电化学测量实验报告

合集下载

电化学实验报告

电化学实验报告

电化学实验报告
电化学实验报告
一、目的:
进一步掌握电化学原理和方法,了解电化学电池的构成和性能。

二、实验仪器和药品:
1. 电化学测量仪
2. 质量常数为50g/mol的铜粉
3. 一次性电池(锌银电池、铜银电池等)
三、实验步骤:
1. 实验一:测定铜片在硫酸溶液中的溶解速率
将铜片放入硫酸溶液中,测定铜片溶解的时间和电流变化。

记录实验数据,并绘制出溶解时间与电流的关系曲线。

2. 实验二:测量锌银电池的电动势
将一次性电池连接到电化学测量仪上,测量出锌银电池的电动势,并计算出它的标准电动势。

四、实验结果和讨论:
1. 实验一的结果表明,铜片在硫酸溶液中的溶解速率随着电流的增加而增加。

这表明电流是控制溶解速率的主要因素。

2. 实验二的结果显示,锌银电池的电动势为1.55V,并且计算
得到的标准电动势与文献值接近。

这表明实验测得的电动势是准确可靠的。

五、实验结论:
1. 铜片在硫酸溶液中的溶解速率与电流呈正相关关系。

2. 锌银电池的电动势为1.55V,并且与文献值接近。

六、实验心得:
通过这次实验,我进一步理解了电化学原理和方法,学会了测量电池的电动势,并且了解了电流对电池的性能的影响。

实验结果与理论相符,实验过程也相对简单,让我更加熟练掌握了实验操作技巧。

电化学分析实验报告

电化学分析实验报告

电化学分析实验报告实验目的:本实验旨在掌握电化学分析的基本原理和实验操作技巧,通过电位差测量和电流测量等方法对待测溶液的化学成分进行分析和测定。

实验仪器与试剂:1. 电化学分析仪器:包括电位差测量仪、电流测量仪等。

2. 实验电极:选择适当的电极作为工作电极和参比电极。

3. 待测溶液:包括含有待测成分的溶液。

实验步骤:1. 准备工作:检查实验仪器是否正常,准备好适当的电极,并校准仪器。

2. 样品处理:根据实验要求,将待测溶液处理成适合电化学分析的样品。

3. 构建电化学池:将工作电极和参比电极放置在待测溶液中,并确保两电极与仪器连接良好。

4. 电位差测量:通过调节电位差测量仪,记录下待测溶液在不同电位下的电位差数值。

5. 电流测量:通过调节电流测量仪,记录下待测溶液在不同电压下的电流数值。

6. 数据整理与分析:将测得的数据整理成表格或图像,并根据实验要求进行分析和计算。

实验结果与讨论:根据实验所得的电位差和电流数据,可以计算出待测溶液中的化学成分浓度或其他相关参数。

通过与标准曲线对比分析,可以判断待测溶液中是否含有目标物质,并进一步确定其浓度。

实验注意事项:1. 实验仪器的正确使用和操作,避免误操作导致数据错误。

2. 样品处理过程中要注意操作规范,防止污染或损失样品。

3. 每次测量前要校准仪器,确保准确性和可靠性。

4. 操作过程中要避免触碰电极和溶液,以防止污染或腐蚀。

5. 实验数据的整理和分析要仔细准确,充分利用统计方法和图像处理工具。

结论:通过本次电化学分析实验,我们成功地掌握了电位差测量和电流测量等方法,对待测溶液的化学成分进行了准确的分析和测定。

电化学分析在现代化学分析中具有重要的应用价值,可以广泛用于环境监测、生物分析、工业过程控制等领域。

通过这次实验,我们不仅提高了实验操作技能,还深化了对电化学分析原理的理解和应用。

相信这些知识和技能将对我们今后的学习和科研工作产生积极的影响。

同时,也注意到实验中可能存在的问题和改进的空间,在今后的实验中将更加注重细节和精确性,以获得更可靠的实验结果。

电化学实验报告

电化学实验报告

电化学实验报告引言:电化学实验是一种研究电与化学反应之间相互关系的实验方法。

通过测量电流和电势等参数,可以获取有关物质在电场中的性质和反应机理的信息。

在本实验中,我们将探索电化学反应的基本原理,以及它们对现实生活的应用。

