路
戴维南定理
二、实验原理: 5、输入端电阻的测量方法 : 测量有源一端口网络输入端电阻Ri的方法有多种。下面介绍几 种测量的方法。 (1)短路电流法 如果采用测量有源一端口网络的开路电压UCD0和短路电流 Isc,则根据欧姆定理可知Ri= UCD0 /Isc。这种方法最简便,但 是对于不允许将外部电路直接短路的网络(例如有可能因短路 电流过大而损坏网络内部的器件时),不能采用此方法。
图2—5 半电压测量法
戴维南定理
四、实验内容: 1、按图2—6接线,其中E=5V,R1=470Ω, R2=470Ω,R3=100Ω, R4=100Ω。
图2—6 含源线形一端口网络
戴维南定理
四、实验内容: 2、测量有源二端网络的外部伏安特性: 根据表2—1提供电阻的阻值,测量通过电阻的电流和电阻两端 的电压,将测量结果填入表2—1。 表2—1 电阻(Ω) 电流(mA) 电压(V)
图2—8 戴维南等效电路
戴维南定理
四、实验内容: 5、验证戴维南定理:
表2—3 0 10 470 1K ∞
电阻(Ω) 电流(mA)
电压(V)
戴维南定理
五、注意事项 1、使用万用表时,电流挡、欧姆挡不能用来测电压。 2、直流稳压电源的输出电压值必须用万用表或电压表进行校对。 六、思考题 1、对图2—2所示电路,如果在测量时a’与b相接,b’与a相接,是否 达到用补偿法测量电压Uoc的目的,为什么? 2、解释图中用半电压法求Ri的原理。 3、在求含源线性一端口网络等效电路中的Ri时,如何理解“原网 络 中所有独立电源为零值”?实验中怎样将独立电源置零? 4、设有源一端口网络是封闭的,对外只伸出两个端钮,并知两个 端钮之间不允许短路。试问如何确定该网络的等效电路? 5、说明测有源二端网络开路电压及等效内阻的几种方法,并比较 其优缺点及适用范围。 6、若有源二端口网络不允许短路或开路,你如何用其他方法测出 等效电阻R。

实验三:戴维宁定理

实验三:戴维宁定理

实验三:戴维宁等效电路仿真设计1、实验目的掌握用一个电压源和电阻的串联组合将一个含独立电源,线性电阻和受控源的一端口的等效变换,从而简单易行地计算各种形式的电流,电压,电阻,功率等。

验证戴维南定理的正确性。

2、仿真电路设计原理任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将连电路的其余部分看做是一个有源二端网络(或称为含源一端口网络)。

戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的电路电压U Th,其等效内阻R Th等于该网络中所有独立电源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

3 Multisim仿真设计内容和步骤:例题:求下图的戴维宁等效电路理论分析:等效电阻为下图:R Th =Ω=+⨯=+4116124112||4 等效电压如下图:我们设定两个回路电流i 1,i 2, 则根据回路法可得:0)(12432211=-++-II IA I 22-=A I 5.01=所以戴维宁等效电压为:V I I V Th 30)0.25.0(12)(1221=+=-=V所以戴维宁等效电路为:3、建立电路仿真图电路图:等效电压测试电路图:等效电阻测试电路图为:测试结果与计算值完全一致。

4、结果与误差分析戴维南等效电路无法一下子就求的,通过电路转换如测试等效电阻时,需将电源略去等,从而有效计算测量所需数值,通过计算等效电阻和等效电压,从而得到等效电路,由此证明了一个含独立电源、线性电阻和受控源的一端口,对外电路来说,可以用一个电压源和电阻的串联组合等效变换。

2、理论计算结果与仿真测量结果没有误差。

5.设计总结1、在本实验中我遇到的第一个问题是在连接好原件进行测量时无法测量,原因是未接地,经过接地后这个问题得以解决,它让我了解了在这个仿真系统中还是很多地方与实际连接中有很大的差异,接地原件就很好的表现了这一点。

戴维南定理及解题技巧

戴维南定理及解题技巧
戴维南定理及解题技巧
为使计算简便些,这里介绍等效电源的方法之一:戴维南 定理。
等效电源方法,就是将复杂电路分成两部分。①待求支 路、②有源二端网络。
二端网络的概念:
二端网络:具有两个出线端的部分电路。 无源二端网络:不含有电源的二端网络。 有源二端网络:即是其中含有电源的二端口电路,它只是 部分电路,而不是完整电路。
.
R1
+ US 2

R2
R3
A.
.B
I R5
+

US1
R6
R4
.
将US1支路移开,原图变为. 如下形式:
R1
+ U
S2

R2
. A
+ U0
R5
.
为使I=0,必取U0=US1。即:
R3
- .B
R4
U 0= R 1 R R 2 5 R 5 U S 2 R 1 R R 3 4 R 4 U S 2= U S 1
+- U0
R0
U A B R 2R 3R 3U SU S1V 0 A S
.
'
.

