人教版七年级数学下《平行线》基础练习

合集下载

相交线与平行线(常考考点专题)(基础篇)-2022-2023学年七年级数学下册基础知识讲练(人教版)

相交线与平行线(常考考点专题)(基础篇)-2022-2023学年七年级数学下册基础知识讲练(人教版)

专题5.19 相交线与平行线(常考考点专题)(基础篇)(专项练习)一、单选题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角1.如图所示,∠1和∠2一定相等的是()A.B.C.D.2.下列四个图中,1∠互为邻补角的是()∠与2A.B.C.D.【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段3.如图,直线AB,CD相交于点O,EO∠CD,垂足为O.若∠1=54°,则∠2的度数为()A.26°B.36°C.44°D.54°4.如图,90∠=︒,点B到线段AC的距离指的是下列哪条线段的长度()AA .AB B .BC C .BD D .AD【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角 5.图中1∠与2∠是同位角的有( )A .1个B .2个C .3个D .4个6.如图,下列判断正确的是( )A .3∠与6∠是同旁内角B .2∠与4∠是同位角C .1∠与6∠是对顶角D .5∠与3∠是内错角【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离7.如图,P 为直线l 外一点,A ,B ,C 在l 上,且PB ∠l ,下列说法中,正确的个数是( )∠P A ,PB ,PC 三条线段中,PB 最短;∠线段PB 叫做点P 到直线l 的距离;∠线段AB 的长是点A 到PB 的距离;∠线段AC 的长是点A 到PC 的距离.A .1个B .2个C .3个D .4个8.如图,12l l ∥,AB CD ∥,2CE l ⊥,2FG l ⊥.则下列结论正确的是( ).A .A 与B 之间的距离就是线段ABB .AB 与CD 之间的距离就是线段AC 的长度C .1l 与2l 之间的距离就是线段CE 的长度D .1l 与2l 之间的距离就是线段CD 的长度【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法9.下列选项中,过点P 画AB 的垂线CD ,三角尺放法正确的是( )A .B .C .D .10.已知三角形ABC ,过AC 的中点D 作AB 的平行线,根据语句作图正确的是( )A.B.C.D.【考点六】相交线与平行线➽➼➵作图➻➼平移11.下列平移作图不正确的是()A.B.C.D.12.将如图图案剪成若干小块,再分别平移后能够得到∠,∠,∠中的()A.0个B.1个C.2个D.3个【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理13.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD l 于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是()A .两点确定一条直线B .两点之间,直线最短C .两点之间,线段最短D .垂线段最短14.下列说法中,正确的是( )∠两点之间的所有连线中,线段最短;∠过一点有且只有一条直线与已知直线垂直;∠平行于同一直线的两条直线互相平行;∠直线外一点到这条直线的垂线段叫做点到直线的距离.A .∠∠B .∠∠C .∠∠D .∠∠【考点八】相交线与平行线➽➼➵平行线的判定15.如图,下面哪个条件不能判断EF DC 的是( )A .12∠=∠B .4C ∠=∠ C .13180∠+∠=︒D .3180C ∠+∠=︒16.如图,下列结论不成立的是( )A .如果∠1=∠3,那么AB CD ∥B .如果∠2=∠4,那么AC BD ∥C .如果∠1+∠2+∠C =180°,那么AB CD ∥D .如果∠4=∠5,那么AC BD ∥17.在同一平面内,a ,b ,c 是直线,下列关于它们位置关系的说法中,正确的是( ) A .若a b ⊥,b c ⊥,则a c ⊥B .若a b ⊥,b //c ,则a //cC .若a //b ,b //c ,则a c ⊥D .若a //b ,b //c ,则a //c18.如图,将木条a ,b 与c 钉在一起,170=︒∠,250∠=︒,要使木条a 与b 平行,木条a 需顺时针旋转的最小度数是( )A .10︒B .20︒C .50︒D .70︒【考点九】相交线与平行线➽➼➵平行线的性质19.将一块直角三角板与两边平行的纸条如图所示放置,若155∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .65︒20.