七年级下册第一单元平行线探究题

合集下载

浙教版七年级下册数学第一章 平行线含答案

浙教版七年级下册数学第一章 平行线含答案

浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()。

A.同位角B.内错角C.对顶角D.同旁内角2、下列命题中,是假命题的是()A.对顶角相等B.两点之间,线段最短C.互补的两个角不一定相等 D.同位角相等3、将一直角三角板与两边平行的硬纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°. 其中正确的个数是( )A.1B.2C.3D.44、某同学在研究传统文化“抖空竹”时有一个发现:他把它抽象成数学问题,如图所示:已知,,,则的度数是()A.38°B.44°C.46°D.56°5、如图,CD是△ABC的角平分线,DE∥BC.若∠A=60°,∠B=80°,则∠CDE 的度数是( )A.20°B.30°C.35°D.40°6、如图,两条直线a、b被第三条直线c所截,形成的同旁内角有()A.2对B.4对C.6对D.8对7、如图,在条件:①∠5=∠6,②∠7=∠2,③∠3+∠8=180°,④∠3=∠2,⑤∠4+∠1=180°中,能判定a∥b的条件有()A.4个B.3个C.2个D.1个8、下列抛物线平移后可得到抛物线y=-(x-2)2的是()A.y=-x 2B.y=x 2-2C.y=(x-2)2+1D.y=(2-x)29、两条直线被第三条直线所截,就第三条直线上的两个交点而言形成了“三线八角”.为了便于记忆,同学们可仿照图用双手表示“三线八角”(两大拇指代表被截直线,食指代表截线).下列三幅图依次表示()A.同位角、同旁内角、内错角B.同位角、内错角、同旁内角C.同位角、对顶角、同旁内角D.同位角、内错角、对顶角10、如图,直线AB、CD被直线EF所截,AB∥CD,∠1=100°,则∠2等于()A.70°B.80°C.90°D.100°11、如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠AB.∠1=∠2C.∠D=∠DCED.∠D+∠ACD=180°12、已知∠1与∠2是直线a与直线b被直线c所截得的内错角,且有∠1=50°,则∠2=()A.130°B.50°C.80°D.无法确定13、小明将一直角三角板与两边平行的纸条如图放置.已知∠1=32°,则∠2的度数为( )A.32°B.48°C.58°D.68°14、如图,若∠1=∠2,DE∥BC,则下列结论:①FG∥DC;②∠AED=∠ACB;③CD平分∠ACB;④∠1+∠B=90°;⑤∠BFG=∠BDC。