B
.A
叠加得:UAB=UAB'+UAB"=
-2V=U0
R1
US
R4
. R 2
+
R0=R2//R3=2
IS
等效电压源电路如图所示
.
R3
.
B
图示电路中,已知:US1=1.2V,US2=12V, R2=4,R3=6,R4=8,R5=10,R6=9。用戴维 宁定理求当I=0时,电阻R1等于多少?
解得:R1=6
a +

电路中的戴维南定理

电路中的戴维南定理

电路中的戴维南定理电路理论是电子工程中最基本的概念之一,而要理解电路理论的关键是掌握戴维南定理,这是电路中的基本定理之一。

戴维南定理是一种线性电路分析方法,可以用于求解任何一个线性电路中的电流,电压和电阻等参数。

该定理可以帮助电子工程师更好地设计和分析各种电路,例如放大器,滤波器,稳压器和模拟电路等。

戴维南定理被广泛地应用于各种电路分析问题中,特别是在解决交流电路的问题中非常有效。

下面将简要介绍戴维南定理的概念,其含义和应用。

戴维南定理的概念在电路中,戴维南定理将电路分为两个部分:与目标电阻并联的电路和与目标电阻串联的电路。

根据戴维南定理,可以用任一一种方法求解电路中的电流、电压或电阻等参数,求解结果相同。

与目标电阻并联的电路称为等效阻抗电路,与目标电阻串联的电路称为等效电压电路。

戴维南定理的含义戴维南定理告诉我们,一个电路可以被表示为两个等效电路,一个是与目标电阻在并联的等效电路,另一个是与目标电阻在串联的等效电路。

这意味着,在求解电路参数时,我们可以选择任意一个等效电路进行计算,求解结果是相同的。

此外,戴维南定理还规定了计算等效电路所需元件的数值。

这些元件的计算方法是将目标电阻添加到电路中,并根据电路参数计算得出。

戴维南定理的应用戴维南定理可以帮助我们更有效地分析电路中的电流、电压和电阻等参数。

例如,当需要计算电路中某个元件的电流时,我们可以通过使用等效阻抗电路和基尔霍夫定律等方法来计算。

类似地,当需要计算电路中某个元素的电压时,我们可以使用等效电压电路和基尔霍夫定律等方法来计算。

此外,戴维南定理还广泛应用于解决电路分析中的复杂问题。

例如,在计算交流电路的幅值和相位时,我们可以使用戴维南定理和欧姆定律等方法,将电路简化为等效阻抗电路,然后进行计算。

总结戴维南定理是电路设计和分析中不可或缺的工具之一,它可以帮助我们更好地了解电路的工作原理和性能。

运用戴维南定理可以将电路简化为等效电路,使复杂的电路问题变得更加容易和直观。

第4讲(电源等效变换戴维宁定理).ppt

第4讲(电源等效变换戴维宁定理).ppt
3.实际电压源与电流源的等效变换
戴维宁电路
E + R b
诺顿电路 a IS R b
a
等效
E 等效条件: E R I S 或I S R
1.9 电压源与电流源及其等效变换
例3.将电路化为最简形式
+
2 3
1V 0.5A 5 0.5A 0.2A
+ 5 0.3A 5 1.5 V
1.9 电压源与电流源及其等效变换
问题:计算复杂电路中某一支电流或电压
有简单办法吗?
1.10 戴维宁定理
2. 开路电压及等效电阻的计算方法
(1)U0 的计算方法 电阻的串联、并联等 电源等效变换,叠加定理 (2)R0 的计算方法 化简法(电压源短路、电流源开路) 分流、分压
1.10 戴维宁定理
例1. 用戴维宁定理求 I3
20 a 5
1.11 电路中电位的计算
二.电子学中电位的习惯画法
20 a
+ 140V -
5
+ 90V -
6
b
+ 140V
20 a 6
b
5
+ 90V
5
90V + 140V +
20 a 6
b
习惯 画法
1.11 电路中电位的计算
例1. +15 V 参考电位在哪里?
R1 a R2 b R3
R1
R b
R
特点3: 恒压源是一个能输出无穷大功率的电源。
1.9 电压源与电流源及其等效变换
实际电压源及其外特性:
+ R0 + a U b 0 R I U E
E
-
I

电源的等效变换实验报告数据

电源的等效变换实验报告数据

电路分析基础教程与实验:《电路分析基础教程与实验》是2008年出版的图书,作者是赵桂钦。

内容介绍:《高等学校教材·电路分析基础教程与实验》是为大学本科电气信息类专业编写的教材,全书共分10章,主要介绍电路模型,欧姆定律和基尔霍夫定律,电阻电路的等效变换,电阻电路节点电压分析法、网孔电流分析法和回路电流分析法,电路的叠加定理、替代定理、戴维南定理、诺顿定理、特勒根定理和互易定理,一阶和二阶动态电路的分析,相量法基础;正弦稳态电路分析,含有耦合电感的电路,二端口网络等。