实验一:电解质溶液的电导率测定电解质溶液的电导率是指单位体积内的电荷流动能力。

在本实验中,我们将通过测量溶液的电阻,推断其电导率,并探究电解质浓度对电导率的影响。

实验装置包括电源、电阻箱、电导率计和电极等。

首先,我们调整电源的电压和电流大小,确保实验安全。

然后,将电解质溶液与电极连接,通过电阻箱调节电流强度。

根据欧姆定律,通过测量电流和电阻,我们可以计算电解质溶液的电阻值。

在实验过程中,我们逐渐改变电解质溶液的浓度,记录对应的电阻值。

通过绘制电阻和浓度之间的关系曲线,我们可以推断电解质的电导率与浓度之间的关系。

实验结果表明,电解质的电导率随着浓度的增加而增加,说明溶液中的离子浓度是影响电导率的关键因素。

实验二:电池的电动势测定电池的电动势是指单位正电荷在电池中沿电流方向做功产生的电势差。

在本实验中,我们将通过测量电池的电压,推断其电动势,并探究电池的构成对电动势的影响。

实验装置包括电源、电压计和电极等。

首先,我们使用电压计测量电池的电压,得到电动势值。

然后,逐渐改变电池的构成,例如改变电极的材料、浓度等因素,再次测量电压。

通过对比实验结果,我们可以推断电池构成与电动势之间的关系。

实验结果表明,电动势受电极材料、电解液浓度等因素的影响。

以常见的锌-铜电池为例,当电解液中的锌离子浓度增加时,电池的电动势也随之增加。

这是因为锌离子被氧化成锌离子释放出电子,而电子经过电解液和外电路到达铜电极,发生还原反应,从而产生电动势。

实验三:电沉积的应用电化学实验不仅可以用于理论研究,还可以应用于现实生活中。

电沉积是指通过电化学反应生成金属薄膜或涂层的过程,常被用于防腐、装饰和电子工业等领域。

在本实验中,我们将通过电沉积实验,了解金属薄膜的形成机制,并考察电流密度对电沉积质量的影响。

(完整word版)电化学测试实验报告

(完整word版)电化学测试实验报告

电化学测试技术实验报告实验地点:8号楼8313姓名:徐荣学号:SX1806015指导教师:佟浩实验一铁氰化钾的循环伏安测试一、实验目的1. 学习固体电极表面的处理方法;2. 掌握循环伏安仪的使用技术;3. 了解扫描速率和浓度对循环伏安图的影响。

二、实验原理铁氰化钾离子[Fe(CN)6]3-亚铁氰化钾离子[Fe(CN)6]4-氧化还原电对的标准电极电位为:[Fe(CN)6]3- + e-= [Fe(CN)6]4-φθ= 0.36V电极电位与电极表面活度的Nernst方程式为:φ=φθ’+ RT/F ln(COx/CRed)在一定扫描速率下,从起始电位(-0.2 V)正向扫描到转折电位(+0.8 V)期间,溶液中[Fe(CN)6]4-被氧化生成[Fe(CN)6]3-,产生氧化电流;当负向扫描从转折电位(+0.6 V)变到原起始电位(-0.2 V)期间,在指示电极表面生成的[Fe(CN)6]3-被还原生成[Fe(CN)6]4-,产生还原电流。

为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。

在0.1M NaCl溶液中[Fe(CN)6]4-的电子转移速率大,为可逆体系(1M NaCl溶液中,25℃时,标准反应速率常数为5.2×10-2 cm2s-1)。

三、仪器和试剂电化学分析系统;铂盘电极;铂柱电极,饱和甘汞电极;电解池;容量瓶。

0.50 mol·L-1 K3[Fe(CN)6];0.50 mol·L-1 K4[Fe(CN)6] ;1 mol·L-1 NaCl四、实验步骤1. 指示电极的预处理铂电极用Al2O3粉末(粒径0.05 µm)将电极表面抛光,然后用蒸馏水清洗。

2. 支持电解质的循环伏安图在电解池中放入0.1 mol·L-1 NaCl溶液,插入电极,以新处理的铂电极为指示电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设定;起始电位为-0.2 V;终止电位为+0.6 V。