初一七年级下数学相交线与平行线探究题含答案详细解析v1

初一七年级下数学相交线与平行线探究题含答案详细解析v1

初一三线八角探究题V1一.解答题(共30小题)1.(2013春•海陵区期末)如图,已知平面内有两条直线AB 、CD ,且AB ∥CD ,P 为一动点.点.(1)当点P 移动到AB 、CD 之间时,如图(1),这时∠P 与∠A 、∠C 有怎样的关系?证明你的结论.明你的结论.(2)当点P 移动到AB 的外侧时,如图(2),是否仍有(1)的结论?如果不是的结论?如果不是 ,请写出你的猜想(不要求证明).(3)当点P 移动到如图(3)的位置时,∠P 与∠A 、∠C 又有怎样的关系?能否利用(1)的结论来证明?还有其他的方法吗?请写出一种.的结论来证明?还有其他的方法吗?请写出一种.2.(2009•青岛)如图,在梯形ABCD 中,AD ∥BC ,AD=6cm ,CD=4cm ,BC=BD=10cm ,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(0<t <5).解答下列问题:下列问题:(1)当t 为何值时,PE ∥AB ;(2)设△PEQ 的面积为y (cm 2),求y 与t 之间的函数关系式;之间的函数关系式;(3)是否存在某一时刻t ,使S △PEQ =S △BCD ?若存在,求出此时t 的值;若不存在,说明理由;明理由;(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.的面积是否发生变化?说明理由.3.(2005•陕西)已知:直线a ∥b ,P 、Q 是直线a 上的两点,M 、N 是直线b 上两点.上两点. (1)如图①,线段PM 、QN 夹在平行直线a 和b 之间,四边形PMNQ 为等腰梯形,其两腰PM=QN .请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a 和b 之间的两条线段相等;之间的两条线段相等;(2)我们继续探究,发现用两条平行直线a 、b 去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a 和b 之间的两条曲线段相等;曲线段相等;(3)如图④,若梯形PMNQ 是一块绿化地,梯形的上底PQ=m ,下底MN=n ,且m <n .现计划把价格不同的两种花草种植在S 1、S 2、S 3、S 4四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理由.4.(2016春•北流市校级期中)(1)如图甲,AB∥CD,试问∠2与∠1+∠3的关系是什么,为什么?为什么?一样大吗?为什么?(2)如图乙,AB∥CD,试问∠2+∠4与∠1+∠3+∠5一样大吗?为什么?哪个大?为什么?(3)如图丙,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7哪个大?为什么?你能将它们推广到一般情况吗?请写出你的结论.你能将它们推广到一般情况吗?请写出你的结论.5.(2015•凉山州一模)我们知道两直线交于一点,对顶角有2对,三条直线交于一点,对顶角有6对,四条直线交于一点,对顶角有12对,…对.(1)10条直线交于一点,对顶角有条直线交于一点,对顶角有 对.)条直线交于一点,对顶角有 对.对.(2)n(n≥2)条直线交于一点,对顶角有6.(2015•长春二模)探究:如图①,点A在直线MN上,点B在直线MN外,连结AB,过线段AB的中点P作PC∥MN,交∠MAB的平分线AD于点C,连结BC,求证:BC⊥AD.应用:如图②,点B在∠MAN内部,连结AB,过线段AB的中点P作PC∥AM,交∠MAB 的平分线AD于点C;作PE∥AN,交∠NAB的平分线AF于点E,连结BC、BE.若∠MAN=150°,则∠CBE的大小为的大小为度.7.(2015秋•东明县期末)如图,直线AB与CD相交于点O,∠AOM=90°.的度数;(1)如图1,若OC平分∠AOM,求∠AOD的度数;(2)如图2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度数.的度数.8.(2015秋•麒麟区期末)如图,直线AB、CD相交于点O,∠BOE=90°,OM平分∠AOD,ON平分∠DOE.(1)若∠EON=18°,求∠AOC的度数.的度数.的数量关系,并说明理由.(2)试判断∠MON与∠AOE的数量关系,并说明理由.9.(2015春•苏州期末)如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON 的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.并说明理由.10.(2015秋•吴江区期末)如图,点P是∠AOB的边OB上的一点.上的一点.(1)过点P画OB的垂线,交OA于点C,(2)过点P画OA的垂线,垂足为H,(3)线段PH 的长度是点P 到 的距离,线段的距离,线段 是点C 到直线OB 的距离.的距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC 、PH 、OC 这三条线段大小关系是这三条线段大小关系是 (用“<”号连接)号连接)11.(2015秋•内江期末)将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB 的度数为的度数为 ;②若∠ACB=140°,求∠DCE 的度数;的度数;(2)由(1)猜想∠ACB 与∠DCE 的数量关系,并说明理由.的数量关系,并说明理由.(3)当∠ACE <180°且点E 在直线AC 的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE 角度所有可能的值(不必说明理由);若不存在,请说明理由.13.(2015秋•南岗区期末)如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,且∠EOC :∠EOD=2:3.(1)求∠BOD 的度数;的度数;12.(2015秋•江西期末)如图,△ABC 中,∠ABC=∠ACB ,BD 平分∠ABC ,CE 平分∠ACB ,BD ,CE 交于点O ,F ,G 分别是AC ,BC 延长线上一点,且∠EOD+∠OBF=180°,∠DBC=∠G ,指出图中所有指出图中所有平行线平行线,并说明理由.(2)如图2,点F在OC上,直线GH经过点F,FM平分∠OFG,且∠MFH﹣∠BOD=90°,求证:OE∥GH.14.(2015秋•蓝田县期末)如图,已知∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,F是BC延长线上一点,且∠DBC=∠F,求证:EC∥DF.15.(2015春•天河区期末)已知:如图,AD⊥BC,FG⊥BC.垂足分别为D,G.且∠ADE=∠CFG.求证:DE∥AC.16.(2015春•霸州市期末)如图,AB∥CD,分别探讨下面四个图形中∠APC与∠P AB、∠PCD的关系,请你从所得到的关系中任选一个加以说明.(适当添加辅助线,其实并不难)17.(2015春•东莞校级期末)如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在C、D之间有一点P,如果P点在C、D之间运动时,问∠P AC,∠APB,∠PBD之间的关系是否发生变化.若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索之间的关系又是如何?∠P AC,∠APB,∠PBD之间的关系又是如何?18.(2015春•荣昌县期末)如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF 于O,AE∥OF,且∠A=30°.的度数;(1)求∠DOF的度数;(2)试说明OD平分∠AOG.19.(2015春•澧县期末)已知如图,AB∥CD,试解决下列问题:,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.20.(2015春•成都校级月考)如图:成都校级月考)如图:的度数;(1)已知AB∥CD,EF∥MN,∠1=115°,求∠2和∠4的度数;)的结果进行归纳,试着用文字表述出来; (2)本题隐含着一个规律,请你根据(1)的结果进行归纳,试着用文字表述出来;(3)利用(2)的结论解答:如果两个角的两边分别平行,其中一角是另一个角的两倍,求这两个角的大小.这两个角的大小.21.(2015春•晋安区期末)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF 的度数;(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.度数;若不存在,说明理由.22.(2015春•微山县校级期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;之间的关系;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;之间的关系并给予证明;之间的关系.(4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系.23.(2015春•芦溪县期末)已知一个角的两边与另一个角的两边分别平行,结合下图,试探索这两个角之间的关系,并说明你的结论.探索这两个角之间的关系,并说明你的结论.(1)如图1,AB∥EF,BC∥DE.∠1与∠2的关系是:,理由:;(2)如图2,AB∥EF,BC∥DE.∠1与∠2的关系是:,理由:.,那么 .(3)由(1)(2)你得出的结论是:如果)你得出的结论是:如果 ,那么(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角度数的分别是别是24.(2015春•垦利县校级期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;之间的关系;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;之间的关系并给予证明.(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.25.(2015春•繁昌县期末)如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°的位置关系并说明理由;(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.猜想结论并说明理由.26.(2015春•开江县期末)如图,已知直线m∥n,A、B是直线m上的任意两点,C、D 是直线n上的任意两点,连AD、BC,∠ABC与∠ADC的平分线相交于点E,若∠BAD=80°.(1)求∠EDC的度数;的度数;的度数.(2)若∠BCD=30°,试求∠BED的度数.27.(2015春•下城区期末)如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.的度数;(1)∠DAB=15°,求∠ACD的度数;是否成立,并说明理由.(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.28.(2015秋•黄岛区期末)如图①,若AB∥CD,点P在AB,CD外部,则有∠D=∠BOD,又因为∠BOD是△POB的外角,故∠BOD=∠BPD+∠B,得∠BPD=∠D﹣∠B.探究一:将点P移到AB,CD内部,如图②,则∠BPD,∠B,∠D之间有何数量关系?并证明你的结论;并证明你的结论;探究二:在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD延长线于点Q,之间又有何数量关系?并证明你的结论;如图③,则∠BPD,∠B,∠PDQ,∠BQD之间又有何数量关系?并证明你的结论;的度数. 探究三:在图④中,直接根据探究二的结论,写出∠A+∠B+∠C+∠D+∠E+∠F的度数.29.(2015春•盐都区期末)(1)AB∥CD,如图1,点P在AB、CD外面时,由AB∥CD,有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.如图2,将点P移到AB、CD内部,以上结论是否成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.之间有何数量关系?请证明你的结论.(2)如图3,若AB、CD相交于点Q,则∠BPD、∠B、∠D、∠BQD之间有何数量关系(不需证明)?(不需证明)?(3)根据(2)的结论求图4中∠A+∠B+∠C+∠D+∠E+∠F的度数.的度数.(4)若平面内有点A1、A2、A3、A4、A5、A6、A7、A8,连结A1A3、A2A4、A3A5、A4A6、A5A7、A6A8、A7 A1、A8 A2,如图5,则∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7+∠A8的度数是多少(直接写出结果)?的度数是多少(直接写出结果)?若平面内有n个点A1、A2、A3、A4、A5、…,A n,且这n个点能围成的多边形为凸多边形,连结A1A3、A2A4、A3A5、A4A6、A5A7,…,A n﹣1A1、A n A2,则∠A1+∠A2+∠A3+∠A4+…+∠A n﹣1+∠A n的度数是多少(直接写出结果,用含n的代数式表示)?的代数式表示)?30.(2015春•高新区期末)已知:直线AB∥CD,点M,N分别在直线AB,CD上,点E 为平面内一点.为平面内一点.(1)如图1,∠BME,∠E,∠END的数量关系为的数量关系为 ;(直接写出答案)(直接写出答案) (2)如图2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度数.(用含m的式子表示)的式子表示)(3)如图3点G为CD上一点,∠BMN=n•∠EMN,∠GEK=n•∠GEM,EH∥MN交AB 于点H,探究∠GEK,∠BMN,∠GEH之间的数量关系(用含n的式子表示)的式子表示)初一三线八角探究题V1参考答案与试题解析一.解答题(共30小题) 1.(2013春•海陵区期末)如图,已知平面内有两条直线AB 、CD ,且AB ∥CD ,P 为一动点.点.(1)当点P 移动到AB 、CD 之间时,如图(1),这时∠P 与∠A 、∠C 有怎样的关系?证明你的结论.明你的结论.(2)当点P 移动到AB 的外侧时,如图(2),是否仍有(1)的结论?如果不是)的结论?如果不是 ∠P=∠C ﹣∠A 【解答】证明:(1)∠P=∠A+∠C , 延长AP 交CD 与点E .∵AB ∥CD ,∴∠A=∠AEC . 又∵∠APC 是△PCE 的外角,的外角, ∴∠APC=∠C+∠AEC . ∴∠APC=∠A+∠C .(2)否;∠P=∠C ﹣∠A . (3)∠P=360°﹣(∠A+∠C ).①延长BA 到E ,延长DC 到F , 由(1)得∠P=∠P AE+∠PCF .∵∠PAE=180°﹣∠P AB ,∠PCF=180°﹣∠PCD , ∴∠P=360°﹣(∠P AB+∠PCD ). ②连接AC .∵AB ∥CD ,∴∠CAB+∠ACD=180°. ∵∠P AC+∠PCA=180°﹣∠P ,∴∠CAB+∠ACD+∠P AC+∠PCA=360°﹣∠P ,,请写出你的猜想(不要求证明). (3)当点P 移动到如图(3)的位置时,∠P 与∠A 、∠C 又有怎样的关系?能否利用(1)的结论来证明?还有其他的方法吗?请写出一种.的结论来证明?还有其他的方法吗?请写出一种. 【考点】平行线的性质;三角形的外角性质. 【专题】压轴题.压轴题. 【分析】(1)延长AP 后通过外角定理可得出结论.后通过外角定理可得出结论. (2)利用外角定理可直接得出答案.)利用外角定理可直接得出答案.(3)延长BA 到E ,延长DC 到F ,利用内角和定理解答.,利用内角和定理解答.=S △BCD ?若存在,求出此时t 的值;若不存在,说明理由;明理由;(4)连接PF ,在上述运动过程中,五边形PFCDE 的面积是否发生变化?说明理由.的面积是否发生变化?说明理由.【考点】平行线的判定;根据实际问题列二次函数关系式;三角形的面积;勾股定理;相似三角形的判定与性质. 【专题】压轴题.压轴题. 【分析】(1)若要PE ∥AB ,则应有,故用t 表示DE 和DP 后,代入上式求得t 的值;值; (2)过B 作BM ⊥CD ,交CD 于M ,过P 作PN ⊥EF ,交EF 于N .由题意知,四边形CDEF 是平行四边形,可证得△DEQ ∽△BCD ,得到,求得EQ 的值,再由△PNQ ∽△BMD ,得到,求得PN 的值,利用S △PEQ =EQ •PN 得到y 与t 之间的函数关系式;之间的函数关系式;(3)利用S △PEQ =S △BCD 建立方程,求得t 的值;的值;(4)易得△PDE ≌△FBP ,故有S 五边形PFCDE =S △PDE +S 四边形PFCD=S △FBP +S 四边形PFCD =S △BCD ,即五边形的面积不变.即五边形的面积不变. 【解答】解:(1)当PE ∥AB 时,时, ∴.而DE=t ,DP=10﹣t , ∴, ∴,∴当(s ),PE ∥AB .即∠P=360°﹣(∠P AB+∠PCD ). 【点评】本题考查本题考查平行线平行线的性质,难度不大,注意图形的变化带来的影响,不要有惯性思维. 2.(2009•青岛)如图,在梯形ABCD 中,AD ∥BC ,AD=6cm ,CD=4cm ,BC=BD=10cm ,点P 由B 出发沿BD 方向匀速运动,速度为1cm/s ;同时,线段EF 由DC 出发沿DA 方向匀速运动,速度为1cm/s ,交BD 于Q ,连接PE .若设运动时间为t (s )(0<t <5).解答下列问题:下列问题:(1)当t 为何值时,PE ∥AB ;(2)设△PEQ 的面积为y (cm 2),求y 与t 之间的函数关系式;之间的函数关系式; (3)是否存在某一时刻t ,使S △PEQ(2)∵线段EF由DC出发沿DA方向匀速运动,方向匀速运动,∴EF平行且等于CD,是平行四边形.∴四边形CDEF是平行四边形.∴∠DEQ=∠C,∠DQE=∠BDC.∵BC=BD=10,∴△DEQ∽△BCD.∴..∴.过B作BM⊥CD,交CD于M,过P作PN⊥EF,交EF于N,∵BC=BD,BM⊥CD,CD=4cm,∴CM=CD=2cm,∴cm,∵EF∥CD,∴∠BQF=∠BDC,∠BFG=∠BCD,又∵BD=BC,∴∠BDC=∠BCD,∴∠BQF=∠BFG,∵ED∥BC,∴∠DEQ=∠QFB,又∵∠EQD=∠BQF,∴∠DEQ=∠DQE,∴DE=DQ,∴ED=DQ=BP=t,∴PQ=10﹣2t.又∵△PNQ∽△BMD,∴.∴.∴.∴S△PEQ=EQ•PN=××.(3)S△BCD=CD•BM=×4×4=8,若S△PEQ=S△BCD,则有﹣t 22+t=×8,解得t 1=1,t 2=4.(4)在△PDE 和△FBP 中,中,∵DE=BP=t ,PD=BF=10﹣t ,∠PDE=∠FBP , ∴△PDE ≌△FBP (SAS ).∴S 五边形PFCDE =S △PDE +S 四边形PFCD=S △FBP +S 四边形PFCD =S △BCD =8.∴在运动过程中,五边形PFCDE的面积不变.由.【考点】平行线的性质;梯形;相似三角形的应用. 【专题】压轴题.压轴题. 【分析】(1)根据夹在两条平行线间的线段相等,进行画图或构造等腰三角形等均可;)根据夹在两条平行线间的线段相等,进行画图或构造等腰三角形等均可; (2)只要画出一个轴对称图形和两条平行线相交形成一个轴对称图形即可;)只要画出一个轴对称图形和两条平行线相交形成一个轴对称图形即可;(3)根据题意,即是比较(S 1+S 2)和(S 3+S 4)的大小,根据平行得到相似三角形,进一步求得相似三角形的相似比,根据三角形的面积公式和相似三角形的面积比等于相似比的平方,运用其中一个三角形的面积表示出其它三个三角形的面积,再进一步运用求差法进行比较大小.较大小.【点评】本题利用了本题利用了平行线平行线的性质,的性质,相似三角形和全等三角形的判定和性质,勾股定理,三相似三角形和全等三角形的判定和性质,勾股定理,三角形的面积公式求解.综合性较强,难度较大.角形的面积公式求解.综合性较强,难度较大.3.(2005•陕西)已知:直线a ∥b ,P 、Q 是直线a 上的两点,M 、N 是直线b 上两点.上两点. (1)如图①,线段PM 、QN 夹在平行直线a 和b 之间,四边形PMNQ 为等腰梯形,其两腰PM=QN .请你参照图①,在图②中画出异于图①的一种图形,使夹在平行直线a 和b 之间的两条线段相等;之间的两条线段相等;(2)我们继续探究,发现用两条平行直线a 、b 去截一些我们学过的图形,会有两条“曲线段相等”(曲线上两点和它们之间的部分叫做“曲线段”.把经过全等变换后能重合的两条曲线段叫做“曲线段相等”).请你在图③中画出一种图形,使夹在平行直线a 和b 之间的两条曲线段相等;曲线段相等;(3)如图④,若梯形PMNQ 是一块绿化地,梯形的上底PQ=m ,下底MN=n ,且m <n .现计划把价格不同的两种花草种植在S 1、S 2、S 3、S 4四块地里,使得价格相同的花草不相邻.为了节省费用,园艺师应选择哪两块地种植价格较便宜的花草?请说明理【解答】解:(1)(3分)分)分)(2)(6分)同底等高,(3)∵△PMN和△QMN同底等高,∴S△PMN=S△QMN.∴S3+S2=S4+S2.分)∴S3=S4.(7分)∵△POQ∽△NOM,∴==,分).(8分)∴S2=.∵,分)∴.(9分)分) ∴(S1+S2)﹣(S3+S4)=S1+S1﹣2•S1=S1(1+﹣2•)=S1(1﹣)2(10分)∵m<n,∴()2>0.分)∴S1+S2>S3+S4.(11分)故园艺师应选择S1和S2两块地种植价格较便宜的花草,因为这两块的面积之和大于另两块分)地的面积之和.(12分)【点评】此题中能够根据三角形的面积公式和相似三角形的面积比是相似比的平方找到三角形中的面积关系.形中的面积关系.4.(2016春•北流市校级期中)(1)如图甲,AB∥CD,试问∠2与∠1+∠3的关系是什么,为什么?为什么?一样大吗?为什么?(2)如图乙,AB∥CD,试问∠2+∠4与∠1+∠3+∠5一样大吗?为什么?哪个大?为什么?(3)如图丙,AB∥CD,试问∠2+∠4+∠6与∠1+∠3+∠5+∠7哪个大?为什么?你能将它们推广到一般情况吗?请写出你的结论.你能将它们推广到一般情况吗?请写出你的结论.【考点】平行线的性质.【分析】(1)首先过点E作EF∥AB,由AB∥CD,可得AB∥CD∥EF,根据平行线的性质,易得∠2=∠BEF+∠CEF=∠1+∠3;(2)首先分别过点E,G,M,作EF∥AB,GH∥AB,MN∥AB,由AB∥CD,可得AB∥CD∥EF∥GH∥MN,由平行线的性质,可得∠2+∠4=∠1+∠3+∠5.(3)首先分别过点E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,由AB∥CD,可得AB∥CD∥EF∥GH∥MN∥KL∥PQ,然后利用平行线的性质,即可证得∠2+∠4+∠6=∠1+∠3+∠5+∠7.【解答】解:(1)∠2=∠1+∠3.过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠BEF=∠1,∠CEF=∠3,∴∠2=∠BEF+∠CEF=∠1+∠3;(2)∠2+∠4=∠1+∠3+∠5.分别过点E,G,M,作EF∥AB,GH∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥EF∥GH∥MN,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠CMN=∠5,∴∠2+∠4=∠BEF+∠FEG+∠GMN+∠CMN=∠1+∠EGH+∠MGH+∠5=∠1+∠3+∠5;(3)∠2+∠4+∠6=∠1+∠3+∠5+∠7.分别过点E,G,M,K,P,作EF∥AB,GH∥AB,MN∥AB,KL∥AB,PQ∥AB,∵AB∥CD,∴AB∥CD∥EF∥GH∥MN∥KL∥PQ,∴∠1=∠BEF,∠FEG=∠EGH,∠HGM=∠GMN,∠KMN=∠LKM,∠LKP=∠KPQ,∠QPC=∠7,∴∠2+∠4+∠6=∠1+∠3+∠5+∠7.归纳:开口朝左的所有角度之和与开口朝右的所有角度之和相等.归纳:开口朝左的所有角度之和与开口朝右的所有角度之和相等.对.对. (2)n (n ≥2)条直线交于一点,对顶角有)条直线交于一点,对顶角有 n (n ﹣1) 对.对. 【考点】对顶角、邻补角;规律型:图形的变化类. 【分析】(1)仔细观察计算对顶角的式子,发现式子不变的部分及变的部分的规律,求出本题结论;题结论;(2)利用(1)中规律得出答案即可.)中规律得出答案即可. 【解答】解:(1)如图①两条直线交于一点,图中共有=2对对顶角;如图②三条直线交于一点,图中共有=6对对顶角;如图③四条直线交于一点,图中共有=12对对顶角;对对顶角;…;按这样的规律,10条直线交于一点,那么对顶角共有:=90,故答案为:90;(2)由(1)得:n (n ≥2)条直线交于一点,对顶角有:=n (n ﹣1). 故答案为:n (n ﹣1).【点评】此题主要考查了对顶角以及图形变化规律,此题主要考查了对顶角以及图形变化规律,本题是一个探索规律型的题目,本题是一个探索规律型的题目,本题是一个探索规律型的题目,解决时解决时注意观察每对数之间的关系.这是中考中经常出现的问题.注意观察每对数之间的关系.这是中考中经常出现的问题.【点评】此题考查了此题考查了平行线平行线的性质.的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.结合思想的应用. 5.(2015•凉山州一模)我们知道两直线交于一点,对顶角有2对,三条直线交于一点,对顶角有6对,四条直线交于一点,对顶角有12对,… (1)10条直线交于一点,对顶角有条直线交于一点,对顶角有 906.(2015•长春二模)探究:如图①,点A 在直线MN 上,点B 在直线MN 外,连结AB ,过线段AB 的中点P 作PC ∥MN ,交∠MAB 的平分线AD 于点C ,连结BC ,求证:BC ⊥AD . 应用:如图②,点B 在∠MAN 内部,连结AB ,过线段AB 的中点P 作PC ∥AM ,交∠MAB的平分线AD 于点C ;作PE ∥AN ,交∠NAB 的平分线AF 于点E ,连结BC 、BE .若∠MAN=150°,则∠CBE 的大小为的大小为 105度. 【考点】平行线的性质;垂线.【分析】探究:根据角平分线的定义和平行线的性质得出∠PCA=∠P AC ,根据等角对等边得出PC=P A ,再得出PC=PB ,利用三角形的内角和证明即可;,利用三角形的内角和证明即可; 应用:根据探究中的证明得出∠BAC+∠BAE+∠CBA+∠ABE=180°,再由角平分线得出∠BAC+∠BAE=75°,最后得出答案即可.,最后得出答案即可. 【解答】解:探究:∵PC ∥MN , ∴∠PCA=∠MAC .∵AD 为∠MAB 的平分线,的平分线, ∴∠MAC=∠P AC . ∴∠PCA=∠P AC ,∴PC=P A . ∵P A=PB , ∴PC=PB ,∴∠B=∠BCP .∵∠B+∠BCP+∠PCA+∠PAC=180°, ∴∠BCA=90°,∴BC ⊥AD ;应用:∵∠MAB 的平分线AD ,∠NAB 的平分线AF ,∠MAN=150°, ∴∠BAC+∠BAE=75°,∵∠BAC+∠BAE+∠CBA+∠ABE=180°, ∴∠CBE=∠CBA+∠ABE=180°﹣75°=105° 故答案为:105.【点评】本题考查了平行线的性质,本题考查了平行线的性质,角平分线的定义,是基础题,角平分线的定义,是基础题,角平分线的定义,是基础题,熟记性质与概念并准确识熟记性质与概念并准确识图是解题的关键.图是解题的关键. 7.(2015秋•东明县期末)如图,直线AB 与CD 相交于点O ,∠AOM=90°. (1)如图1,若OC 平分∠AOM ,求∠AOD 的度数;的度数;(2)如图2,若∠BOC=4∠NOB ,且OM 平分∠NOC ,求∠MON 的度数.的度数.【考点】对顶角、邻补角;角平分线的定义.,然后根据邻补角的定义求解即可; 【分析】(1)根据角平分线的定义求出∠AOC=45°,然后根据邻补角的定义求解即可;(2)设∠NOB=x°,∠BOC=4x°,根据角平分线的定义表示出∠COM=∠MON=∠CON,,然后求解即可.再根据∠BOM列出方程求解x,然后求解即可.【解答】解(1)∵∠AOM=90°,OC平分∠AOM,∴∠AOC=∠AOM=×90°=45°,∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣45°=135°,即∠AOD的度数为135°;(2)∵∠BOC=4∠NOB ∴设∠NOB=x°,∠BOC=4x°,∴∠CON=∠COB﹣∠BON=4x°﹣x°=3x°,∵OM平分∠CON,∴∠COM=∠MON=∠CON=x°,∵∠BOM=x+x=90°,∴x=36°,∴∠MON=x°=×36°=54°,即∠MON的度数为54°.本题考查了对顶角、邻补角,角平分线的定义,此类题目熟记概念并准确识图是解此类题目熟记概念并准确识图是解【点评】本题考查了对顶角、邻补角,角平分线的定义,列出方程.题的关键,(2)难点在于根据∠BOM列出方程.8.(2015秋•麒麟区期末)如图,直线AB、CD相交于点O,∠BOE=90°,OM平分∠AOD,ON平分∠DOE.(1)若∠EON=18°,求∠AOC的度数.的度数.的数量关系,并说明理由.(2)试判断∠MON与∠AOE的数量关系,并说明理由.【考点】对顶角、邻补角;角平分线的定义;垂线.【分析】(1)直接利用角平分线的性质得出∠DOE的度数,再求出∠DOB的度数,进而得出答案;出答案;进而求出答案.(2)直接利用未知数表示出∠AOD、∠MOD、∠MON进而求出答案.【解答】解:(1)∵ON平分∠DOE,∴∠DOE=2∠EON=36°,∵∠BOE=∠DOE+∠DOB=90°,∴∠DOB=∠BOE﹣∠DOE=54°,∴∠AOC=∠DOB=54°;(2)∠DON=∠AOE 理由:设∠DON=x°,∵ON平分∠DOE,∴∠DOE=2∠DON=2x°,∵∠AOE+∠BOE=180°,∠BOE=90°,∴∠AOE=180°﹣∠BOE=90°,∴∠AOD=∠AOE+∠DOE=(90+2x)°,∵OM平分∠AOD,∴∠MOD=(90+2x)°=(45+x)°,∴∠MON=∠MOD﹣∠DON=45°,∴∠MON=∠AOE=45°.【点评】此题主要考查了角平分线的性质以及垂线定义和邻补角的定义,正确表示出∠AOD 的度数是解题关键.的度数是解题关键.9.(2015春•苏州期末)如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON 的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.(1)填空:∠OBC+∠ODC=180°;(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由.并说明理由.平行线的判定.垂线;平行线【考点】垂线;,然后利用四边形内角和求解;【分析】(1)先利用垂直定义得到∠MON=90°,然后利用四边形内角和求解;(2)延长DE交BF于H,如图,由于∠OBC+∠ODC=180°,∠OBC+∠CBM=180°,根据等角的补角相等得到∠ODC=∠CBM,由于DE平分∠ODC,BF平分∠CBM,则∠CDE=∠FBE,然后根据三角形内角和可得∠BHE=∠C=90°,于是DE⊥BF;(3)作CQ∥BF,如图2,由于∠OBC+∠ODC=180°,则∠CBM+∠NDC=180°,再利用BF、DG分别平分∠OBC、∠ODC的外角,则∠GDC+∠FBC=90°,根据平行线的性质,由CQ∥BF 得∠FBC=∠BCQ,加上∠BCQ+∠DCQ=90°,则∠DCQ=∠GDC,于是可判断CQ∥GD,所以BF∥DG.【解答】(1)解:∵OM⊥ON,∴∠MON=90°,在四边形OBCD中,∠C=∠BOD=90°,∴∠OBC+∠ODC=360°﹣90°﹣90°=180°;故答案为180°;(2)证明:延长DE交BF于H,如图1,∵∠OBC+∠ODC=180°,而∠OBC+∠CBM=180°,∴∠ODC=∠CBM,∵DE平分∠ODC,BF平分∠CBM,∴∠CDE=∠FBE,而∠DEC=∠BEH,∴∠BHE=∠C=90°,∴DE⊥BF;.理由如下:(3)解:DG∥BF.理由如下:作CQ∥BF,如图2,∵∠OBC+∠ODC=180°,∴∠CBM+∠NDC=180°,的外角,∵BF、DG分别平分∠OBC、∠ODC的外角,∴∠GDC+∠FBC=90°,∵CQ ∥BF ,∴∠FBC=∠BCQ ,而∠BCQ+∠DCQ=90°, ∴∠DCQ=∠GDC ,∴CQ ∥GD ,∴BF ∥DG. 的距离,线段的距离,线段 PC 的长的长 是点C 到直线OB 的距离.距离.(4)因为直线外一点到直线上各点连接的所有线中,垂线段最短,所以线段PC 、PH 、OC 这三条线段大小关系是这三条线段大小关系是 PH <PC <OC (用“<”号连接)号连接)【考点】垂线段最短;点到直线的距离;作图—基本作图.【专题】作图题.作图题.【分析】(1)(2)利用方格线画垂线;)利用方格线画垂线;(3)根据点到直线的距离的定义得到线段PH 的长度是点P 到OA 的距离,线段OP 的长是点C 到直线OB 的距离;的距离;(4)根据直线外一点到直线上各点连接的所有线中,垂线段最短得到PC >PH ,CO >CP ,即可得到线段PC 、PH 、OC 的大小关系.的大小关系.【解答】解:(1)如图:)如图:(2)如图:)如图:(3)直线0A 、PC 的长.的长.【点评】本题考查了垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.它们的交点叫做垂足.它们的交点叫做垂足.也考也考查了查了平行线平行线的判定与性质.的判定与性质.10.(2015秋•吴江区期末)如图,点P 是∠AOB 的边OB 上的一点.上的一点.(1)过点P 画OB 的垂线,交OA 于点C ,(2)过点P 画OA 的垂线,垂足为H ,(3)线段PH 的长度是点P 到 直线OA。