将一副直角三角板按如图所示的方式叠放在一起,若AC DE ∥.则BAE ∠的度数为( )A .85︒B .75︒C .65︒D .55︒【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系 21.如图,将一直角三角板与两边平行的纸条,如图所示放置,下列结论(1)12∠=∠;(2)34∠∠=;(3)2+4=90∠∠︒;(4)5290∠-∠=︒,其中正确的个数是( )A .1个B .2个C .3个D .4个22.如图,在五边形ABCDE 中,AE BC ,延长DE 至点F ,连接BE ,若∠A =∠C ,∠1=∠3,∠AEF =2∠2,则下列结论正确的是( )∠∠1=∠2 ∠AB CD ∠∠AED =∠A ∠CD ∠DEA .1个B .2个C .3个D .4个【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小 23.如图,直线a ,b 被直线c 所截,若a b ,∠1=50°,则∠2的度数是( )A .50°B .100°C .120°D .130°24.如图,AB CD ∥,AE 平分CAB ∠交CD 于点E .若50C ∠=︒,则AEC ∠的大小为( )A .55︒B .65︒C .70︒D .80︒【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小 25.如图,AB CD ,则123∠+∠+∠等于( )A .90︒B .180︒C .210︒D .270︒26.如图,已知4490AB CD BAE E ∠=︒∠=︒∥,,,点P 在CD 上,那么EPD ∠的度数是( ).A .44°B .46°C .54°D .不能确定.【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明 27.如图,给出下列条件.∠3=4∠∠;∠12∠=∠;∠4180BCD ∠+∠=︒,且4D ∠=∠;∠35180∠+∠=︒其中,能推出AD BC ∥的条作为( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠∠28.如图,若∠1=∠2,DE BC ∥,则∠FG DC ∥;∠∠AED =∠ACB ;∠CD 平分∠ACB ;∠∠1+∠B = 90°;∠∠BFG =∠BDC ,其中正确的结论是( )A .∠∠∠B .∠∠∠C .∠∠∠D .∠∠【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用29.某学员在驾校练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是( )A .第一次向左拐 30︒,第二次向右拐 30︒B .第一次向左拐 45︒,第二次向右拐 135︒C .第一次向左拐 60︒,第二次向右拐 120︒D .第一次向左拐 53︒,第二次向左拐 127︒30.如图,小刀的刀片上下是平行的,刀柄外形是一个直角梯形(下底挖去一个小半圆,则12∠+∠的度数为( )A .60︒B .75︒C .90︒D .不能确定【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题31.下列选项中,可以用来证明命题“若a >b ,则|a |>|b |”是假命题的反例是( )A .a =1,b =0B .a =-1,b =2C .a =-2,b =1D .a =1,b =-332.下列命题都是真命题,其中逆命题也正确的是( )A .若a b =,则22a b =B .若a b >,则22a b >C .若a b <,则22a b <D .若a b =±,则22a b =【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理33.下列说法正确的是()A.命题是定理,定理是命题B.命题不一定是定理,定理不一定是命题C.真命题有可能是定理,假命题不可能是定理D.定理可能是真命题,也可能是假命题34.下列定理中,没有逆定理的是()A.两直线平行,同位角相等B.全等三角形的对应边相等C.全等三角形的对应角相等D.在角的内部,到角的两边距离相等的点在角的平分线上【考点十七】平移➽➼➵性质35.如图,将周长为8的∠ABC沿BC方向平移1个单位得到∠DEF,则四边形ABFD 的周长为()A.6B.8C.10D.1236.如图,将直线l1沿着AB的方向平移得到直线l2,若∠1=50°,则∠2的度数是()A.40°B.50°C.90°D.130°【考点十八】平移➽➼➵应用37.如图所示是某酒店门前的台阶,现该酒店经理要在台阶上铺上一块红地毯,则这块红地毯至少需要()A.23平方米B.90平方米C.130平方米D.120平方米38.