电化学实验报告

电化学实验报告

电化学实验报告电化学是研究电能和化学反应之间关系的分支学科,对于化学实验的探究有着非常重要的作用。

本次电化学实验的目的是了解两种电化学反应——电解和电池。

本篇实验报告将对实验原理、实验步骤、实验结果进行详细叙述和分析。

实验原理电解是一种将电能转化为化学能的过程,即通过通电将物质分解成更简单的物质的化学反应。

而电池则是指将化学能转换成电能的过程。

本次实验要使用的化学反应是氢氧化钠电解和铜锌电池反应。

实验步骤氢氧化钠电解实验:1.准备好氢氧化钠溶液,将电解槽中的铂电极和铜电极分别插入溶液。

此时铂电极为阳极,铜电极为阴极。

2.将电解槽连接到直流电源上,调整电压。

3.随着电流的通过,氢气在铂电极的位置发生产生,氧气在铜电极的位置发生产生。

这是因为电流通过时,阳极发生氧化反应,阴极发生还原反应。

在氢氧化钠溶液中,钠离子被氧化成氧离子并在阳极处释放氧气,水被还原成氢气。

而在阴极处,氢离子被还原成氢气。

铜锌电池实验:1.准备好铜、锌片和硫酸溶液。

将铜片放在硫酸溶液中,然后将锌片插进铜片旁边,注意两者不要接触。

2.铜片被氧化,形成Cu2+,离子先到达酸溶液中,然后电子通过铜片到达锌片,然后通过锌片到达酸溶液中,那么锌就被还原为Zn2+离子,形成的是锌离子而不是锌金属。

3.在这个过程中,铜片为阳极,锌片为阴极,电子流从极为负的铜电极流向极为正的锌电极。

实验结果在氢氧化钠电解实验中,我们发现在通入电流的时候氢气从钯金属的阳极"飞上天",氧气从铜金属的阴极上升到水面上。

结果是氢气在氧化时释放出电子,氧气在还原时吸收电子。

在铜锌电池实验中,我们观察到在铜片和锌片之间流动的电流会导致铜片氧化和锌片还原。

结论本次实验中,我们通过氢氧化钠电解和铜锌电池反应,了解了电化学反应的产生与原理。

同时,也深入了解了化学反应与电能转换之间的关系,并通过实验了解了反应中产生的电子流,以及阳极和阴极的方位等相关知识。

这些知识在今后的化学实验与电化学领域探索中将会非常有用。

电化学实习报告

电化学实习报告

一、实习目的本次电化学实习旨在通过理论联系实际的方式,让学生深入了解电化学的基本原理和应用,提高学生的动手操作能力和实验技能。

通过本次实习,使学生掌握电化学实验的基本操作,了解电化学实验的原理和步骤,熟悉常用的电化学仪器,培养学生的创新思维和科学素养。

二、实习内容1. 实验一:电解质溶液的导电性实验(1)实验目的:观察电解质溶液的导电性,了解电解质溶液导电的原因。

(2)实验原理:电解质溶液中的离子在电场作用下,发生定向移动,从而导电。

(3)实验步骤:① 配制一定浓度的NaCl溶液、KNO3溶液和葡萄糖溶液;② 将三种溶液分别注入三个烧杯中,分别插入两个电极;③ 开启直流电源,观察溶液中电极反应现象;④ 记录溶液导电性实验数据。

2. 实验二:电极电势的测定(1)实验目的:测定标准电极电势,了解电极电势的概念。

(2)实验原理:根据能斯特方程,电极电势与反应物和生成物的浓度有关。

(3)实验步骤:① 配制一定浓度的Cu2+、Zn2+、Ag+等溶液;② 使用标准氢电极作为参比电极,分别测定Cu2+/Cu、Zn2+/Zn、Ag+/Ag等电极的电势;③ 记录实验数据,绘制电极电势与浓度的关系曲线。

3. 实验三:电化学腐蚀与防护(1)实验目的:了解电化学腐蚀的原理,掌握电化学腐蚀防护的方法。

(2)实验原理:电化学腐蚀是由于金属在电解质溶液中发生氧化还原反应而引起的。

(3)实验步骤:① 将不同材质的金属(如铜、铁、铝等)分别放入CuSO4溶液、FeSO4溶液、Al2(SO4)3溶液中;② 观察金属表面腐蚀现象,记录腐蚀速率;③ 对腐蚀后的金属表面进行处理,如涂覆防护层、施加阳极保护等;④ 比较处理前后金属的腐蚀速率。