七年级压轴题24题,平行线的探索拐角问题

七年级压轴题24题,平行线的探索拐角问题

七年级压轴题24题,平行线的探索拐角问题拐角问题——基本图形及辅助线方法技巧方法技巧1.过折线的拐点作平行线,用平行公理推论得到多条平行线,再转化角.2.涉及到角平分线问题,往往设未知数导角或列方程求解.题型一平行线+单拐点(+角平分线等)模型【例1】如图1,点A,C,B不在同一条直线上,AD∥BE.(1)求证:∠B+∠ACB-∠A=180°;(2)如图2,HQ,BQ分别为∠DAC,∠EBC的平分线所在的直线,试探究∠C与∠AQB 的数量关系;题型二平行线+双拐点(+角平分线等)模型【例2】如图1,AB∥CD,∠B=20°,∠D=110°.(1)若∠E=50°,求∠F的度数;【解答】分别过点E,F作EM∥AB,FN∥AB.∴EM∥AB∥FN.∴∠B=∠BEM=20°,∠MEF=∠EFN.又∵AB∥CD,AB∥FN.∴CD∥FN.∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN ==70°,易得∠EFN=∠MEF=∠BEF-∠BEM =50°-20°=30°.∴∠EFD=∠EFN+∠NIFD=30°+70°=100°.(2)如图2,探索∠E与∠F之间满足的数量关系,并说明理由;.【解答】分别过点E,F作EM∥AB,FN∥A B.∴EM∥AB∥FN.∴∠B=∠BEM=20°,∠MEF=∠EFN,又∵AB∥CD,AB∥FN,∴CD∥FN.∴∠D+∠DFN=180°,又∵∠D=110°,∴∠DFN=70°,∴∠BEF=∠MEF+20°,∠EFD=∠EFN+70°,∴∠EFD=∠MEF+70°,∴∠EFD=∠BEF+50°.(3)如图3,EP平分∠BEF,FG平分∠EFD,FG的反向延长线交EP于点P,求∠P的度数.【分析】过点F作FH∥EP,结合(2)中结论,运用模型求解.【解答】过点F作FH∥EP,由(2)知,∠EFD=∠BEF+50°,设∠BEF=2x°,则∠EFD=(2x+50)°,∵EP平分∠BEF,GF平分∠EFD,∴∠PEF =21∠BEF =x °,∠EFG =21∠EFD =(x +25)°,∵FH ∥EP ,∴∠PEF =∠EFH =x °,∠P =∠HFG ,∵∠HFG =∠EFG -∠EFH =25°,∴∠P =25°.针对练习51.如图,CD ∥BE ,则∠2+∠3-∠1的度数等于()A .90°B .120°C .150°D .180°2.如图,AB ∥DE ,∠C :∠D :∠B =2:3:4,则∠B =.3.如图,直线l 3,l 4与l 1,l 2分别相交于点A ,B ,C ,D ,且∠1+∠2=180°.(1)直线l 1与l 2平行吗?为什么?(2)点E 在线段AD 上,若∠ABE =30°,∠BEC =62°,求∠DCE 的度数.【解答】(1)直线l 1与l 2平行.理由如下:∵∠1+∠BAE =180°,∠1+∠2=180°,∴∠2=∠BAE .∴l 1∥l 2.(2)过点E作EF∥AB交BC于点F,可得∠BEF=∠ABE=30°.∴∠FEC=62°-30°=32°.∵l1∥l2,∴EF∥CD,∴∠DCE=∠FEC=32°.5.将北斗七星分别标为A,B,C,D,E,F,G,如图,将A,B,C,D,E,F顺次首尾连结,若AF恰好经过点G,且AF∥DE,∠B =∠BCD+10°,∠CDE=∠E=105°.(1)求∠F的度数;(2)计算∠B-∠CGF的度数是;(直接写出结果)(3)连接AD,∠ADE与∠CGF满足怎样数量关系时,BC∥AD?并说明理由.【解答】(1)∵AF∥DE,∴∠F+∠E=180°.∴∠F=180°-105°=75°.(2)作MC∥AF.∵AF∥DE,∴AF∥CM∥DE,∴∠BCM=∠FGC,∠MCD=∠CDE,∴∠BCD=∠BCM+∠MCD=∠CGF+∠CDE,∠B-∠CGF=∠BCD+10°-∠CGF=∠CGF+∠CDE+10°-∠CGF=∠CDE+10°=115°.(3)当∠ADE+∠CGF=180°时,BC∥A D.理由如下:∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180".∴∠GAD=∠CGF.∴BC∥A D.整体思想求角题型一设单个未知数求定角方法技巧巧设题目未知数,用该未知数表示其它未知角,然后运用角的和或差计算出定角【例1】如图1,直线MN 与直线AB ,CD 分别交于点E ,F ,AB ∥CD ,∠BEF 与∠EFD 的角平分线交于点P ,EP 的延长线与CD 交于点G ,点H 是MN 上一点,且CH ⊥EC .(1)求证:PF ∥GH ;(2)如图2,连接PH ,K 是GH 上一点,∠PHK =∠HPK ,作PQ 平分∠EPK ,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,请说明理由图1图2【分析】(1)过点P 作AB 的平行线交MN 于点T ,运用平行线+拐点模型求∠EPF ,再根据∠ECH 的大小关系求解;(2)设∠PHK =∠HPK =x ,用x 表示未知角,运用整体思想求解。

浙教版七年级下数学第一章平行线单元测试及答案(共7张)

浙教版七年级下数学第一章平行线单元测试及答案(共7张)