如图所示,在长为50米,宽为40米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草,则道路的面积是()A.50平方米B.40平方米C.90平方米D.89平方米二、填空题【考点一】相交线与平行线➽➼➵定义➻➼对顶角✮✮邻补角39.如图是一把剪刀的示意图,我们可想象成一个相交线模型,若∠AOB+∠COD=72°,则∠AOB=_______.40.如果两个角有一条公共边,它们的另一边互为____________,那么这两个角互为邻补角.图中∠1的邻补角有___________.【考点二】相交线与平行线➽➼➵定义➻➼垂直✮✮垂线段41.如图,直线AB ,CD 相交于点O ,EO ∠AB 于点O ,∠EOD =50°,则∠BOC 的度数为_____.42.如图,ABC 中,CD AB ⊥,M 是AD 上的点,连接CM ,其中AC =10cm ,CM =8cm ,CD =6cm ,CB =8cm ,则点C 到边AB 所在直线的距离是__________cm .【考点三】相交线与平行线➽➼➵定义➻➼同位角✮✮内错角✮✮同旁内角43.如图,∠2的同旁内角是_____.44.如图:与FDB ∠成内错角的是______;与DFB ∠成同旁内角的是______.【考点四】相交线与平行线➽➼➵定义➻➼点与直线距离✮✮平行线之间距离45.如图,AD BC ∥,6BC =,且三角形ABC 的面积为12,则点C 到AD 的距离为________.46.已知A ,B ,C 三地位置如图所示,90C ∠=︒,4AC =,3BC =,则A 到BC 距离是______.若A 地在C 地的正东方向,则B 地在C 地的______方向.【考点五】相交线与平行线➽➼➵作图➻➼垂线画法✮✮平行线画法47.如图,利用三角尺和直尺可以准确的画出直线AB∠CD ,下面是某位同学弄乱了顺序的操作步骤:∠沿三角尺的边作出直线CD ;∠用直尺紧靠三角尺的另一条边;∠作直线AB ,并用三角尺的一条边贴住直线AB ;∠沿直尺下移三角尺;正确的操作顺序应是:_____.48.如图,一束光线以入射角为50°的角度射向斜放在地面AB 上的平面镜CD ,经平面镜反射后与水平面成30°的角,则CD 与地面AB 所成的角∠CDA 的度数是_____.【考点六】相交线与平行线➽➼➵作图➻➼平移49.作图题:将如图的三角形ABC先水平向右平移4格,再竖直向下平移4格得到三角形DEF.观察线段AB与DE的关系是_____.50.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形变换称为平移,如图,将网格中的三条线段沿网格线的方向(水平或垂直)平移后组成一个首尾依次相接的三角形,则至少需要移动____格.【考点七】相交线与平行线➽➼➵公理➻➼垂线段公理✮✮平行线公理51.如图,点B,C在直线l上,且BC=6cm,△ABC的面积为18cm2.若P是直线l 上任意一点,连接AP,则线段AP的最小长度为_____cm.52.a、b、c是直线,且a∠b,b∠c,则________ .【考点八】相交线与平行线➽➼➵平行线的判定53.如图,点E在AC的延长线上,若要使AB CD,则需添加条件_______(写出一种即可)54.如图所示,请你写出一个条件使得12l l ∥,你写的条件是______.55.如图,∠1=30°,AB ∠AC ,要使AD BC ∥,需再添加的一个条件是____________.(要求:添加这个条件后,其它条件也必不可少,才能推出结论)56.如图,请你添加一个条件______,可以得到DE AC ∥.【考点九】相交线与平行线➽➼➵平行线的性质57.如图,AD 是△ABC 的角平分线,DE ∥AC ,DE 交AB 于点E ,DF ∥AB ,DF 交AC 于点F ,图中∠1与∠2的关系是_________.58.如图,把一张长方形纸条ABCD 沿EF 折叠,若50AEG ∠=︒,则EFG ∠=______°.【考点十】相交线与平行线➽➼➵平行线的性质➻➼探究角的关系59.如图,已知AB DE ∥,且∠C =110°,则∠1与∠2的数量关系为__________________ .60.如图,已知AB ∠CD ,请直接写出下面图形中∠APC 和∠P AB 、∠PCD 之间的数量关系式_____.【考点十一】相交线与平行线➽➼➵平行线的性质➻➼求角的大小61.如图,39AB CD AED ∠=︒∥,,C ∠和D ∠互余,则B ∠的度数为___________.62.将一个含有45°角的直角三角板如图所示放置,其中一个45°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若a//b ,∠2=∠15°,则∠3的度数为___________°【考点十二】相交线与平行线➽➼➵平行线的判定与性质➻➼求角的大小 63.