三、实习总结1. 通过本次电化学实习,我对电化学的基本原理和应用有了更深入的了解,掌握了电化学实验的基本操作和步骤。

2. 在实验过程中,我学会了如何使用电化学仪器,如电极、参比电极、电流计等,提高了我的动手操作能力。

环境腐蚀因素的电化学测定综合实验报告

环境腐蚀因素的电化学测定综合实验报告

实验 4.1: 环境腐蚀因素的电化学测定综合实验一、实验目的1.了解和掌握常用金属材料在不同环境条件中的腐蚀性强弱和主要腐蚀形态2.掌握影响材料环境失效的主要腐蚀因素3.掌握主要环境腐蚀性因素强弱的测试方法二、实验内容选取不同材料、不同介质分别进行以下实验:1.用酸度计测量所选介质的pH值;2.采用浸泡实验观察试验材料在不同介质中的腐蚀形态, 判断腐蚀类型;3.测量发生均匀腐蚀材料的失重或增重, 计算腐蚀速度;4.测量试验材料在不同介质中的φ-t曲线三、实验原理金属与周围环境之间发生化学或电化学作用而引起的破坏或变质, 称之为金属腐蚀。

也就是说, 金属腐蚀发生在金属与介质间的界面上。

材料究竟发生什么样的腐蚀、腐蚀的强弱主要取决于材料及其周围介质的性质。

不同的材料或不同设备工艺的同一种材料在同一介质中其腐蚀性不同;同一材料在不同环境中(如温度、pH值、浓度不同)其腐蚀性也会有很大的差别。

腐蚀类型很多, 也有多种分类方法。

如果按材料腐蚀后的外观特征分类: 当腐蚀均匀地发生在整个材料表面, 称为均匀腐蚀或全面腐蚀;当腐蚀集中在某些区域, 则称为局部腐蚀。

局部腐蚀又可分为电偶腐蚀、点蚀、缝隙腐蚀、晶间腐蚀、剥蚀、选择性腐蚀等。

金属腐蚀发生的根本原因是其热力学上的不稳定性造成的, 即金属及其合金较某些化合物原子处于自由能较高的状态, 这种倾向在条件具备时, 就会发生金属单质向金属化合物的转变, 即发生腐蚀。

发生化学腐蚀时, 被氧化的金属与介质中被还原的物质之间的电子是直接交换的。

发生电化学腐蚀时, 金属的氧化和介质中某物质的还原是在不同地点相对独立地进行的两个过程, 并且和流过金属内部的电子流和金属所处介质中的离子流形成回路, 即金属的电化学腐蚀是通过腐蚀电池进行的, 它是金属腐蚀中最常见最重要的类型。

在腐蚀过程中发生的腐蚀电池反应如下:阳极反应: M-ne- → M n+阴极反应: Ox+ne- → R总反应: M+Ox → Mn++R式中: Ox 为氧化剂, R为还原剂在大多数情况下, 氧化剂通常由水中溶解的氧或氢离子承担, 阴极反应为:1/2O2+H2O+2e → 2OH-或 H++e → 1/2H2金属与电解质接触时, 在金属与溶液界面将产生一电位差, 这一电位差值会随时间不断变化, 最后达到一稳定值, 通常称之为稳态自腐蚀电位Ecorr。

电化学测量技术实验报告

电化学测量技术实验报告

实验报告课程名称:电化学测试技术实验地点:材料楼417同实验者:管先统SQ10067034010朱佳佳SQ10067034007吴佳迪SQ10068052038杨小艳SQ10068052028实验一铁氤化钾的循环伏安测试一、实验目的1.学习固体电极表面的处理方法;2.掌握循环伏安仪的使用技术;3.了解扫描速率和浓度对循环伏安图的影响。