浙教版七年级下第一章平行线单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明一.选择题(共10小题,3*10=30)1.若∠α与∠β同旁内角,且∠α=50°时,则∠β的度数为()A.50°B.130°C.50°或130°D.无法确定2.已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A.有且仅有一条B.有两条C.不存在D.有一条或不存在3.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.平行于同一直线的两直线平行4.如图是用一张长方形纸片折成的,如果∠1=100°,那么∠2的度数是()A.50°B.60°C.70°D.80°5.如图所示,AB∥CD,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为()A.35°B.30°C.25°D.20°6.如图,AB∥CD,MP∥AB,MN平分∠AMD,∠A=40°,∠D=30°,则∠NMP等于()A.10°B.15°C.5°D.7.5°7.将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C,其中正确的有()A.①②③B.①②④C.③④D.①②③④8.如图,多边形ABCDEFGHIJ的相邻两边互相垂直,要求出它的周长,至少需要知道()条边的边长.A.3 B.4 C.5 D.69.如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30°,那么这两个角是()A.42°、138°B.都是10°C.42°、138°或42°、10°D.以上都不对10.如图,已知AB∥DE,那么下列结论正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2﹣∠3=180°C.∠1=∠2+∠3 D.∠1﹣∠2+∠3=180°第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明二.填空题(共6小题,3*6=18)11.在同一平面内有三条直线,如果其中有两条且只有两条相互平行,那么它们有个交点.12.如图,与∠1构成同位角的是,与∠2构成同旁内角的是.13.经过直线外一点,一条直线与这条直线平行.14.如图,将一副三角板按如图放置,则下列结论①∠1=∠3;②如果∠2=30°,则有AC∥DE;③如果∠2=30°,则有BC∥AD;④如果∠2=30°,必有∠4=∠C.其中正确的有.(填序号)15.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,则∠FGD的度数是度,再沿BF折叠成图c,则图c中的∠DHF的度数是.16.把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在MN的位置上,若∠EFG=55°,则∠2=.三.解答题(共7小题,52分)17.(6分)按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.18.(6分)如图,有四条互相不平行的直线L1、L2、L3、L4所截出的八个角.请你任意选择其中的三个角(不可选择未标注的角),尝试找到它们的关系,并选择其中一组予以证明.19.(6分)如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD()∴∠2=∠CGD(等量代换)∴CE∥BF()∴∠=∠BFD()又∵∠B=∠C(已知)∴∠BFD=∠B(等量代换)∴AB∥CD()20.(8分)(1)如图1,已知直线l1∥l2,且l3和l1,l2分别交于A,B两点,点P在线段AB上,则∠1,∠2,∠3之间的等量关系是;如图2,点A在B处北偏东40°方向,在C处的北偏西45°方向,则∠BAC=°.(2)如图3,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°,试说明:AB∥CD;并探究∠2与∠3的数量关系.21.(8分)如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM 交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N 的度数.22.(8分)若在方格(每小格正方形边长为1m)上沿着网格线平移,规定:沿水平方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿竖直方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.例如:点A按“平移量”{1,4}可平移至点B.(1)从点C按“平移量”{,}可平移到点B;(2)若点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D,①请在图中标出点D;(用黑色水笔在答题卡上作出点D)②如果每平移1m需要2.5秒,那么按此方法从点B移动至点D需要多少秒?③观察点D的位置,其实点B也可按“平移量”{,}直接平移至点D;观察这两种平移的“平移量”,猜想:点E依次按“平移量”{2a,3b}、{﹣5a,b}、{a,﹣5b}平移至点F,则相当于点E按“平移量”{,}直接平移至点F.23.(10分)如图1所示,已知BC∥OA,∠B=∠A=120°(1)说明OB∥AC成立的理由.(2)如图2所示,若点E,F在BC上,且∠FOC=∠AOC,OE平分∠BOF,求∠EOC的度数.(3)在(2)的条件下,若左右平移AC,如图3所示,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA时,求∠OCA的度数.参考答案与试题解析一.选择题(共10小题)1.D2.D 3.A 4.A 5.C 6.C 7.B 8.A 9.D 10.B 二.填空题(共6小题)11.2 12.∠B,∠1 13.有且只有.14.①②④15.52,78°16.110°三.解答题(共7小题)17.解:(1)作法利用量角器测得∠AEC=90°,AE即为所求;(2)作法:①以点B为圆心,以任意长为半径画弧,两弧交∠ABC两边于点M,N.②分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于点P③作射线BP,则射线BP为角ABC的角平分线;④射线BP交AC于点F;(3)作法:用量角器测得∠ABC=∠GEC,EG即为所求;(4)作法:利用量角器测得∠BHC=90°,CH即为所求.18.解:如∠2+∠4+∠6=360°,∠1+∠5+∠7=180°,∠2=∠5+∠7,∠3=∠1+∠8,已知如图:有四条互相不平行的直线L1、L2、L3、L4所截出的八个角,求证:∠1+∠5+∠7=180°,证明:∵∠DAC+∠7+∠5=180°,又∵∠1=∠DAC,∴∠1+∠5+∠7=180°.19.解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:(对顶角相等),(同位角相等,两直线平行),C,(两直线平行,同位角相等),(内错角相等,两直线平行).20.解:(1)如图1中,作PM∥AC,∵AC∥BD,∴PM∥BD,∴∠1=∠CPM,∠2=∠MPD,∴∠1+∠2=∠CPM+∠MPD=∠CPD=∠3.由题可知:∠BAC=∠B+∠C,∵∠B=40°,∠C=45°,∴∠BAC=40°+45°=85°.故答案为:∠1+∠2=∠3,85°.(2)证明:∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.21.解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.22.解:(1)从C到B,向左2个单位,向下1个单位,所以,平移量为{﹣2,﹣1};(2)①点B依次按“平移量”{4,﹣3}、{﹣2,1}平移至点D如图所示;②(4+3+2+1)×2.5=10×2.5=25秒;③由图可知,点B到点D,向右2个单位,向下2个单位,所以,平移量为{2,﹣2},∵2a﹣5a+a=﹣2a,3b+b﹣5b=﹣b,∴点E到F的平移量为{﹣2a,﹣b}.故答案为:(1)﹣2,﹣1;(2)③2,﹣2;﹣2a,﹣b.23.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,∴∠O=180°﹣∠B=60°,而∠A=120°,∴∠A+∠O=180°,∴OB∥AC;(2)∵OE平分∠BOF,∴∠BOE=∠FOE,而∠FOC=∠AOC,∴∠EOF+∠COF=∠AOB=×60°=30°,即∠EOC=30°;(3)比值不改变.∵BC∥OA,∴∠OCB=∠AOC,∠OFB=∠AOF,∵∠FOC=∠AOC,∴∠AOF=2∠AOC,∴∠OFB=2∠OCB,即∠OCB:∠OFB的值为1:2;(4)设∠AOC的度数为x,则∠OFB=2x,∵∠OEB=∠AOE,∴∠OEB=∠EOC+∠AOC=30°+x,而∠OCA=180°﹣∠AOC﹣∠A=180°﹣x﹣120°=60°﹣x,∵∠OEB=∠OCA,∴30°+x=60°﹣x,解得x=15°,∴∠OCA=60°﹣x=60°﹣15°=45°.浙教版七年级下第一章平行线单元检测卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

浙教版2022年七年级数学下册第1章平行线平行线练习(含答案)

浙教版2022年七年级数学下册第1章平行线平行线练习(含答案)

浙教版2022年七年级数学下册第1章平行线平行线练习(含答案)第1章平行线1.1平行线知识点1平行线的概念在同一个平面内,不相交的两条直线叫做平行线.“平行”用符号“∥”表示,直线a和b是平行线,记做a∥b,读做“a平行b”.平行线的定义包含三层意思:(1)“在同一平面内”是前提条件;(2)“不相交”就是说两条直线没有交点;(3)平行线指的是“两条直线”,而不是“两条射线”或“两条线段”.1.下列说法正确的是()A.在同一平面内,不相交的两条线段是平行线段B.不相交的两条直线是平行线C.在同一平面内,不重合的两条直线的位置关系只有相交和平行两种D.在同一平面内,不相交的两条射线是平行线知识点2平行线的画法用三角尺和直尺画平行线.如图1-1-1所示,把三角尺的一边紧靠直线CD,用直尺紧靠三角板尺的另一边,沿直尺推动三角尺,然后过三角尺的一边画直线AB,这时就可画出CD的平行线AB.图1-1-12.如图1-1-2所示,过三角形ABC的三个顶点分别作它对边的平行线,标出交点,并将平行线用“∥”符号表示出来.图1-1-2知识点3平行线的性质过直线外一点只能画一条已知直线的平行线,过直线上一点不能画已知直线的平行线.3.先在纸上画三角形ABC,再任取一点P,过点P画一条直线与BC 平行,则这样的直线()A.有且只有一条B.有两条C.不存在D.有一条或不存在一利用平行线的性质进行简单的推理教材例题变式题在同一平面内,已知直线AB∥EF,直线CD与AB相交于点P,试问直线CD与EF相交吗?为什么?[归纳总结]由本题可以得出一个常用的结论:在同一平面内,如果一条直线与一组平行线中的一条相交,那么它必定与其余的直线都相交.二平面内直线交点个数的探究教材补充题已知平面内有三条互不重合的直线,请画图探究它们的位置关系并说出它们的交点个数.[反思]判断下列说法是否正确,并说明理由.(1)不相交的两条直线叫做平行线;(2)过一点有且只有一条直线与已知直线平行.一、选择题1.在同一平面内两条不重合直线的位置关系有()A.两种:平行或相交23B.两种:平行或垂直C.三种:平行、垂直或相交D.两种:垂直或相交2.如图1-1-3,在同一平面内,过点C作线段AB的平行线,下列说法正确的是()图1-1-3A.不能作B.只能作一条C.能作两条D.能作无数条3.下列关于平行的表示方法正确的是()A.a∥AB.AB∥cdC.A∥BD.a∥b4.下列四边形中,AB与CD不平行的是()图1-1-5.在同一平面内,有三条互不重合的直线,其中只有两条是平行的,那么交点有()A.0个B.1个C.2个D.3个6.下列结论正确的是()A.不相交的直线互相平行B.不相交的线段互相平行C.不相交的射线互相平行D.有公共点的直线一定不平行7.已知直线a,b在同一平面内且不相交,直线c也在这一平面内,且c与a相交,则()A.b与c相交B.b与c平行C.b与c平行或相交D.b与c的位置关系不确定二、填空题8.如图1-1-5所示,AE∥BC,AF∥BC,则A,E,F三点________,理由是____________________.图1-1-59.把图1-1-6中互相平行的线段一一写出来:______________________________________.4图1-1-610.列举现实生活中体现平行的一个例子:________.11.在同一平面内,有两条直线l1与l2.(1)若l1与l2没有公共点,则l1与l2________;(2)若l1与l2有且只有一个公共点,则l1与l2________;(3)若l1与l2有两个公共点,则l1与l2________.三、解答题12.如图1-1-7,在长方体中,A1B1∥AB,AD∥BC,你能找出图中的平行线吗?图1-1-713.如图1-1-8所示,点P在∠AOB的一边OA上,点Q在∠AOB的另一边OB上,按下列要求画图:(1)过点P,Q的直线;(2)过点P画平行于OB的直线;(3)过点Q画平行于OA的直线.图1-1-814.如图1-1-9,点P是∠ABC内一点.(1)过点P画一条直线平行于直线AB,且与BC交于点D;(2)过点P画一条直线垂直于直线BC,垂足为E;(3)过点P作直线AB的垂线段PF.图1-1-91.[实践操作题]如图1-1-10所示,D,E是线段AC的三等分点.(1)过点D作DF∥BC交AB于点F,过点E作EG∥BC交AB于点G;(2)量出AF,FG,GB的长度(精确到0.1cm),你有什么发现?(3)量出FD,GE,BC的长度(精确到0.1cm),你有什么发现?(4)根据(3)中发现的规律,若FD=1.5cm,则EG=________cm,BC=________cm.图1-1-102.[操作探究]我们知道在同一平面内,两条平行直线的交点有0个,两条相交直线的交点有1个,平面内三条平行直线的交点有0个,经过同一点的三条直线的交点有1个……(1)平面上有三条互不重合的直线,请画图探究它们的交点个数;(2)若平面内的五条直线恰有4个交点,请画出符合条件的所有图形;(3)在平面内画出10条直线,使它们的交点个数恰好是32.详解详析5【预习效果检测】1.[解析]C根据平行线的概念“在同一平面内,不相交的两条直线叫做平行线”即可得出答案.[点评]正确理解平行线的概念是解决本题的关键.学习此概念时,我们要特别注意“在同一平面内”“不相交”“直线”等关键词.2.解:如图所示.过点A作BC边的平行线,过点B作AC边的平行线,过点C作AB边的平行线,两两相交于点D,E,F,所以DE∥BC,EF∥AC,DF∥AB.3.[解析]D当点P在直线BC外时,根据“经过直线外一点,有且只有一条直线与这条直线平行”这个基本事实,可知有且仅有一条;但当点P在直线BC上时,就不存在这样的直线,故本题应选择D.【重难互动探究】例1[解析]由于直线AB,EF的位置关系已确定,AB与CD的位置关系也确定了,根据平行线的性质即可确定CD与EF的位置关系.解:直线CD与EF相交.因为AB∥EF,CD与AB相交于点P,而过点P只能作一条直线AB与EF平行,所以直线CD与EF相交.例2[解析]在同一平面内,两条不重合直线的位置关系只有两种:相交和平行.若在同一平面内有三条或三条以上直线,其位置关系就变得比较复杂,交点个数也不确定,因此需分类讨论进行探究.解:①如图①,三条直线互相平行,此时交点个数为0;②如图②,三条直线相交于一点,此时交点个数为1;③如图③,三条直线两两相交且不交于同一点,此时交点个数为3;④如图④,其中两条直线互相平行且都与第三条直线相交,此时交点个数为2.【课堂总结反思】[反思](1)不正确,理由:在同一平面内,不相交的两条直线叫做平行线.(2)不正确,理由:过直线外一点,有且只有一条直线与这条直线平行;过直线上一点,不能画已知直线的平行线.【作业高效训练】[课堂达标]1.A2.B3.D4.D5.C6.D7.A68.[答案]共线经过直线外一点,有且只有一条直线与这条直线平行9.[答案]GH∥MN,EF∥AB,CD∥PQ10.[答案]如双杠.两条笔直的铁轨等(答案不唯一,写出一个即可) 11.[答案](1)平行(2)相交(3)重合12.解:图中的平行线有AB∥DC∥D1C1∥A1B1,AD∥BC∥B1C1∥A1D1,AA1∥BB1∥CC1∥D D1.13.[解析]借助三角尺和直尺画平行线.用三角尺和直尺画图,其基本步骤如下:一落:三角尺的一边落在已知直线上;二靠:紧靠三角尺其余两边中的任意一边放上直尺;三移:三角尺沿直尺移动,使三角板尺的边经过已知点;四画:沿三角尺过已知点的一边画直线.解:如图所示.14.解:如图所示.[数学活动]1.解:(1)如图所示.(2)测量略,AF=FG=GB.(3)测量略,FD∶GE∶BC=1∶2∶3或FD+BC=2GE.(4)34.52.解:(1)如图所示.(2)如图所示.(3)如图所示.78。

浙教版七年级数学下册第1章平行线单元测试卷(原卷+答案)

浙教版七年级数学下册第1章平行线单元测试卷(原卷+答案)