如图,已知1100∠=︒,2100∠=︒,370∠=︒,则4∠=______.64.如图,直线 l 1∠l 2,若∠1=40°,∠2 比∠3 大 10°,则∠4=____.【考点十三】相交线与平行线➽➼➵平行线的判定与性质➻➼证明65.如图,已知GF ∠AB ,∠1=∠2,∠B =∠AGH ,则以下结论:∠GH BC ;∠∠D =∠F ;∠HE 平分∠AHG ;∠HE ∠AB .其中正确的有_____(只填序号)66.将一副三角板按如图放置,则下列结论:∠如果∠2=30°.则AC ∥DE ;∠∠2+∠CAD =180°;∠如果BC ∥AD ,则有∠2=60°;∠如果∠CAD =150°,必有∠4=∠C ;其中正确的结论有____________.【考点十四】相交线与平行线➽➼➵平行线的判定与性质➻➼应用67.如图,为某校放置在水平操场上的篮球架的横截面图形,初始状态时,篮球架的横梁EF 平行于AB ,主柱AD 垂直于地面,EF 与上拉杆CF 形成的角度为F ∠,且150F ∠=︒,这一篮球架可以通过调整CF 和后拉杆BC 的位置来调整篮筐的高度.在调整EF 的高度时,为使EF 和AB 平行,需要改变EFC ∠和C ∠的度数,调整EF 使其上升到GH 的位置,此时,GH 与AB 平行,35CDB ∠=︒,并且点H ,D ,B 在同一直线上,则H ∠为______度.68.下图(1)是某学校办公楼楼梯拐角处,从图片抽象出图(2)的几何图形,已知AB GH IJ CD ∥∥∥,AE BF ∥,EC FD ∥,DC EC ⊥,65B ∠=︒,则∠AEC 的度数为______.【考点十五】定理、命题与证明➽➼➵命题的真假✮✮逆命题69.命题“若a b =,那么a b =”的逆命题是:_____;该逆命题是一个 _____命题(填真或假).70.甲:“我没有偷”;乙:“丙是小偷”;丙:“丁是小偷”;丁:“我没有偷”.若四个人里面只有一个人说了真话,则小偷是_____.【考点十六】定理、命题与证明➽➼➵命题与证明✮✮互逆定理71.如图所示,90AOB COD ︒∠=∠=,那么AOC ∠=________,依据是__________.72.如图所示,已知AB FE =,AD FC =,BC ED =.下列结论:∠A F ∠=∠;∠//AB EF ;∠//AD FC .其中正确的结论是________.(填序号)【考点十七】平移➽➼➵性质73.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为 _____m .74.用等腰直角三角板画45AOB ∠=,并将三角板沿OB 方向平移到如图所示的虚线处后绕点M 逆时针方向旋转22,则三角板的斜边与射线OA 的夹角α为______.【考点十八】平移➽➼➵应用 75.如图,有一块长为a 米,宽为3米的长方形地,中间阴影部分是一条小路,空白部分为草地,小路的左边线向右平移1米能得到它的右边线,若草地的面积为122米,则=a ______.76.如图,某酒店重新装修后,准备在大厅主楼梯上铺设红色地毯.已知这种地毯每平方米售价160元,主楼梯道宽2.5m ,其侧面如图所示,则购买地毯至少需要______元.三、解答题77.如图:已知AO BC ⊥,DO OE ⊥,B ,O ,C 在同一条直线上.(1) AOE ∠的余角是_________,∠BOE 的补角是_________.(2) 如果35AOD ∠=︒,求∠BOE 的度数.(3) 找出图中所有相等的角(除直角外),并对其中一对相等的角说明理由.78.如图,点G 在CD 上,已知180BAG AGD ∠+∠=︒,EA 平分BAG ∠,FG 平分AGC ∠.请说明AE GF ∥的理由.解:因为180BAG AGD ∠+∠=︒(已知),180AGC AGD ∠+∠=︒(______),所以BAG AGC ∠=∠(______). 因为EA 平分BAG ∠, 所以112BAG ∠=∠(______). 因为FG 平分AGC ∠, 所以122∠=______, 得12∠=∠(等量代换), 所以______(______).79.把下面的证明过程补充完整: 已知:如图,12180∠+∠=︒,C D ∠=∠. 求证:A F ∠=∠.证明:∠12180∠+∠=︒(已知), ∠BD ∥_________( ), ∠C ABD ∠=∠( ), ∠C D ∠=∠( ), ∠D ∠=∠_________( ), ∠AC DF ∥( ), ∠A F ∠=∠( ).80.在如图所示的网格图(每个小网格都是边长为1个单位长度的小正方形)中,P,A ∠的边OB,OC上的两点.分别是BOC(1) 将线段OP向右平移,使点O与点A重合,画出线段OP平移后的线段'AP,连接PP',并写出相等的线段;∠相等的角;(2) 在(1)的条件下,直接写出与BOC(3) 请在射线OC上找出一点D,使点P与点D的距离最短,并写出依据.