最后是电路实验部分,包括电阻电路、动态电路、正弦稳态电路和二端口网络等4类实验内容。

目录:第1章电路模型和电路理论1.1电路和电路模型1.1.1实际电路组成1.1.2电路模型1.2电流和电压的参考方向1.2.1电流及其参考方向1.2.2电压及其参考方向1.2.3电压、电流的关联参考方向1.3电功率和能量1.4电路元件1.4.1电阻元件1.4.2电感元件1.4.3电容元件1.5电压源和电流源1.5.1电压源1.5.2电流源1.6受控源1.7基尔霍夫定律1.7.1基尔霍夫电流定律(KCL)1.7.2基尔霍夫电压定律(KVL)习题第2章电阻电路的等效变换2.1电路的等效变换2.2电阻的串联和并联2.2.1电阻的串联2.2.2电阻的并联2.3电阻的形连接和△形连接的等效变换2.4理想电源的串联和并联2.4.1理想电压源的串联2.4.2理想电流源的并联2.5实际电源的模型及其等效变换2.5.1实际电压源的等效模型2.5.2实际电流源的等效模型2.5.3实际电源的等效变换习题第3章电阻电路分析3.1KVL和KCL方程的独立性3.1.1电路的图3.1.2KCL方程的独立性3.1.3KVL方程的独立性3.2支路电流法3.2.12b法3.2.2支路电流法3.3网孔电流法3.3.1网孔电流及网孔方程3.3.2含无伴流源电路的网孔方程3.3.3含受控源电路的网孔方程3.4回路电流法3.5节点电压法3.5.1节点电压和节点电压方程3.5.2含无伴压源电路的节点电压方程3.5.3含受控源电路的节点电压方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六孔相连
九孔相连
线上的孔相连
数字式万用表
指针式万用表
九孔板
直流稳压电源
直流恒流源和电阻箱
元器件及托盘
实验注意事项
1. 换接线路时,必须关闭电源开关。
2. 直流仪表的接入应注意极性与量程。
实验内容和线路
mA mA
1
测定电源 等效变换 的条件
R0
US 12V
V
IS
100
100
Ri 100
V
100
1)按左图接线,记录线路中两表的读数。 I =________,u=________. 2)按右图接线。调节恒流源的输出电流IS,使两表的 读数与左图的数值相等,记录 Is =________,验 证等效变换条件的正确性。
Is = ?US/RO
2
有源二端 口网络和 戴维宁等 效电源外 特性测试
1)测量有源二端口网络的开路电压Uab和等效电阻Ro 按图接线(不接入负载RL),取US = 25V,R1=150,
实验目的
1. 验证电压源与电流源等效变换的条件。 2. 验证戴维南定理和诺顿定理的正确性,加深对定理的理解。 3. 掌握测量有源二端网络等效参数的一般方法。
实验内容
1、验证电压源与电流源等效变换的条件 2、有源二端口网络和戴维宁等效电源外特性测试 3、诺顿等效电源外特性测试(选做实验)
实验设备
本实验使用以下仪器:
R2 = R3 =100,用直接测量法测量开路电压Uab。用开路
电压、短路电流法测量短路电流ISC: Uab=__________;ISC =_________; 计算等效电阻:Ro=————
2
有源二端口网 络和戴维宁等 效电源外特性 测试
R 2)测定有源二端口网络的外特性 在有源二端口网络的a、b端上,接入电阻箱作为负载RL, 按表中所示值调节RL,测量相应的端电压U 和电流 I。
L
有源二端口网络外特性实验数据 负载电阻 RL() 有 源 二 端 网 络 Uab(V) I(mA) 0 51 100 150 200 330 开路
2
有源二端口网 络和戴维宁等 效电源外特性 测试
3) 测定戴维南等效电源的外特性 按图接线,图中Uso和Ro为步骤2)中有源二端口网络的开 路电压和等效电阻,Uso从直流稳压电源取得。在a、b端 接入电阻箱作为负载电阻RL,RL分别取表中所列的各 值,测量相应的端电压U和电流I,记入表中 。
诺顿等效电源的外特性
戴维南等效电源外特性实验数据 负载电阻 RL() 0 51 100 150 200 330 开路
戴维南 等 效
电 源
Uab(V) I(mA)
Байду номын сангаас 3
诺顿等效电源 外特性测试 (选做实验)
IS R0
mA
V
RL
按图接线,Ro和IS取实验3-2中步骤1)中所测得的等效电阻 和短路电流之值,仿照实验3-2的步骤测量其外特性,对诺 顿定理进行验证。数据可记录在表中。
相关文档
最新文档