第1章平行线单元检测卷一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是同位角的是()2.下列结论正确的是()A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行3.如图,在5×5的方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中正确的是()A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格(第4题图)(第5题图)(第6题图)4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转()A.15°B.30°C.45°D.60°5.如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件() A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD6.如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线()A.3对B.5对C.6对D.7对7.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于()A.26°B.32°C.25°D.36°(第7题图)(第8题图)(第9题图)(第10题图) 8.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于()A.100°B.115°C.120°D.130°9.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为()A.38°B.42°C.48°D.52°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于()A.100°B.80°C.60°D.40°二、填空题(每小题3分,共24分)11.如图,在同一平面内,有三条直线a,b,c,a与b相交于点O,如果a∥c,那么直线b与c的位置关系是__ __.(第11题图)(第12题图)(第13题图)(第14题图) 12.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为___.13.在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为___.14.如图,已知BE平分∠ABC,∠CDE=150°,当∠C=____时,AB∥CD.15.如图,将边长为2个单位长度的等边三角形ABC沿边BC向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为____.(第15题图)(第17题图)(第18题图) 16.如图①是我们常用的折叠式小刀,图②中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是___度.17.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有__ __.(填序号)18.如图,AB∥CD,则∠α,∠β,∠γ之间的关系是____.三、解答题(共66分)19.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.20.(8分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC ∥DF.21.(8分)如图,在长方形ABCD中,AB=10 cm,BC=6 cm,试问将长方形ABCD沿着BC方向平移多少才能够使平移后的长方形与原来的长方形ABCD重叠部分的面积为20 cm2?22.(10分)如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.23.(10分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.24.(10分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC 于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.25.(12分)如图①,在四边形ABCD中,∠ABC+∠ADC=180°,BE,DF分别是∠ABC 与∠ADC的平分线,∠1与∠2互余.(1)试判断直线BE与DF的位置关系,并说明理由;(2)如图②,延长CB,DF相交于点G,过点B作BH⊥FG,垂足为H,试判断∠FBH与∠GBH的大小关系,并说明理由.答案:一、选择题(每小题3分,共30分)1.下列各图中,∠1与∠2是同位角的是(B)2.下列结论正确的是(D)A.过一点有且只有一条直线与已知直线垂直B.过一点有且只有一条直线与已知直线平行C.在同一平面内,不相交的两条射线是平行线D.如果两条直线都与第三条直线平行,那么这两条直线互相平行3.如图,在5×5的方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个长方形,那么下面的平移方法中正确的是(D)A.先向下平移3格,再向右平移1格B.先向下平移2格,再向右平移1格C.先向下平移2格,再向右平移2格D.先向下平移3格,再向右平移2格(第4题图)(第5题图)(第6题图)4.如图,直线a与直线b交于点A,与直线c交于点B,∠1=120°,∠2=45°,若使直线b与直线c平行,则可将直线b绕点A逆时针旋转(A)A.15°B.30°C.45°D.60°5.如图,点D,E,F分别在AB,BC,AC上,且EF∥AB,要使DF∥BC,只需添加条件A.∠1=∠2 B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD6.如图,将三角形ABC平移到三角形EFG的位置,则图中共有平行线(C)A.3对B.5对C.6对D.7对7.如图,AB∥CD,EF⊥AB于点E,EF交CD于点F,已知∠1=64°,则∠2等于(A) A.26°B.32°C.25°D.36°(第7题图)(第8题图)(第9题图)(第10题图)8.如图,把长方形ABCD沿EF对折后使两部分重合,若∠1=50°,则∠AEF等于(B)A.100°B.115°C.120°D.130°9.小红把一把直尺与一块三角板如图放置,测得∠1=48°,则∠2的度数为(B) A.38°B.42°C.48°D.52°10.如图,AB∥CD,∠1=100°,∠2=120°,则∠α等于(D)A.100°B.80°C.60°D.40°二、填空题(每小题3分,共24分)11.如图,在同一平面内,有三条直线a,b,c,a与b相交于点O,如果a∥c,那么直线b与c的位置关系是__相交__.(第11题图)(第12题图)(第13题图)(第12.如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为__120°__.13.在一块长为a,宽为b的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位长度),则草地的面积为__b(a-1)__.14.如图,已知BE平分∠ABC,∠CDE=150°,当∠C=__120°__时,AB∥CD.15.如图,将边长为2个单位长度的等边三角形ABC沿边BC向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为__8__.(第15题图)(第17题图)(第18题图) 16.如图①是我们常用的折叠式小刀,图②中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图②所示的∠1与∠2,则∠1与∠2的度数和是__90__度.17.如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠1=∠2;④∠POB=2∠3.其中正确的结论有__①②③__.(填序号)18.如图,AB∥CD,则∠α,∠β,∠γ之间的关系是__∠α+∠β-∠r=180°__.三、解答题(共66分)19.(8分)如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.解:∠2=50°20.(8分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC ∥DF.解:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴DB∥EC,∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴AC∥DF21.(8分)如图,在长方形ABCD中,AB=10 cm,BC=6 cm,试问将长方形ABCD沿着BC方向平移多少才能够使平移后的长方形与原来的长方形ABCD重叠部分的面积为20 cm2?解:由题意知长方形CDEF的面积为20 cm2,∴10×DE=20,∴DE=2,∴AE=6-2=4,即将长方形ABCD沿着BC方向平移4 cm22.(10分)如图,∠BAP+∠APD=180°,∠1=∠2,求证:∠E=∠F.解:∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,又∵∠1=∠2,∴∠EAP=∠FPA,∴AE∥PF,∴∠E=∠F23.(10分)如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.解:∵∠3=∠4,∴CF∥BD,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠BGD,∵∠1=∠2,∴∠1=∠BGD,∴ED∥FB24.(10分)如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC 于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)求证:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,求证:DF平分∠AFE.解:(1)∵∠1+∠AFE=180°,∠CFE+∠AFE=180°,∴∠1=∠CFE,∴BC∥EF (2)∵∠BEG=∠EDF,∴DF∥EH,∴∠DFE=∠GEF,由(1)知BC∥EF,∴∠GEF=∠2,∴∠DFE=∠2,∵∠2=∠3,∴∠DFE=∠3,∴DF平分∠AFE25.(12分)如图①,在四边形ABCD中,∠ABC+∠ADC=180°,BE,DF分别是∠ABC 与∠ADC的平分线,∠1与∠2互余.(1)试判断直线BE与DF的位置关系,并说明理由;(2)如图②,延长CB,DF相交于点G,过点B作BH⊥FG,垂足为H,试判断∠FBH与∠GBH的大小关系,并说明理由.解:(1)BE∥DF.理由:∵BE,DF分别平分∠ABC和∠ADC,∴∠1=12∠ADC,∠ABE=12∠ABC,∵∠ABC+∠ADC=180°,∴∠1+∠ABE=12∠ADC+12∠ABC=12(∠ADC+∠ABC)=12×180°=90°,即∠1+∠ABE=90°,又∵∠1+∠2=90°,∴∠ABE=∠2,∴BE∥DF(2)∠FBH=∠GBH.理由:∵BH⊥FG,∴∠BHG=90°,由(1)知,BE∥DF,∴∠EBH=∠BHG=90°,∴∠FBH+∠ABE=90°,∠GBH+∠CBE=180°-90°=90°,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠FBH=∠GBH。

人教版七年级数学下册平行线的判定练习题含答案

人教版七年级数学下册平行线的判定练习题含答案
10.4
【分析】先根据切线的性质得出BC⊥AB,再根据平行线的判定得出 ,再根据平行线分线段成比例,得出 ,根据点O是AB的中点, cm,求出OD,即可得出结果.
【详解】解:∵ 切⊙O于 ,
∴BC⊥AB,
∵DO⊥AB,
∴ ,
∴ ,
∵点O是AB的中点,
∴ ,
∴ ,
∵ cห้องสมุดไป่ตู้,
∴OD=4cm,
∵OA=OD,
【详解】解:A、∵∠1=∠2,
∴AD BC(内错角相等,两直线平行),故此选项不符合题意;
B、∵∠BAD+∠ABC=180°,
∴AD BC(同旁内角互补,两直线平行),故此选项不符合题意;
C、∵∠3=∠4,
∴AD BC(内错角相等,两直线平行),故此选项不符合题意;
D、∵∠ABD=∠BDC,
∴AB CD(内错角相等,两直线平行),故此选项符合题意;
故选:D.
【点睛】此题主要考查了平行线的判定,熟记平行线的判定定理是解题关键.
6.D
【分析】根据平行线的判定逐一判定即可.
【详解】解:A.由 不能推理出 ,故不符合题意;
B.由 不能推理出 ,故不符合题意;
C.由 不能推理出 ,故不符合题意;
D. ∵∠4+∠5=180°时能推出 ,又∵∠1=∠5,∴由 能推理出 ,故符合题意;
∴∠1=()
又∵AC⊥BC于C,EF⊥BC于F(已知)
∴EF ()
∴∠2=()
∴∠1=∠2()
13.如图,四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,则BE与DF有何位置关系?试说明理由.
14.如图,已知AC⊥BC于点C,∠B=70º,∠ACD=20º.