参考答案1.D【分析】根据对顶角,邻补角的定义逐一判断即可.解:选项A中∠1和∠2为邻补角,不一定相等.选项B中∠1和∠2为两个不同的角,不一定相等.选项C中∠1和∠2为两个不同的角,不一定相等.选项D中∠1和∠2为对顶角,一定相等.故选D.【点拨】本题考查的是对顶角,邻补角的定义,熟练掌握对顶角,邻补角的定义是解决问题的关键.2.D【分析】根据邻补角的定义作出判断即可.解:根据邻补角的定义可知:只有D图中的是邻补角,其它都不是.故选:D.【点拨】本题考查了邻补角的定义,正确把握定义:只有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.B【分析】根据垂直的定义可得90COE ∠=︒,根据平角的定义即可求解. 解: EO ∠CD ,90COE ∴∠=︒,12180COE ∠+∠+∠=︒, 2180905436∴∠=︒-︒-︒=︒. 故选:B .【点拨】本题考查了垂线的定义,平角的定义,数形结合是解题的关键. 4.A【分析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.根据定义直接可得答案.解:∠90,A ∠=︒∠BA AC ⊥,点B 到线段AC 的距离指线段AB 的长, 故选:A .【点拨】本题主要考查了点到直线的距离的概念.点到直线的距离是是垂线段的长度,而不是垂线段.5.B【分析】根据同位角的定义作答.解:第1个图和第4个图中的1∠与2∠是同位角,有2个, 故选:B .【点拨】本题考查了同位角的识别,两条直线被第三条直线所截,在截线的同侧,在两条被截直线的同旁的两个角是同位角.如果两个角是同位角,那么它们一定有一条边在同一条直线上.6.A【分析】根据同位角、同旁内角、内错角和对顶角的概念解答即可. 解:A 、3∠与6∠是同旁内角,故本选项符合题意; B 、2∠与4∠不是同位角,故本选项不合题意; C 、1∠与6∠不是对顶角,故本选项不合题意; D 、5∠与3∠不是内错角,故本选项不合题意;故选:A.【点拨】本题考查了同位角、内错角、同旁内角的定义,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角;两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.7.B【分析】根据直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;从直线外一点到这条直线上各点所连的线段中,垂线段最短.逐一判断.解:∠线段BP是点P到直线l的垂线段,根据垂线段最短可知,P A,PB,PC三条线段中,PB最短;故原说法正确;∠线段BP是点P到直线l的垂线段,故线段BP的长度叫做点P到直线l的距离,故原说法错误;∠线段AB是点A到直线PB的垂线段,故线段AB的长度叫做点P到直线l的距离,故故原说法正确;∠由题意及图形无法判断线段AC的长是点A到PC的距离,故原说法错误;综上所述,正确的说法有∠∠;故选:B.【点拨】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:∠从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.∠从直线外一点到这条直线上各点所连的线段中,垂线段最短.8.C【分析】根据两点间的距离和平行线间的距离的性质逐项判断即可.解:A、A与B之间的距离就是线段AB的长度,不符合题意,故本项错误;B、AB与CD之间的距离就是线段HI的长度,不符合题意,故本项错误;C 、1l 与2l 之间的距离就是线段CE 的长度,符合题意,故本项正确;D 、1l 与2l 之间的距离就是线段CE 或GF 的长度,不符合题意,故本项错误. 故答案为:C .【点拨】本题考查了两点间的距离和平行线间的距离的性质,解决本题的关键是掌握以上基本的性质.9.C【分析】根据P 点在CD 上,CD ∠AB 进行判断.解:过点P 画AB 的垂线CD ,则P 点在CD 上,CD ∠AB ,所以三角尺放法正确的为故选:C .【点拨】本题考查了作图-基本作图,熟练掌握基本作图(过一点画已知直线的垂线)是解决问题的关键.10.B【分析】根据中点的定义,平行线的定义判断即可. 解:过AC 的中点D 作AB 的平行线, 正确的图形是选项B , 故选:B .【点拨】本题考查作图——复杂作图,平行线的定义,中点的定义等知识,解题关键是理解题意,灵活运用所学知识解决问题.11.C【分析】根据平移的概念作选择即可.解:A、B、D符合平移变换,C是轴对称变换.故选:C.【点拨】本题考查了平移的概念,掌握好平移的概念是本题的关键.12.C【分析】根据图形进行剪切拼接可得图形.