二、实验原理铁氤化钾离子[Fe (CN) 6广亚铁氧化钾离子[Fe (CN) 6厂氧化还原电对的标准电极电位为[Fe (CN) 6]3- + e= [Fe (CN) 6广(I)°= 0. 36V电极电位与电极表面活度的Nernst方程式为RT/Fln(C Ox/CRed) 在一定扫描速率下,从起始电位(-0. 2V)正向扫描到转折电位(+0.8V)期间,溶液中[Fe (CN)胪被氧化生成[Fe (CN) 6]3',产生氧化电流;当负向扫描从转折电位(+0. 6V)变到原起始电位(-0. 2V)期间,在指示电极表面生成的[Fe (CN) 6产被还原生成[Fe(CN)J",产生还原电流。

为了使液相传质过程只受扩散控制,应在加入电解质和溶液处于静止下进行电解。

在0. 1MN&C1溶液中[Fe (CN) 的电子转移速率大,为可逆体系(1MN&C1溶液中,25°C时,标准反应速率常数为5. 2 X 10': cm2s_1; ) o三、仪器和试剂电化学分析系统;钳盘电极:釦柱电极,饱和甘汞电极:电解池:容量瓶。

0. 50mol ・ L_1 K3[Fe (CN) J; 0. oOmol ・ I? K;[Fe (CN) 6] ; 1 mol ・ I? NaCl四、实验步骤1.指示电极的预处理钳电极用A1O 粉末(粒径0. 05Mm)将电极表面抛光,然后用蒸镭水清洗。

2. 支持电解质的循环伏安图在电解池中放入0. 1 mol ・I? NaCl 溶液,插入电极,以新处理的钮电极为 指示电极,钳丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设 定;起始电位为-0. 2V :终止电位为+0.6V 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竭诚为您提供优质文档/双击可除电化学测量实验报告篇一:电化学测量技术实验报告实验报告课程名称:实验地点:同实验者:电化学测试技术材料楼417管先统sQ10067034010朱佳佳sQ10067034007吴佳迪sQ10068052038杨小艳sQ10068052028实验一铁氰化钾的循环伏安测试一、实验目的1.学习固体电极表面的处理方法;2.掌握循环伏安仪的使用技术;3.了解扫描速率和浓度对循环伏安图的影响。

二、实验原理铁氰化钾离子[Fe(cn)6]3-亚铁氰化钾离子[Fe(cn)6]4-氧化还原电对的标准电极电位为[Fe(cn)6]3-+e-=[Fe(cn)6]4-φθ=0.36V电极电位与电极表面活度的nernst方程式为φ=φθ’+RT/Fln(cox/cRed)在一定扫描速率下,从起始电位(-0.2V)正向扫描到转折电位(+0.8V)期间,溶液中[Fe(cn)6]4-被氧化生成[Fe(cn)6]3-,产生氧化电流;当负向扫描从转折电位(+0.6V)变到原起始电位(-0.2V)期间,在指示电极表面生成的[Fe (cn)64-]3-被还原生成[Fe(cn)产生还原电流。

为了使液相传质过程只受扩散控制,6],应在加入电解质和溶液处于静止下进行电解。

在0.1mnacl溶液中[Fe(cn)6]4-的电子转移速率大,为可逆体系(1mnacl溶液中,25℃时,标准反应速率常数为5.2×10-2cm2s-1;)。

三、仪器和试剂电化学分析系统;铂盘电极;铂柱电极,饱和甘汞电极;电解池;容量瓶。

0.50mol·L-1K3[Fe(cn)6];0.50mol·L-1K4[Fe(cn)6];1mol·L-1nacl四、实验步骤1.指示电极的预处理铂电极用Al2o3粉末(粒径0.05μm)将电极表面抛光,然后用蒸馏水清洗。

2.支持电解质的循环伏安图在电解池中放入0.1mol·L-1nacl溶液,插入电极,以新处理的铂电极为指示电极,铂丝电极为辅助电极,饱和甘汞电极为参比电极,进行循环伏安仪设定;起始电位为-0.2V;终止电位为+0.6V。

开始循环伏安扫描,记录循环伏安图。

3.不同扫描速率K3[Fe(cn)6]溶液的循环伏安图在0.50mol·L-1K4[Fe(cn)6]溶液中,以10mV/s、25mV/s、50mV/s、100mV/s、200mV/s、500mV/s,在-0.15至+0.7V电位范围内扫描,分别记录循环伏安图。