2019-2020浙教版七年级数学下册第一章平行线单元测试卷解析版

2019-2020浙教版七年级数学下册第一章平行线单元测试卷解析版

2019-2020浙教版七年级数学下册第一章平行线单元测试卷一.选择题(共12小题)1.如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为()A.4B.8C.12D.162.观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.13.下列说法中,正确的是()A.两条不相交的直线叫平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥cD.两条直线不相交就平行4.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的条件的个数有()A.1B.2C.3D.45.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°6.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个7.把如图图形进行平移,能得到的图形是()A.B.C.D.8.下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走.A.③B.②③C.①②④D.①②⑤9.通过平移,可将如图中的福娃“欢欢”移动到图()A.B.C.D.10.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A.B.C.D.11.如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A.6cm B.(6﹣2)cm C.3cm D.(4﹣6)cm 12.如图,如果把图中任一条线段沿方格线平移1格称为“1步”,那么要通过平移使图中的3条线段首尾相接组成一个三角形,最少需要()A.4步B.5步C.6步D.7步二.填空题(共8小题)13.如图,如果∠1=40°,∠2=100°,∠3的同旁内角等于.14.平面上两条直线的位置关系是或.15.若AB∥CD,AB∥EF,则CD EF,其理由是.16.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有.17.一块矩形场地,长为101米,宽为70米,从中留出如图所示的宽为1米的小道,其余部分种草,则草坪的面积为m2.18.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为m2.19.如图所示,把直角梯形ABCD沿AD方向平移到梯形EFGH,HG=24cm,WG=8cm,WC=6cm,求阴影部分的面积为cm2.20.如图,将周长为15cm的△ABC沿射线BC方向平移2cm后得到△DEF,则四边形ABFD 的周长为cm.三.解答题(共8小题)21.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?22.按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.23.如图,直线AE、CF分别被直线EF、AC所截,已知,∠1=∠2,AB平分∠EAC,CD 平分∠ACG.将下列证明AB∥CD的过程及理由填写完整.证明:因为∠1=∠2,所以∥,()所以∠EAC=∠ACG,()因为AB平分∠EAC,CD平分∠ACG,所以=,=,所以=,所以AB∥CD().24.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.25.如图所示,一块边长为8米的正方形土地,上面修了横竖各有两条道路,宽都是2米,空白的部分种上各种花草,请利用平移的知识求出种花草的面积.26.宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,求买地毯至少需要多少元?27.如图,桌面内,直线l上摆放着两块大小相同的直角三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到图的位置,使E点落在AB上,即点E′,点P为AC与E′D′的交点.(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.28.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)附加题:在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于.(在横线上填上答案即可).参考答案与试题解析一.选择题(共12小题)1.如图,若两条平行线EF,MN与直线AB,CD相交,则图中共有同旁内角的对数为()A.4B.8C.12D.16【分析】此题旨在考查同旁内角的定义,要正确解答应把握以下几点:1、分清截线与被截直线,2、作为同旁内角的两个角应在截线的同旁,被截直线之间.【解答】解:以CD为截线,①若以EF、MN为被截直线,有2对同旁内角,②若以AB、EF为被截直线,有2对同旁内角,③若以AB、MN为被截直线,有2对同旁内角;综上,以CD为截线共有6对同旁内角.同理:以AB为截线又有6对同旁内角.以EF为截线,以AB、CD为被截直线,有2对同旁内角,以MN为截线,以AB、CD为被截直线,有2对同旁内角,综上,共有16对同旁内角.故选D.【点评】解答此题的关键在掌握同旁内角的概念,注意要对截线的情况进行讨论.2.观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【分析】根据长方体即平行线的性质解答.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【点评】本题考查了平行线的定义、长方体的性质.一个长方形的两条对边平行.3.下列说法中,正确的是()A.两条不相交的直线叫平行线B.一条直线的平行线有且只有一条C.若直线a∥b,a∥c,则b∥cD.两条直线不相交就平行【分析】根据平行线的定义判断A;根据平行线的性质判断B;根据平行公理的推论判断C;根据两条直线的位置关系判断D.【解答】解:A、在同一平面内不相交的两条直线叫做平行线,故本选项错误;B、一条直线的平行线有无数条,故本选项错误;C、若直线a∥b,a∥c,则b∥c,满足平行公理的推论,故本选项正确;D、在同一平面内两条直线不相交就平行,故本选项错误.故选:C.【点评】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.4.如图,有以下四个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的条件的个数有()A.1B.2C.3D.4【分析】根据平行线的判定定理求解,即可求得答案.【解答】解:①∵∠B+∠BDC=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴能得到AB∥CD的条件是①③④.故选:C.【点评】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.5.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°【分析】延长ED交BC于F,根据平行线的性质求出∠MFC=∠B=75°,求出∠FDC =35°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.【解答】解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=40°,故选:C.【点评】本题考查了三角形外角性质,平行线的性质的应用,解此题的关键是求出∠MFC的度数,注意:两直线平行,同位角相等.6.如图,如果∠1=∠2,DE∥BC,则下列结论正确的个数为()(1)FG∥DC;(2)∠AED=∠ACB;(3)CD平分∠ACB;(4)∠1+∠B=90°;(5)∠BFG=∠BDC.A.1个B.2个C.3个D.4个【分析】由平行线的性质得出内错角相等、同位角相等,得出(2)正确;再由已知条件证出∠2=∠DCB,得出FG∥DC,(1)正确;由平行线的性质得出(5)正确;即可得出结果.【解答】解:∵DE∥BC,∴∠DCB=∠1,∠AED=∠ACB,(2)正确;∵∠1=∠2,∴∠2=∠DCB,∴FG∥DC,(1)正确;∴∠BFG=∠BDC,(5)正确;正确的个数有3个,故选:C.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.7.把如图图形进行平移,能得到的图形是()A.B.C.D.【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【解答】解:观察图形可知图形进行平移,能得到的图形C,故选:C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.8.下列现象属于平移的是()①打气筒活塞的轮复运动,②电梯的上下运动,③钟摆的摆动,④转动的门,⑤汽车在一条笔直的马路上行走.A.③B.②③C.①②④D.①②⑤【分析】根据平移的定义即可作出判断.【解答】解:①②⑤都是平移现象;③④是旋转.故选:D.【点评】本题主要考查了生活中的平移现象,正确理解平移的定义是关键.9.通过平移,可将如图中的福娃“欢欢”移动到图()A.B.C.D.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于图形旋转所得到,故错误;B、属于图形旋转所得到,故错误;C、图形形状大小没有改变,符合平移性质,故正确;D、属于图形旋转所得到,故错误.故选:C.【点评】本题考查图形的平移变换.图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,以致选错.10.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A.B.C.D.【分析】根据平移的性质,利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离,然后比较它们的大小即可.【解答】解:A、平移的距离=1+2=3,B、平移的距离=2+1=3,C、平移的距离==,D、平移的距离=2,故选:C.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.解决本题的关键是利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离.11.如图,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕点C顺时针旋转90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使点B′落在原三角板ABC的斜边AB上,则三角板A′B′C′平移的距离为()A.6cm B.(6﹣2)cm C.3cm D.(4﹣6)cm 【分析】根据直角三角形30°角所对的直角边等于斜边的一半求出BC,再利用勾股定理列式求出AC,然后求出AB′,过点B′作B′D⊥AC交AB于D,然后解直角三角形求出B′D即可.【解答】解:∵AB=12cm,∠A=30°,∴BC=AB=×12=6cm,由勾股定理得,AC===6cm,∵三角板ABC绕点C顺时针旋转90°得到三角板A′B′C′,∴B′C′=BC=6cm,∴AB′=AC﹣B′C′=6﹣6,过点B′作B′D⊥AC交AB于D,则B′D=AB′=×(6﹣6)=(6﹣2)cm.故选:B.【点评】本题考查了平移的性质,旋转变换的性质,解直角三角形,熟练掌握各性质是解题的关键,作出图形更形象直观.12.如图,如果把图中任一条线段沿方格线平移1格称为“1步”,那么要通过平移使图中的3条线段首尾相接组成一个三角形,最少需要()A.4步B.5步C.6步D.7步【分析】根据图示和平移的性质,注意正确的计数,查清方格的个数,从而求出步数.【解答】解:由图形知,中间的线段向左平移1个单位,上边的直线向右平移2个单位,最下边的直线向上平移2个单位,只有这样才能使构造的三角形平移的次数最少,其它平移方法都多于5步.∴通过平移使图中的3条线段首尾相接组成一个三角形,最少需要5步.故选:B.【点评】本题考查图形的平移变换,注意平移不改变图形的形状和大小且平移前后图形对应点之间的连线应该互相平行,另外使平移后成为三角形.二.填空题(共8小题)13.如图,如果∠1=40°,∠2=100°,∠3的同旁内角等于100°.【分析】根据同旁内角的定义可得∠3的同旁内角是∠4,根据对顶角相等得到∠2=∠4,可得答案.【解答】解:∵∠2=100°,∴∠4=100°.故答案为:100°.【点评】此题主要考查了同旁内角定义,以及对顶角的性质,题目比较简单.14.平面上两条直线的位置关系是相交或平行.【分析】在同一平面内不重合的两条直线,有两种位置关系:相交或平行.【解答】解:在同一平面内不重合的两条直线,有两种位置关系:相交或平行.故填相交、平行.【点评】本题主要考查平面内两直线的位置关系,注意垂直是两直线相交的特例.15.若AB∥CD,AB∥EF,则CD∥EF,其理由是平行于同一直线的两直线平行.【分析】根据平行公理及推论即可推出答案.【解答】解:∵AB∥CD,AB∥EF,∴CD∥EF(平行于同一直线的两直线平行),故答案为:∥,平行于同一直线的两直线平行.【点评】本题主要考查对平行公理及推论的理解和掌握,能熟练地运用性质进行推理是解此题的关键.16.如图,∠1=∠2,∠2=∠C,则图中互相平行的直线有AB∥CD,EF∥CG.【分析】由∠2=∠C,根据同位角相等,两直线平行得到EF∥CG;而∠1=∠2,等量代换得到∠1=∠C,则AB∥CD.【解答】解:∵∠2=∠C,∴EF∥CG,又∵∠1=∠2,∴∠1=∠C,∴AB∥CD.故答案为EF∥CG,AB∥CD.【点评】本题考查了直线平行的判定:同位角相等,两直线平行.17.一块矩形场地,长为101米,宽为70米,从中留出如图所示的宽为1米的小道,其余部分种草,则草坪的面积为6900m2.【分析】直接利用平移的性质,将小道平移到矩形场地周围进而得出答案.【解答】解:由题意可得:草坪的面积为:(101﹣1)×(70﹣1)=6900(m2).故答案为:6900.【点评】此题主要考查了生活中的平移现象,正确利用平移的性质是解题关键.18.如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条”之”字路,余下部分绿化,道路的宽为2米,则绿化的面积为540m2.【分析】把两条”之”字路平移到长方形地块ABCD的最上边和最左边,则余下部分EFCG是矩形,根据矩形的面积公式即可求出结果.【解答】解:如图,把两条”之”字路平移到长方形地块ABCD 的最上边和最左边,则余下部分EFGH 是矩形.∵CF =32﹣2=30(米),CG =20﹣2=18(米),∴矩形EFCG 的面积=30×18=540(平方米).答:绿化的面积为540m 2.故答案为:540.【点评】将长方形地块内部修筑的两条”之”字路平移到长方形ABCD 的最上边和最左边,使余下部分EFGH 是一个矩形,是解决本题的关键.19.如图所示,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,HG =24cm ,WG =8cm ,WC =6cm ,求阴影部分的面积为 168 cm 2.【分析】根据平移的性质得HG =CD =24,则DW =DC ﹣WC =18,由于S 阴影部分+S 梯形EDWF =S 梯形DHGW +S 梯形EDWF ,所以S 阴影部分=S 梯形DHGW ,然后根据梯形的面积公式计算.【解答】解:∵直角梯形ABCD 沿AD 方向平移到梯形EFGH ,∴HG =CD =24,∴DW =DC ﹣WC =24﹣6=18,∵S 阴影部分+S 梯形EDWF =S 梯形DHGW +S 梯形EDWF ,∴S 阴影部分=S 梯形DHGW =(DW +HG )×WG=×(18+24)×8=168(cm 2).故答案为168.【点评】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.20.如图,将周长为15cm的△ABC沿射线BC方向平移2cm后得到△DEF,则四边形ABFD 的周长为19cm.【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC即可得出答案.【解答】解:根据题意,将周长为15cm的△ABC沿BC向右平移2cm得到△DEF,∴AD=2cm,BF=BC+CF=BC+2cm,DF=AC;又∵AB+BC+AC=15cm,∴四边形ABFD的周长=AD+AB+BF+DF=2+AB+BC+2+AC=19cm.故答案为:19.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.三.解答题(共8小题)21.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?【分析】根据同位角的概念作答.准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.【解答】解:∠1和∠2是直线EF、DC被直线AB所截形成的同位角,∠1和∠3是直线AB、CD被直线EF所截形成的同位角.【点评】同位角,即位置相同,两个角都在第三条直线的同旁,同在被截两条直线的上方或下方.在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系.22.按要求完成作图,并回答问题;如图在△ABC中:(1)过点A画BC的垂线,垂足为E;(2)画∠ABC的平分线,交AC于F;(3)过E画AB的平行线,交AC于点G;(4)过点C画AB所在的直线的垂线段,垂足为H.【分析】(1)借用量角器,测出∠AEC=90°即可;(2)利用角平分线的作法作出∠ABC的平分线;(3)利用平行线的性质:同位角相等,作图;(4)借用量角器,测出∠AHC=90°即可.【解答】解:(1)作法利用量角器测得∠AEC=90°,AE即为所求;(2)作法:①以点B为圆心,以任意长为半径画弧,两弧交∠ABC两边于点M,N.②分别以点M,N为圆心,以大于MN的长度为半径画弧,两弧交于点P③作射线BP,则射线BP为角ABC的角平分线;④射线BP交AC于点F;(3)作法:用量角器测得∠ABC=∠GEC,EG即为所求;(4)作法:利用量角器测得∠BHC=90°,CH即为所求.【点评】本题主要考查了平行线、垂线及角平分线的画法.在解答此题时,用到的作图工具有圆规、量角器及直尺.23.如图,直线AE、CF分别被直线EF、AC所截,已知,∠1=∠2,AB平分∠EAC,CD平分∠ACG.将下列证明AB∥CD的过程及理由填写完整.证明:因为∠1=∠2,所以AE∥CF,(同位角相等,两直线平行)所以∠EAC=∠ACG,(两直线平行,内错角相等)因为AB平分∠EAC,CD平分∠ACG,所以∠3=,∠4=,所以∠3=∠4,所以AB∥CD(内错角相等,两直线平行).【分析】利用平行线的判定及性质就可求得本题.即同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.反之即为性质.【解答】证明:因为∠1=∠2,所以AE∥CF(同位角相等,两直线平行),所以∠EAC=∠ACG(两直线平行,内错角相等),因为AB平分∠EAC,CD平分∠ACG,所以∠3=,∠4=,所以∠3=∠4,所以AB∥CD(内错角相等,两直线平行).【点评】此题主要考查了平行线的判定即同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.平行线的判定即两直线平行,同位角相等.两直线平行,内错角相等.两直线平行,同旁内角互补.24.已知△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.