解:根据左边图形可剪成若干小块,再进行拼接平移后能够得到∠,∠,不能拼成∠,故选C.【点拨】此题主要考查了图形的平移,通过改变平移的方向和距离可使图案变得丰富多彩.13.D【分析】根据垂线段最短解答即可.⊥于点D,将水泵房建在了D处.这样做最节省水管长度,其数学解:过点C作CD l道理是:垂线段最短.故选D.【点拨】本题考查了垂线段的性质,熟练掌握垂线段性质是解答本题的关键.从直线外一点到这条直线上各点所连的线段中,垂线段最短.14.B【分析】根据线段的性质公理判断∠;根据垂线的性质判断∠;根据平行公理的推论判断∠;根据点到直线的距离的定义判断∠.解:∠两点之间的所有连线中,线段最短,说法正确;∠在同一平面内,过一点有且只有一条直线与已知直线垂直,说法错误;∠平行于同一直线的两条直线互相平行,说法正确;∠直线外一点到这条直线的垂线段的长度叫做点到直线的距离,说法错误.故选:B.【点拨】本题考查了线段的性质公理,垂线的性质,平行公理的推论,点到直线的距离的定义,是基础知识,需熟练掌握.15.C【分析】由平行线的判定定理求解判断即可.∠=∠,根据内错角相等,两直线平行可判定EF DC,故A不符合题意;解:A.由12B .由4C ∠=∠,根据同位角相等,两直线平行可判定EF DC ,故B 不符合题意; C .由13180∠+∠=︒,根据同旁内角互补,两直线平行可判定ED BC ∥,不能判定EF DC ,故C 符合题意;D .由3180C ∠+∠=︒,根据同旁内角互补,两直线平行可判定EF DC ,故D 不符合题意;故选:C .【点拨】本题考查了平行线的判定,熟练掌握“内错角相等,两直线平行”、“同位角相等,两直线平行”、“同旁内角互补,两直线平行”是解题的关键.16.D【分析】根据平行线的判定定理判断求解即可.解:A .如果∠1=∠3,那么能得到AB CD ∥,故本选项结论成立,不符合题意. B .如果∠2=∠4,那么能得到AC BD ∥,故本选项结论成立,不符合题意. C .如果∠1+∠2+∠C =180°,能得到AB CD ∥,故本选项结论成立,不符合题意. D .如果∠4=∠5,那么不能得到AC BD ∥,故本选项结论不成立,符合题意. 故选:D .【点拨】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键. 17.D【分析】根据平行线的判定与性质、平行公理的推论判断求解即可. 解:若a ∠b ,b ∠c ,则a ∠c ,故A 错误,不符合题意; 若a ∠b ,b ∠c ,则a ∠c ,故B 错误,不符合题意; 若a ∠b ,b ∠c ,则a ∠c ,故C 错误,不符合题意; 若a ∠b ,b ∠c ,则a ∠c ,故D 正确,符合题意; 故选:D .【点拨】此题考查了平行线的判定与性质,平行公理的推论,熟练掌握平行线的判定定理与性质定理是解题的关键.18.B【分析】要使木条a 与b 平行,那么∠1=∠2,从而可求出木条a 至少旋转的度数. 解:∠当木条a 与b 平行, ∠∠1=∠2, ∠∠1需变为50°,∠木条a 至少旋转:70º-50º=20º, 故选:B .【点拨】本题考查了旋转的性质及平行线的性质:∠两直线平行同位角相等;∠两直线平行内错角相等;∠两直线平行同旁内角互补;∠夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.19.A【分析】根据题意得到,90ACB AB CD ∠=︒∥,推出1,2ACE BCD ∠=∠∠=∠,进而得到1290∠+∠=︒,即可求出2∠的度数.解:由题意得,90ACB AB CD ∠=︒∥, ∠1,2ACE BCD ∠=∠∠=∠, ∠18090ACE BCD ACB ∠+∠=︒-∠=︒ ∠1290∠+∠=︒ ∠155∠=︒ ∠235∠=︒, 故选:A .【点拨】此题考查了平行线的性质:两直线平行内错角相等,两直线平行同位角相等,熟练掌握平行线的性质是解题的关键.20.B【分析】先根据平行线的性质定理得120CAE ∠=︒,然后由已知得45BAC ∠=︒,再由BAE CAE BAC ∠=∠-∠即可得解.解:AC DE ∥,180E CAE ∴∠+∠=︒,由已知可知:60,45E BAC ∠=︒∠=︒, 180********CAE E ∴∠=︒-∠=︒-︒=︒, 1204575BAE CAE BAC ∴∠=∠-∠=︒-︒=︒;故选:B.【点拨】此题考查了平行线的性质定理与直角三角板的知识,熟练掌握平行线的性质定理是解答此题的关键.21.D【分析】根据平行线的性质即可判断(1)(2),根据平角的定义即可判断(3),根据等量代换即可判断(4).解:∠AB CD,∠123445180==+=︒∠∠,∠∠,∠∠,故(1)(2)正确∠90∠=︒,CAD∠2418090+=︒-=︒∠∠∠,故(3)正确,CAD∠521809090∠∠,故(4)正确;-=︒-︒=︒∠正确的有4个,故选D.