五、注意事项1.实验前电极表面要处理干净。

2.扫描过程保持溶液静止。

六、数据处理分别以ipa、ipc对v作图,说明峰电流与扫描速率间的关系。

图1玻碳电极在0.50mol·L-1K4[Fe(cn)6]溶液中在10mVs-1下的循环伏安曲线由图1可知,K4[Fe(cn)6]在玻碳电极上发生氧化还原反应,氧化峰电位是epa=295mV,峰电流是ipa=58.8mA。

还原峰电位为166mV,还原峰峰电流为54.6mA。

峰电流的比值为:ipa/ipc=1.07≈1,峰电位差为129mV。

由此可知,铁氰化钾体系[Fe(cn)63-/4-]在中性水溶液中的电化学反应是一个较可逆过程current/mApotential/V(vs.sce)图2玻碳电极在0.50mol·L-1K4[Fe(cn)6]溶液中不同扫速下的循环伏安曲线七实验图3玻碳电极在0.50mol·L-1K4[Fe(cn)6]溶液中峰电流与扫速根方的线性拟合结论对于表面吸附控制的电极反应过程,峰电流ip与扫描速度呈正比关系,即ip~V为一直线。

(此关系也可利用标准曲线法的线性拟合功能,以峰电流为横坐标,扫描速度的二分之一次方或扫描速度为纵坐标,考察线性关系)?将不同扫描速率的循环伏安曲线进行叠加。

随着扫描速度的增加,峰电流也增加。

且分别测量他们的峰数据可以得到峰电流与扫描速度的关系。

根据电化学理论,对于扩散控制的电极过程,峰电流ip与扫描速度的二分之一次方呈正比关系。

用标准曲线法中的线性拟合处理,得出峰电流ip呈线性关系,R为扫描速度。

在误差的范围内K3[Fe(cn)6]在Kcl溶液中电极过程的具有可逆性。

对于可逆体系,氧化峰电流ipa与还原峰电流ipc绝对值的比值:ipa/ipc=1。

从图中可以看出来随着扫描速率的增大氧化还原峰的距离越来越大,即是可逆性降低。

篇二:电化学分析实验报告电化学分析实验报告院系:化学化工学院专业班级:学号:姓名:同组者:实验日期:指导老师:实验一:铁氰化钾在玻碳电极上的氧化还原一、实验目的1.掌握循环伏安扫描法。

2.学习测量峰电流和峰电位的方法。

二、实验原理循环伏安法也是在电极上快速施加线性扫描电压,起始电压从ei开始,沿某一方向变化,当达到某设定的终止电压em后,再反向回扫至某设定的起始电压,形成一个三角波,电压扫描速率可以从每秒数毫伏到1V。

当溶液中存在氧化态物质ox时,它在电极上可逆地还原生成还原态物质,即ox+ne→Red;反向回扫时,在电极表面生成的还原态Red则可逆地氧化成ox,即Red→ox+ne.由此可得循环伏安法极化曲线。

在一定的溶液组成和实验条件下,峰电流与被测物质的浓度成正比。

从循环伏安法图中可以确定氧化峰峰电流Ipa、还原峰峰电流Ipc、氧化峰峰电位φpa和还原峰峰电位φpc。

对于可逆体系,氧化峰峰电流与还原峰峰电流比为:Ipa/Ipc=125℃时,氧化峰峰电位与还原峰峰电位差为:△φ条件电位为:φ=(φpa+φpc)/2由这些数值可判断一个电极过程的可逆性。

=φpa-φpc≈56/z(mV)三、仪器与试剂仪器::电化学分析仪VA2020,玻碳电极、甘汞电极、铂电极。

试剂:铁氰化钾标准溶液,0.5mol/l氯化钾溶液,蒸馏水。

四、实验步骤1、溶液的配制移取铁氰化钾标准溶液(10mol/L)5ml于50mL的塑料杯中,加入0.5mol/l氯化钾溶液,使溶液达到30mL。

2、调试(1)打开仪器、电脑,准备好玻璃电极、甘汞电极和铂电极并清洗干净。

(2)双击桌面上的VaLab图标。

3、选择实验方法:循环伏安法设置参数:低电位:-100mv;高电位600mv;初始电位-100mv;扫描速度:50mv/s;取样间隔:2mv;静止时间:1s;扫描次数:1;量程:200μA。