(1)如图1,连接CE,①若CE∥AB,求∠BEC的度数;②若CE平分∠ACD,求∠BEC的度数.(2)若直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.【分析】(1)①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE =ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°﹣∠ACB=140°,根据角平分线的定义得到∠CBE=ABC=40°,∠ECD=∠ACD=70°,根据三角形的外角的性质即可得到结论;(2)①当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.【解答】解:(1)①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°﹣∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=ABC=40°,∠ECD=∠ACD=70°,∴∠BEC=∠ECD﹣∠CBE=30°;(2)①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°﹣40°﹣40°﹣90°=10°.【点评】本题考查了平行线的性质,角平分线的定义,垂直的定义,三角形的内角和,三角形的外角的性质,正确的画出图形是解题的关键.25.如图所示,一块边长为8米的正方形土地,上面修了横竖各有两条道路,宽都是2米,空白的部分种上各种花草,请利用平移的知识求出种花草的面积.【分析】根据平移的知识,把横竖各两条道路平移到正方形的边上,求剩余空白部分的面积即可.【解答】解:由平移,可把种花草的面积看成是如图边长为4米的正方形的面积.∴种花草的面积为:4×4=16(米2).【点评】利用平移的知识,把图形变换位置,可以简化计算,在实际生活中,应用很广.26.宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,求买地毯至少需要多少元?【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【解答】解:如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米,∴地毯的长度为6+4=10米,地毯的面积为10×2=20平方米,∴买地毯至少需要20×40=800元.【点评】本题考查了平移的性质,属于基础应用题,解决此题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算.27.如图,桌面内,直线l上摆放着两块大小相同的直角三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到图的位置,使E点落在AB上,即点E′,点P为AC与E′D′的交点.(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.【分析】(1)由平移的性质知,DE∥D′E′,利用两直线平行,同位角相等得∠CPD′=∠CED,故可求出∠CPD',(2)由平移的性质知,CE∥C′E′,∠CED=∠C′E′D′,利用两直线平行,同位角相等得∠BE′C′=∠BAC,故可求出∠BE′D'=90°,故结论可证.【解答】解:(1)由平移的性质知,DE∥D′E′,∴∠CPD′=∠CED=60°;(2)由平移的性质知,CE∥C′E′,∠CED=∠C′E′D′=60°,∴∠BE′C′=∠BAC=30°,∴∠BE′D′=90°∴AB⊥E′D′.【点评】主要考查了平移的性质和平行线的性质.需要注意的是:平移前后图形的大小、形状都不改变.28.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)附加题:在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于60°.(在横线上填上答案即可).【分析】(1)由同旁内角互补,两直线平行证明.(2)由∠FOC=∠AOC,并且OE平分∠BOF得到∠EOC=∠EOF+∠FOCP=(∠BOF+∠FOA)=∠BOA,算出结果.(3)先得出结论,再证明.(4)由(2)(3)的结论可得.【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°;∵∠A=∠B,∴∠A+∠O=180°,∴OB∥AC.(3分)(2)∵∠A=∠B=100°,由(1)得∠BOA=180°﹣∠B=80°;∵∠FOC=∠AOC,并且OE平分∠BOF,∴∠EOF=∠BOF∠FOC=∠FOA,∴∠EOC=∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°.(3分)(3)结论:∠OCB:∠OFB的值不发生变化.理由为:∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2.(4分)(4)由(1)知:OB∥AC,∴∠OCA=∠BOC,由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β∠OEB=∠EOC+∠ECO=α+β+β=α+2β∵∠OEB=∠OCA∴2α+β=α+2β∴α=β∵∠AOB=80°,∴α=β=20°∴∠OCA=2α+β=40°+20°=60°.故答案是:60°.(3分)【点评】本题考查平移和平行线的性质的有关知识.平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册第一单元《平行线》探究题一.解答题(共15小题)1.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB的度数为;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.2.已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.3.如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.4.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.5.AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向移动,使得点B在点A的右侧,其他条件不变,若∠ABC=n°,求∠BED的度数(用含n的代数式表示).6.已知直线l1∥l2,点A是l1上的动点,点B在l1上,点C、D在l2上,∠ABC,∠ADC的平分线交于点E(不与点B,D重合).(1)若点A在点B的左侧,∠ABC=80°,∠ADC=60°,过点E作EF∥l1,如图①所示,求∠BED的度数.(2)若点A在点B的左侧,∠ABC=α°,∠ADC=60°,如图②所示,求∠BED的度数;(直接写出计算的结果)(3)若点A在点B的右侧,∠ABC=α°,∠ADC=60°,如图③所示,求∠BED的度数.7.已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d 与直线a、b分别相交于A、B两点.(1)如图1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为;(3)如图3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为.8.如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.9.如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45(1)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图②,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角尺OMN绕点O按每秒15°的速度沿逆时针方向旋转一周,在旋转的过程中,在第秒时,边MN恰好与边CD平行;在第秒时,直线MN恰好与直线CD垂直.(直接写出结果)10.如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分.(1)如图(1),当动点P落在第①部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是(1)如图(2),当动点P落在第②部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是(3)如图(3),当动点P落在第③部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是(4)选择以上一种结论加以证明.11.如图1,将两根笔直细木板MN、EF用图钉固定并平行摆放,将一根橡皮筋拉直后用图钉分别固定在MN、EF上,橡皮筋的两端点分别记为点A、点B.(1)图1中,若∠1=110°,则∠2=度.(直接写出结果,不需说理)(2)P为橡皮筋上一点,利用橡皮筋的弹性拉动橡皮筋,使A、P、B三点不在同一直线上,然后用图钉固定点P.①如图2,若点P在两细木棒所在直线之间,且∠1+∠2=90°,试判断线段AP与BP所在直线的位置关系,并说明理由;②如图3,若点P在两细木棒所在直线的同侧,且∠1+∠2=90°,∠APB=28°,试求∠1、∠2的度数.(3)P1、P2为AB上两点,拉动橡皮筋并固定如图4,若∠1+∠2=90°,则∠AP1P2+∠BP2P1=度.(直接写出结果,不需说理)12.已知,如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD之间的关系,请你从所得到的关系中任选一个加以证明(温馨提示:添加适当辅助线)(1)在图1中,∠APC与∠PAB,∠PCD之间的关系是:.(2)在图2中,∠APC与∠PAB,∠PCD之间的关系是:.(3)在图3中,∠APC与∠PAB,∠PCD之间的关系是:.(4)在图4中,∠APC与∠PAB,∠PCD之间的关系是:.(5)在图中,求证:.13.学习平行线性质后,老师让学生完成教材第135页练习中第2题,并针对这道题做深入的探究,看有什么新发现:题目:如图,AB∥DE,BC∥EF.求证:∠B=∠E.下面是小明和小红探究完成这道题的过程.请补充完整:(1)小明发现,利用平行线性质,这道题很容易证明.小明利用的平行线性质可能是.(2)小红说她的方法和小明的不一样,小红利用的平行线性质可能是.(3)继续探究后,小明说:“我发现这道题可以用文字语言这样叙述:如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.”小红针对小明的叙述做深入探究后说:“针对这道题你的说法是对的,因为这道题给出了图形,如果没有给出图形,你说的“如果一个角的两边分别平行于另一个角的两边,那么这两个角相等是不准确的,我发现它还存在另外一种情况.”你认为小红的说法是否正确?若正确,请就小红说的“还存在另外一种情况”画出图形,给出证明,并补充修改小明给出的文字语言叙述.若不正确,请说明理由.14.已知,如图,l1∥l2.(1)如图1,过点P作l1的平行线,可证∠APB,∠A,∠B之间的等量关系是:∠APB=∠A+∠B.(2)如图2,请你写出∠APB,∠A,∠B之间的等量关系,并证明.(3)如图3,请你直接写出∠P1,∠P2,∠P3,∠P4,∠P5之间的等量关系为:.15.几何问题中,当图形的位置改变时,与之相关的某些数量关系也会随之发生变化,完成探究:(1)若AB∥CD,同一平面内另一点E在AB与CD之间时,如图1,求证:∠B+∠D=∠E;(2)若AB∥CD,同一平面内另一点E在AB的上面时,如图2,试探究∠B,∠D,∠E之间的关系式并证明你的结论;(3)若AB∥CD,同一平面内另一点E在CD的下面时,如图3,直接写出∠B,∠D,∠E之间的关系式;(4)若AB∥CD,同一平面内另一点E在AB与CD之间时,如图4,直接写出∠B、∠D、∠E之间的关系式.七年级下册第一单元《平行线》探究题参考答案与试题解析一.解答题(共15小题)1.(2016春•周口期末)将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)①若∠DCE=45°,则∠ACB的度数为135°;②若∠ACB=140°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由.(3)当∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.【分析】(1)①首先计算出∠DCB的度数,再用∠ACD+∠DCB即可;②首先计算出∠DCB的度数,再计算出∠DCE即可;(2)根据(1)中的计算结果可得∠ACB+∠DCE=180°,再根据图中的角的和差关系进行推理即可;(3)根据平行线的判定方法可得.【解答】解:(1)①∵∠ECB=90°,∠DCE=45°,∴∠DCB=90°﹣45°=45°,∴∠ACB=∠ACD+∠DCB=90°+45°=135°,故答案为:135°;②∵∠ACB=140°,∠ACD=90°,∴∠DCB=140°﹣90°=50°,∴∠DCE=90°﹣50°=40°;(2)∠ACB+∠DCE=180°,∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;(3)存在,当∠ACE=30°时,AD∥BC,当∠ACE=∠E=45°时,AC∥BE,当∠ACE=120°时,AD∥CE,当∠ACE=135°时,BE∥CD,当∠ACE=165°时,BE∥AD.【点评】此题主要考查了角的计算,以及平行线的判定,关键是理清图中角的和差关系.2.(2016春•乐业县期末)已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=180°;(2)∠1+∠2+∠3=360°;(3)∠1+∠2+∠3+∠4=540°;(4)试探究∠1+∠2+∠3+∠4+…+∠n=(n﹣1)180°.【分析】(1)中,根据两条直线平行,同旁内角互补作答;(2)过点E作平行于AB的直线,运用两次两条直线平行,同旁内角互补即可得到三个角的和;(3)分别过点E,F作AB的平行线,运用三次平行线的性质,即可得到四个角的和;(4)同样作辅助线,运用(n﹣1)次平行线的性质,则n个角的和是(n﹣1)180°.【解答】解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∵AB∥CD,∵AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,∵AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)中,根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).【点评】注意此类题要构造平行线,运用平行线的性质进行解决.3.(2016春•广水市期末)如图,直线CB∥OA,∠C=∠OAB=100°,E、F在CB 上,且满足∠FOB=∠AOB,OE平分∠COF(1)求∠EOB的度数;(2)若平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,找出变化规律或求出变化范围;若不变,求出这个比值.(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=∠OBA?若存在,求出其度数;若不存在,说明理由.【分析】(1)根据两直线平行,同旁内角互补求出∠AOC,然后求出∠EOB=∠AOC,计算即可得解;(2)根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠OFC=2∠OBC,从而得解;(3)根据三角形的内角和定理求出∠COE=∠AOB,从而得到OB、OE、OF是∠AOC的四等分线,再利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COF,∴∠COE=∠EOF,∵∠FOB=∠AOB,∴∠EOB=∠EOF+∠FOB=∠AOC=×80°=40°;(2)∵CB∥OA,∴∠AOB=∠OBC,∵∠FOB=∠AOB,∴∠FOB=∠OBC,∴∠OFC=∠FOB+∠OBC=2∠OBC,∴∠OBC:∠OFC=1:2,是定值;(3)在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OE、OF是∠AOC的四等分线,∴∠COE=∠AOC=×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,故存在某种情况,使∠OEC=∠OBA,此时∠OEC=∠OBA=60°.【点评】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.4.(2016春•大同期末)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P 在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明.【分析】此题三个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,来得出∠1、∠2、∠3的数量关系.【解答】证明:(1)过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.(2)关系:∠3=∠2﹣∠1;过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPF﹣∠QPE,∴∠3=∠2﹣∠1.(3)关系:∠3=360°﹣∠1﹣∠2.过P作PQ∥l1∥l2;同(1)可证得:∠3=∠CEP+∠DFP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠CEP+∠DFP+∠1+∠2=360°,即∠3=360°﹣∠1﹣∠2.【点评】此题主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.5.(2016春•吴中区校级期末)AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC=n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向移动,使得点B在点A的右侧,其他条件不变,若∠ABC=n°,求∠BED的度数(用含n的代数式表示).【分析】(1)根据角平分线的定义可得∠EDC=∠ADC,然后代入数据计算即可得解;(2)根据角平分线的定义表示出∠CBE,再根据两直线平行,内错角相等可得∠BCD=∠ABC,然后根据三角形的内角和定理列式整理即可;(3)根据角平分线的定义求出∠ADE、∠ABE,根据两直线平行,同旁内角互补求出∠BAD,再根据四边形的内角和定理列式计算即可得解.【解答】解:(1)∵DE平分∠ADC,∠ADC=70°,∴∠EDC=∠ADC=35°;(2)∵BE平分∠ABC,∴∠CBE=∠ABC=n°,∵AB∥CD,∴∠BCD=∠ABC=n°,∴∠CBE+∠BED=∠EDC+∠BCD,即n°+∠BED=35°+n°,解得∠BED=35°+n°;(3)如图,∵BE平分∠ABC,DE平分∠ADC,∴∠ADE=∠ADC=35°,∠ABE=∠ABC=n°,∵AB∥CD,∴∠BAD=180°﹣∠ADC=180°﹣70°=110°,在四边形ADEB中,∠BED=360°﹣110°﹣35°﹣n°=215°﹣n°.【点评】本题考查了平行线的性质,角平分线的定义,熟记性质并准确识图是解题的关键.6.