【点拨】本题主要考查了平行线的性质,熟知平行线的性质是解题的关键.22.C【分析】分别根据平行线的性质以及平行线的判定方法逐一判断即可.解:∠中,∠AE BC,∠∠3=∠2,∠∠1=∠3,∠∠1=∠2,∠∠正确∠中,∠AE BC,∠∠A+∠B=180°,∠∠A=∠C,∠∠C+∠B=180°,∠AB CD;∠∠正确∠中,∠AE BC,∠∠2=∠3,∠A+∠ABC=180°,∠∠1=∠3,∠∠1=∠2=∠3,∠ABC=2∠2,∠∠AEF=2∠2,∠∠A+∠ABC=∠A+2∠2=∠A+∠AEF=180°,∠∠AEF+∠AED=180°,∠∠AED=∠A.∠∠正确∠无条件证明,所以不正确.∠结论正确的有∠∠∠共3个.故选:C.【点拨】此题考查了平行线的判定与性质以及多边形的内角和外角,熟练掌握平行线的判定与性质是解本题的关键.23.D∠∠,再【分析】如图所示,根据平行线的性质:两直线平行,同位角相等,可得3=1根据邻角互补即可得到答案.解:如图所示:a b,∠1=50°,∴∠=∠=︒,3150∠+∠=︒,23180∴∠=︒-∠=︒-︒=︒,2180318050130故选:D.【点拨】本题考查求角度问题,涉及到平行线的性质及邻补角定义,熟练掌握相关定义是解决问题的关键.24.B【分析】根据平行线的性质得出130CAB ∠=︒,根据角平分线的性质以及平行线的性质即可求解.解:∠AB CD ∥,∠180BAC C ∠+∠=︒,∠50C ∠=︒,∠130BAC ∠=︒, ∠AE 平分CAB ∠,∠1652BAE CAE BAC ∠=∠=∠=︒, ∠AB CD ∥,∠65AEC BAE ∠=∠=︒.故选B .【点拨】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质是解题的关键.25.B【分析】过点E 作直线EF AB ∥,根据平行线的判定和性质,以及平角的定义即可得解. 解:过点E 作直线EF AB ∥,交BC 于点F ,则:3AEF ∠=∠,∠AB CD ,∠EF CD ,∠1DEF ∠=∠,∠12322180AEF DEF DEA ∠+∠+∠=∠++=+=︒∠∠∠∠;故选:B .【点拨】本题考查平行线的判定和性质.熟练掌握平行线的判断和性质是解题的关键.遇到拐点问题,通常过拐点作平行线来进行解题.26.B【分析】过点E 作HF //AB ,可证AB //HF //CD ,由平行线的性质可求∠BAE =∠AEH ,∠EPD =∠HEP ,由∠E =90°,由∠HEP =90°−∠AEH 可求解.解:如图,过点E 作HF //AB ,∠AB //CD ,HF //AB ,∠AB //HF //CD ,∠∠BAE =∠AEH ,∠HEP =∠EPD ,∠∠BAE =44°,∠E =90° ∠∠AEH =44°, ∠HEP =90°−∠AEH =90°−44°=46°,∠∠EPD =∠HEP =46°.故选:B.【点拨】本题考查了平行线的判定和性质,添加恰当辅助线构造平行线是本题的关键.27.C【分析】根据平行线的判定定理依次判断即可.解:∠∠34∠=∠,∠AD BC ∥,正确,符合题意;∠∠12∠=∠,∠AB CD ∥,(内错角相等,两直线平行),选项不符合题意;∠∠4180BCD ∠+∠=︒,4D ∠=∠,∠180D BCD ∠+∠=︒,∠AD BC ∥,正确,符合题意;∠∠3518045180∠+∠=︒∠+∠=︒,,∠3=4∠∠,由同位角相等,两直线平行可得AD BC ∥,正确,符合题意;故能推出AD BC ∥的条件为∠∠∠.故选C .【点拨】题目主要考查平行线的判定,熟练掌握平行线的判定定理是解题关键.28.B【分析】根据平行线的性质和判定定理逐项分析判断∠∠∠,结合题意和图形判断∠∠,即可进行解答.∥,解:∠∠DE BC∠∠1=∠DCB,∠∠1=∠2,∠∠DCB=∠2,∥,∠FG DC故∠正确;∥,∠∠DE BC∠∠AED=∠ACB,故∠正确;∥,∠由∠可知:FG DC∠∠BFG=∠BDC,故∠正确,而CD不一定平分∠ACB,∠1+∠B不一定等于90°,故∠,∠错误;【点拨】本题考查了平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质,并能进行推理论证.29.D【分析】根据题意画出图形,由图可知,第一次向左拐,要使最后行驶方向与原来相反,则第二次也要向左拐,再根据平行线的性质即可解答.解:如图,第一次向左拐,要使最后行驶方向与原来相反,则第二次也要向左拐,∠∠1+∠3=180°,∠2=∠3,∠∠1+∠2=180°,故选:D。

平行线及其判定(基础篇)(专项练习七年级数学下册基础知识专项讲练(人教版)

平行线及其判定(基础篇)(专项练习七年级数学下册基础知识专项讲练(人教版)