4.开始扫描:点击绿色的“三角形”。

5.将上述体系改变扫描速度分别为10mv/s、50mv/s、100mv/s、160mv/s、200mv/s,其他条件不变,作不同速度下的铁氰化钾溶液的循环伏安曲线,其峰值电流与扫描速度的平方根成正比关系。

-3五、实验数据及处理1.找到循环伏安曲线上对应的氧化与还原峰,然后手动做切线。

200mv/s100mv/s50mv/s2.记录对应不同扫描速度下峰电流与峰电位。

3.根据以上数据绘制峰电流和扫描速度曲线,找出他们之间的对应关系。

篇三:电化学实验报告电化学分析实验报告院系:化学化工学院专业班级:学号:姓名:同组者:实验日期:指导老师:实验一:铁氰化钾在玻碳电极上的氧化还原一、实验目的1.掌握循环伏安扫描法。

2.学习测量峰电流和峰电位的方法。

二、实验原理循环伏安法也是在电极上快速施加线性扫描电压,起始电压从ei开始,沿某一方向变化,当达到某设定的终止电压em后,再反向回扫至某设定的起始电压,形成一个三角波,电压扫描速率可以从每秒数毫伏到1v。

当溶液中存在氧化态物质ox时,它在电极上可逆地还原生成还原态物质,即ox+ne →red;反向回扫时,在电极表面生成的还原态red则可逆地氧化成ox,即red→ox+ne.由此可得循环伏安法极化曲线。

在一定的溶液组成和实验条件下,峰电流与被测物质的浓度成正比。

从循环伏安法图中可以确定氧化峰峰电流ipa、还原峰峰电流ipc、氧化峰峰电位φpa和还原峰峰电位φpc。

对于可逆体系,氧化峰峰电流与还原峰峰电流比为:ipa/ipc=125℃时,氧化峰峰电位与还原峰峰电位差为:△φ条件电位为:φ=(φpa+φpc)/2由这些数值可判断一个电极过程的可逆性。

=φpa-φpc≈56/z(mv)三、仪器与试剂仪器::电化学分析仪va2020,玻碳电极、甘汞电极、铂电极。

试剂:铁氰化钾标准溶液,0.5mol/l氯化钾溶液,蒸馏水。

四、实验步骤1、溶液的配制移取铁氰化钾标准溶液(10mol/l)5ml 于50ml的塑料杯中,加入0.5mol/l氯化钾溶液,使溶液达到30ml。

2、调试(1)打开仪器、电脑,准备好玻璃电极、甘汞电极和铂电极并清洗干净。

(2)双击桌面上的valab图标。

3、选择实验方法:循环伏安法设置参数:低电位:-100mv;高电位600mv;初始电位-100mv;扫描速度:50mv/s;取样间隔:2mv;静止时间:1s;扫描次数:1;量程:200μa。

4.开始扫描:点击绿色的“三角形”。

5.将上述体系改变扫描速度分别为10mv/s、50mv/s、100mv/s、160mv/s、200mv/s,其他条件不变,作不同速度下的铁氰化钾溶液的循环伏安曲线,其峰值电流与扫描速度的平方根成正比关系。

-3五、实验数据及处理1.找到循环伏安曲线上对应的氧化与还原峰,然后手动做切线。

200mv/s100mv/s50mv/s2.记录对应不同扫描速度下峰电流与峰电位。

3.根据以上数据绘制峰电流和扫描速度曲线,找出他们之间的对应关系。

篇二:电化学测量技术实验报告实验报告课程名称:实验地点:同实验者:电化学测试技术材料楼417管先统sq10067034010朱佳佳sq10067034007吴佳迪sq10068052038杨小艳sq10068052028实验一铁氰化钾的循环伏安测试一、实验目的1.学习固体电极表面的处理方法;2.掌握循环伏安仪的使用技术;3.了解扫描速率和浓度对循环伏安图的影响。

二、实验原理铁氰化钾离子[fe(cn)6]3-亚铁氰化钾离子[fe(cn)6]4-氧化还原电对的标准电极电位为[fe(cn)6]3-+e-=[fe(cn)6]4-φθ=0.36v电极电位与电极表面活度的nernst方程式为φ=φθ’+rt/fln(cox/cred)在一定扫描速率下,从起始电位(-0.2v)正向扫描到转折电位(+0.8v)期间,溶液中。

相关文档
最新文档