(2016春•大冶市期末)已知直线l1∥l2,点A是l1上的动点,点B在l1上,点C、D在l2上,∠ABC,∠ADC的平分线交于点E(不与点B,D重合).(1)若点A在点B的左侧,∠ABC=80°,∠ADC=60°,过点E作EF∥l1,如图①所示,求∠BED的度数.(2)若点A在点B的左侧,∠ABC=α°,∠ADC=60°,如图②所示,求∠BED的度数;(直接写出计算的结果)(3)若点A在点B的右侧,∠ABC=α°,∠ADC=60°,如图③所示,求∠BED的度数.【分析】(1)根据BE、DE分别是∠ABC,∠ADC的平分线,得出∠ABE=∠ABC,∠CDE=∠ADC,再由平行线的性质得出∠BEF=∠ABE,同理可得出∠DEF=∠CDE,再由∠BED=∠BEF+∠DEF即可得出结论;(2)过点E作EF∥AB,同(1)的证明过程完全相同;(3)过点E作EF∥L1,根据BE,DE分别是∠ABC、∠ADC平分线可知∠ABE=∠ABC=α°,∠CDE=∠ADC,再由EF∥L1可知∠BEF=(180﹣α)°.根据L1∥L2可知EF∥L2,故∠DEF=∠CDE=30°,所以∠BED=∠BEF+∠DEF.【解答】解:(1)∵BE、DE分别是∠ABC,∠ADC的平分线,∴∠ABE=∠ABC=×80°=40°,∠CDE=∠ADC=×60°=30°.∵EF∥L1,∴∠BEF=∠ABE=40°.∵L1∥L2∴EF∥L2∴∠DEF=∠CDE=30°∴∠BED=∠BEF+∠DEF=40°+30°=70°;(2)BE、DE分别是∠ABC,∠ADC的平分线,∴∠ABE=∠ABC=α°,∠CDE=∠ADC=×60°=30°.∵EF∥L1,∴∠BEF=∠ABE=α°.∵L1∥L2,∴EF∥L2,∴∠DEF=∠CDE=30°∴∠BED=∠BEF+∠DEF=α°+30°,即∠BED=(α+30)°;(3)过点E作EF∥L1,∵BE,DE分别是∠ABC、∠ADC平分线,∴∠ABE=∠ABC=α°,∠CDE=∠ADC=×60°=30°.∵EF∥L1,∴∠BEF=(180﹣α)°.又∵L1∥L2∴EF∥L2∴∠DEF=∠CDE=30°∴∠BED=∠BEF+∠DEF=(180﹣α+30)°=(210﹣α)°.【点评】本题考查的是平行线的性质,根据题意作出平行线,再由平行线的性质及三角形外角的性质即可得出结论.7.(2016春•高阳县期末)已知:如图,直线a∥b,直线c与直线a、b分别相交于C、D两点,直线d与直线a、b分别相交于A、B两点.(1)如图1,当点P在线段AB上(不与A、B两点重合)运动时,∠1、∠2、∠3之间有怎样的大小关系?请说明理由;(2)如图2,当点P在线段AB的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠1=∠2+∠3;(3)如图3,当点P在线段BA的延长线上运动时,∠1、∠2、∠3之间的大小关系为∠2=∠1+∠3.【分析】(1)过点P作a的平行线,根据平行线的性质进行解题;(2)过点P作b的平行线PE,由平行线的性质可得出a∥b∥PE,由此即可得出结论;(3)设直线AC与DP交于点F,由三角形外角的性质可得出∠1+∠3=∠PFA,再由平行线的性质即可得出结论.【解答】解:(1)如图1,过点P作PE∥a,则∠1=∠CPE.∵a∥b,PE∥a,∴PE∥b,∴∠2=∠DPE,∴∠3=∠1+∠2;(2)如图2,过点P作PE∥b,则∠2=∠EPD,∵直线a∥b,∴a∥PE,∴∠1=∠3+∠EPD,即∠1=∠2+∠3.故答案为:∠1=∠2+∠3;(3)如图3,设直线AC与DP交于点F,∵∠PFA是△PCF的外角,∴∠PFA=∠1+∠3,∵a∥b,∴∠2=∠PFA,即∠2=∠1+∠3.故答案为:∠2=∠1+∠3.【点评】本题考查的是平行线的性质,根据题意作出平行线,利用平行线的性质解答是解答此题的关键.8.(2016秋•德惠市期末)如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是120°;②∵AM∥BN,∴∠ACB=∠CBN;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是30°.【分析】(1)由平行线的性质:两直线平行同旁内角互补和内错角相等可得;(2)由(1)知∠ABP+∠PBN=120°,再根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=120°,即∠CBD=∠CBP+∠DBP=60°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据∠ABN=120°,∠CBD=60°可得答案.【解答】解:(1)①∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;②∵AM∥BN,∴∠ACB=∠CBN,故答案为:120°,∠CBN;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣60°=120°,∴∠ABP+∠PBN=120°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=120°,∴∠CBD=∠CBP+∠DBP=60°;(3)不变,∠APB:∠ADB=2:1.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,由(1)可知∠ABN=120°,∠CBD=60°,∴∠ABC+∠DBN=60°,∴∠ABC=30°,故答案为:30°.【点评】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.9.(2016春•万州区期末)如图①,将一副直角三角板放在同一条直线AB上,其中∠ONM=30°,∠OCD=45(1)将图①中的三角板OMN绕点O按逆时针方向旋转,使∠BON=30°,如图②,MN与CD相交于点E,求∠CEN的度数;(2)将图①中的三角尺OMN绕点O按每秒15°的速度沿逆时针方向旋转一周,在旋转的过程中,在第5或17秒时,边MN恰好与边CD平行;在第11或23秒时,直线MN恰好与直线CD垂直.(直接写出结果)【分析】(1)根据内错角相等,两直线平行判断出MN∥BC,再根据两直线平行,同旁内角互补解答;(2)作出图形,然后分两种情况求出旋转角,再根据时间=旋转角÷速度计算即可得解.【解答】解:(1)∵∠BON=∠N=30°,∴MN∥BC,∴∠CEN=180°﹣∠DCO=180°﹣45°=135°;(2)如图,MN∥CD时,旋转角为90°﹣(60°﹣45°)=75°,或270°﹣(60°﹣45°)=255°,所以,t=75°÷15°=5秒,或t=255°÷15°=17秒;MN⊥CD时,旋转角为90°+(180°﹣60°﹣45°)=165°,或360°﹣(60°﹣45°)=345°,所以,t=165°÷15°=11秒,或t=345°÷15°=23秒.故答案为:5或17;11或23.【点评】本题考查平行线的判定与性质,解题的关键在于(3)分情况讨论,作出图形更形象直观.10.(2016春•孝南区期末)如图,直线AC∥BD,连接AB,直线AC、BD及线段AB把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分.(1)如图(1),当动点P落在第①部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是∠PAC+∠APB+∠PBD=360°(1)如图(2),当动点P落在第②部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是∠PAC+∠PBD=∠APB(3)如图(3),当动点P落在第③部分时,直接写出∠PAC、∠APB、∠PBD三个角的数量关系是∠PAC=∠APB+∠PBD(4)选择以上一种结论加以证明.【分析】(1)过点P作PE∥AC,根据平行线的性质即可得出结论;(2)过点P作PE∥AC,根据AC∥PE可得出∠APE=∠CAP,再由PE∥BD可得出∠EPB=∠PBD,故可得出结论;(3)延长BA,由三角形外角的性质可得出∠PBD=∠PBA+∠ABD,∠PAC=∠PAF+∠CAF,再由平行线的性质得出∠ABD=∠CAF,进而可得出结论;(4)证明(1)即可.【解答】解:(1)如图(1),过点P作PE∥AC,则∠PAC+∠APE=180°.∵AC∥BD,∴PE∥BD,∴∠BPE+∠PBD=180°,∴∠PAC+∠APB+∠PBD=360°.故答案为:∠PAC+∠APB+∠PBD=360°;(2)如图(2),过点P作PE∥AC,则∠APE=∠CAP,∵AC∥BD,PE∥AC,∴PE∥BD,∴∠EPB=∠PBD,∴∠PAC+∠PBD=∠APB.故答案为:∠PAC+∠PBD=∠APB;(3)如图(3),延长BA,则∠PBD=∠PBA+∠ABD,∠PAC=∠PAF+∠CAF,∵AB∥CD,∴∠ABD=∠CAF,∴∠PAC﹣∠PBD=∠PAF﹣∠PBA,而∠PBA+∠APB=∠PAF,∴∠APB=∠PAC﹣∠PBD,∴∠PAC=∠APB+∠PBD.故答案为:∠PAC=∠APB+∠PBD;(4)例如(1),过点P作PE∥AC,则∠PAC+∠APE=180°.∵AC∥BD,∴PE∥BD,∴∠BPE+∠PBD=180°,∴∠PAC+∠APB+∠PBD=360°.【点评】本题考查的是平行线的性质,根据题意作出辅助线,构造出平行线,利用平行线的性质求解是解答此题的关键.11.(2016春•宿迁校级期末)如图1,将两根笔直细木板MN、EF用图钉固定并平行摆放,将一根橡皮筋拉直后用图钉分别固定在MN、EF上,橡皮筋的两端点分别记为点A、点B.(1)图1中,若∠1=110°,则∠2=70度.(直接写出结果,不需说理)(2)P为橡皮筋上一点,利用橡皮筋的弹性拉动橡皮筋,使A、P、B三点不在同一直线上,然后用图钉固定点P.①如图2,若点P在两细木棒所在直线之间,且∠1+∠2=90°,试判断线段AP与BP所在直线的位置关系,并说明理由;②如图3,若点P在两细木棒所在直线的同侧,且∠1+∠2=90°,∠APB=28°,试求∠1、∠2的度数.(3)P1、P2为AB上两点,拉动橡皮筋并固定如图4,若∠1+∠2=90°,则∠AP1P2+∠BP2P1=270度.(直接写出结果,不需说理)【分析】(1)根据MN∥EF即可得出∠1+∠2=180°,结合∠1=110°即可求出∠2的度数;(2)①过点P作PC∥MN,根据MN∥EF即可得出PC∥MN∥EF,进而得出∠APC=∠1,∠BPC=∠2,再根据角与角之间的关系即可得出∠APB=∠1+∠2=90°,由此即可得出AP⊥BP;②过点P作PD∥MN,同理可得出∠APC=∠1,∠BPC=∠2,根据角与角之间的关系即可得出∠APB=∠2﹣∠1=28°,再结合∠1+∠2=90°,即可求出∠1、∠2的度数;(3)过点P1作P1C∥MN,过点P2作P2D∥MN,由MN∥EF即可得出P1C∥MN ∥EF∥P2D,从而可得出∠1=∠AP1C,∠2=∠BP2D,∠CP1P2+∠DP2P1=180°,再根据角与角之间的关系即可算出∠AP1P2+∠BP2P1的度数.【解答】解:(1)∵MN∥EF,∴∠1+∠2=180°,∵∠1=110°,∴∠2=70°.故答案为:70.(2)①AP⊥BP,理由如下:在图2中,过点P作PC∥MN,∵MN∥EF,∴PC∥MN∥EF,∴∠APC=∠1,∠BPC=∠2.∵∠APB=∠APC+∠BPC,∠1+∠2=90°,∴∠APB=90°,∴AP⊥BP.②在图3中,过点P作PD∥MN,∵MN∥EF,∴PD∥MN∥EF,∴∠DPA=∠1,∠DPB=∠2,∴∠APB=∠DPB﹣∠DPA=∠2﹣∠1=28°.又∵∠1+∠2=90°,∴∠1=31°,∠2=59°.(3)在图4中,过点P1作P1C∥MN,过点P2作P2D∥MN,∵MN∥EF,∴P1C∥MN∥EF∥P2D,∴∠1=∠AP1C,∠2=∠BP2D,∠CP1P2+∠DP2P1=180°.又∵∠1+∠2=90°,∴∠AP1P2+∠BP2P1=∠AP1C+∠CP1P2+∠BP2D+∠DP2P1=(∠AP1C+∠BP2D)+(∠CP1P2+∠DP2P1)=90°+180°=270°.故答案为:270.【点评】本题考查了平行线的性质,解题的关键是:(1)找出∠1+∠2=180°;(2)①求出∠APB=∠1+∠2=90°;②找出∠APB=∠2﹣∠1=28°;(3)根据平行线的性质找出∠1=∠AP1C,∠2=∠BP2D,∠CP1P2+∠DP2P1=180°.本题属于中档题,难度不大,解决该题型题目时,根据平行线的性质找出相等(或)互补的角是关键.12.(2016春•建昌县期末)已知,如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD之间的关系,请你从所得到的关系中任选一个加以证明(温馨提示:添加适当辅助线)(1)在图1中,∠APC与∠PAB,∠PCD之间的关系是:∠APC+∠PAB+∠PCD=360°.(2)在图2中,∠APC与∠PAB,∠PCD之间的关系是:∠APC=∠PAB+∠PCD.(3)在图3中,∠APC与∠PAB,∠PCD之间的关系是:∠PAB=∠APC+∠PCD.(4)在图4中,∠APC与∠PAB,∠PCD之间的关系是:∠PCD=∠APC+∠PAB.(5)在图2中,求证:∠APC=∠PAB+∠PCD.【分析】(1)首先过点P作PE∥AB,由AB∥CD,即可得AB∥PE∥CD,然后根据两直线平行,同旁内角互补,即可求得答案;(2)首先过点P作PE∥AB,由AB∥CD,即可得AB∥PE∥CD,然后根据两直线平行,内错角相等,即可求得答案;(3)由AB∥CD,根据两直线平行,同位角线相等,以及三角形外角的性质,即可求得答案;(4)由AB∥CD,根据两直线平行,同位角线相等,以及三角形外角的性质,即可求得答案.【解答】解:(1)∠APC+∠PAB+∠PCD=360°;(2)∠APC=∠PAB+∠PCD;(3)∠PAB=∠APC+∠PCD;(4)∠PCD=∠APC+∠PAB.(5)在图2中,求证:∠APC=∠PAB+∠PCD.证明:过P点作PE∥AB,∴∠1=∠PAB.又∵AB∥CD,PE∥CD,∴∠2=∠PCD,∴∠1+∠2=∠PAB+∠PCD,而∠APC=∠1+∠2,∴∠APC=∠PAB+∠PCD.故答案为:(1)∠APC+∠PAB+∠PCD=360°;(2)∠APC=∠PAB+∠PCD;(3)∠PAB=∠APC+∠PCD;(4)∠PCD=∠APC+∠PAB.(5)在图2中,求证:∠APC=∠PAB+∠PCD.【点评】此题考查了平行线的性质与三角形外角的性质.解题的关键是掌握两直线平行,同旁内角互补,两直线平行,内错角相等以及两直线平行,同位角相等定理的应用与辅助线的作法.13.(2016春•怀柔区期末)学习平行线性质后,老师让学生完成教材第135页练习中第2题,并针对这道题做深入的探究,看有什么新发现:题目:如图,AB∥DE,BC∥EF.求证:∠B=∠E.下面是小明和小红探究完成这道题的过程.请补充完整:(1)小明发现,利用平行线性质,这道题很容易证明.小明利用的平行线性质可能是两直线平行,内错角相等(答案不唯一).(2)小红说她的方法和小明的不一样,小红利用的平行线性质可能是两直线平行,同位角相等(答案不唯一).(3)继续探究后,小明说:“我发现这道题可以用文字语言这样叙述:如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.”小红针对小明的叙述做深入探究后说:“针对这道题你的说法是对的,因为这道题给出了图形,如果没有给出图形,你说的“如果一个角的两边分别平行于另一个角的两边,那么这两个角相等是不准确的,我发现它还存在另外一种情况.”你认为小红的说法是否正确?若正确,请就小红说的“还存在另外一种情况”画出图形,给出证明,并补充修改小明给出的文字语言叙述.若不正确,请说明理由.【分析】(1)、(2)根据平行线的性质即可得出结论;(3)根据题意画出图形,再由平行线的性质即可得出结论.【解答】解:(1)两直线平行,内错角相等(答案不唯一).(2)两直线平行,同位角相等(答案不唯一).(3)小红的说法正确,另外一种情况如图所示:证明:∵AB∥CD,∴∠B+∠CMB=180°.∵BE∥DF,∴∠CMB=∠D,∴∠B+∠D=180°.补充修改小明的文字语言叙述为:如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补.【点评】本题考查的是平行线的性质,熟知平行线的基本性质是解答此题的关键.14.(2016春•昌平区期末)已知,如图,l1∥l2.(1)如图1,过点P作l1的平行线,可证∠APB,∠A,∠B之间的等量关系是:∠APB=∠A+∠B.(2)如图2,请你写出∠APB,∠A,∠B之间的等量关系,并证明.(3)如图3,请你直接写出∠P1,∠P2,∠P3,∠P4,∠P5之间的等量关系为:∠P2+∠P4+∠P5=∠P1+∠P3+180°.【分析】(1)过P作PE∥l1,根据平行线的性质和角的和差即可得到结论;(2)过点P作PQ∥l1,根据平行线的性质和等量代换即可得到结论;(3)分别过P2,P3,P4作P2A∥l1,P3B∥l1,P4C∥l1,根据平行线的性质和角的和差即可得到结论.【解答】解:(1)过P作PE∥l1,∵l1∥l2,∴l2PE∥l1,∴∠A=∠1,∠B=∠2,∴∠APB=∠1+∠2=∠A+∠B;(2)等量关系为:∠APB﹣∠A+∠B=180°,证明:过点P作PQ∥l1,∵PQ∥l1,∴∠A=∠1,∵l1∥l2,∴PQ∥l2,∴∠2+∠B=180°,∴∠2=180°﹣∠B,∵∠2=∠APB﹣∠1,∴∠APB﹣∠1=180°﹣∠B,∵∠A=∠1,∴∠APB﹣∠A=180°﹣∠B,∴∠APB﹣∠A+∠B=180°;(3)如图3,分别过P2,P3,P4作P2A∥l1,P3B∥l1,P4C∥l1,∵l1∥l2,∴l1P2A∥P3B∥P4C,∴∠P1=∠1,∠2=∠3,∠4=∠5,∠6+∠P5=180°,∴∠P2+∠P4+∠P5=∠P1+∠P3+180°.故答案为:∠P2+∠P4+∠P5=∠P1+∠P3+180°.【点评】本题考查了培训的性质,熟练掌握平行线的性质是解题的关键.15.(2016春•仙桃期末)几何问题中,当图形的位置改变时,与之相关的某些数量关系也会随之发生变化,完成探究:(1)若AB∥CD,同一平面内另一点E在AB与CD之间时,如图1,求证:∠B+∠D=∠E;(2)若AB∥CD,同一平面内另一点E在AB的上面时,如图2,试探究∠B,∠D,∠E之间的关系式并证明你的结论;(3)若AB∥CD,同一平面内另一点E在CD的下面时,如图3,直接写出∠B,∠D,∠E之间的关系式;(4)若AB∥CD,同一平面内另一点E在AB与CD之间时,如图4,直接写出∠B、∠D、∠E之间的关系式.【分析】(1)过点E作EF∥AB,可得到EF∥CD,结合平行线的性质可证得结论;(2)先根据三角形内角与外角的关系求出∠1=∠E+∠B,再根据AB∥CD即可解答;(3)先根据三角形内角与外角的关系求出∠1=∠E+∠B,再根据AB∥CD即可解答;(4)过点E作EF∥AB,由AB∥CD,可得AB∥EF∥CD,根据两直线平行,同旁内角互补,即可求得∠B+∠BED+∠D=360°;【解答】(1)证明:过点E作EF∥AB,∵AB∥CD,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠BEF+∠DEF=∠B+∠D;(2)∠B+∠E=∠D;证明:∵∠1是△EFB的外角,∴∠1=∠ABE+∠BED,∵AB∥CD,∴∠1=∠CDE,∴∠CDE=∠ABE+∠BED;(3)∠B=∠D+∠E,理由:∵∠1是△EFD的外角,∴∠1=∠E+∠D,∵AB∥CD,∴∠1=∠B,∴∠B=∠E+∠D;(4)∠B+∠D+∠E=360°.理由如下:过点E作EF∥AB,又∵AB∥CD,∴AB∥EF∥CD,∴∠B+∠BEF=180°,∠FED+∠D=180°,∴∠B+∠BED+∠D=360°,即∠B+∠D+∠E=360°;【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目,难点在于过拐点作辅助线.41 / 41。

相关文档
最新文档