专题5.11 平行线及其判定(基础篇)(专项练习)一、单选题知识点一、平行公理的应用1.下列说法:①和为180°且有一条公共边的两个角是邻补角;①过一点有且只有一条直线与已知直线垂直;①同位角相等;①经过直线外一点,有且只有一条直线与这条直线平行,其中正确的有( )A .0个B .1个C .2个D .3个 2.下列说法中,错误的有( ).①若a 与c 相交, b 与c 相交,则a 与b 相交;①若//,//a b b c ,那么//a c ;①过一点有且只有一条直线与已知直线平行;①在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A .3个B .2个C .1个D .0个 3.下列说法正确的是( )A .在同一平面内,a ,b ,c 是直线,且//a b ,//b c ,则//a cB .在同一平面内,a ,b ,c 是直线,且a b ⊥,b c ⊥,则a c⊥C .在同一平面内,a ,b ,c 是直线,且//a b ,b c ⊥,则//a cD .在同一平面内,a ,b ,c 是直线,且//a b ,//b c ,则a c ⊥知识点二、平行公理推论的应用4.下列说法正确的个数是( ).(1)两条直线不相交就平行;(2)在同一平面内,两条平行的直线有且只有一个交点;(3)过一点有且只有一条直线与已知直线平行;(4)平行于同一直线的两条直线互相平行;(5)两直线的位置关系只有相交、平行与垂直.A .0B .1C .2D .45.下列说法:①同位角相等;①在同一平面内,过一点有且只有一条直线与已知直线垂直;①平行于同一条直线的两条直线一定平行;①连接直线外一点与直线上各点的线段中,垂线段最短.其中正确的是( )A .①①①B .①①①C .①①①D .①①①6.已知直线a ,b ,c 是同一平面内的三条不同直线,下面四个结论:①若//,//,a b b c 则//a c ;①若//,,a b a c ⊥则b c ⊥;①若,,a b b c ⊥⊥则a c ⊥;①若a c ⊥且c 与b 相交,则a 与b 相交,其中,结论正确的是( )A .①①B .①①C .①①①D .①①①知识点三、同位角相等,两直线平行7.如图所示,下列条件中,不能推出AB ①CE 成立的条件是( )A .①A =①ACEB .①B =①ACEC .①B =①ECD D .①B +①BCE =180° 8.如图所示,给出了过直线l 外一点P 作已知直线l 的平行线的方法,其依据是( ).A .同位角相等,两直线平行.B .内错角相等,两直线平行.C .同旁内角互补,两直线平行.D .以上都不对.9.如图,下面哪个条件不能判断EF ①DC 的是( )A .①1=①2B .①4=①C C .①1+①3=180°D .①3+①C =180°知识点四、内错角相等,两直线平行10.在同一平面内,将两个完全相同的三角板按如图摆放(直角边重合),可以画出两条互相平行的直线a ,b .这样操作的依据是( )A .两直线平行,同位角相等B .同位角相等,两直线平行C .两直线平行,内错角相等D .内错角相等,两直线平行11.如图,已知12∠=∠,那么下列结论正确的是( ).A .//CD AB B .//AD BC C .34∠=∠D .A C ∠=∠ 12.如图,点E 在BC 的延长线上,下列条件不能判定//AB CD 的是( )A .180D DAB ∠+∠=︒B .B DCE ∠=∠C .42∠=∠D .34∠=∠知识点五、同旁内角互补,两直线平行13.如图,点E 在AC 的延长线上,下列条件中不能判定BD //AE 的是( )A .①1=①2B .①3=①4C .①D =①DCE D .①A +①ABD =180°14.如图,点D ,E 分别是AB ,AC 上的点,连接DE ,CD ,则下列条件不能判定DE ①BC的是( )A .①AED =①ACDB .①ADE =①BC .①EDC =①DCBD .①DEC +①ACB =180°15.如图所示,下列条件( )成立时,//AD BC .A .23∠∠=B .14∠=∠C .1234∠+∠=∠+∠D .180A C ∠+∠=︒ 知识点六、垂直于同一直线的两直线平行16.下列说法正确的个数为( ).①一条直线的垂线只能画一条.①垂直于同一直线的两条直线互相垂直.①平面内,过线段AB 外一点有且只有一条直线与AB 垂直.A .0B .1C .2D .317.已知,三条直线a 、b 、c 在同一平面内,下列命题是假命题的是( )A .若a c ⊥,b c ⊥,则//a bB .若//a c ,//b c ,则//a bC .若//a b ,b c ⊥,则a c ⊥D .若a c ⊥,b c ⊥,则a b ⊥18.下列四个命题其中正确的个数是( )①对顶角相等;①在同一平面内,若//a b ,c 与a 相交,则b 与c 也相交;①邻补角的平分线互相垂直;①在同一平面内,垂直于同一条直线的两条直线互相垂直A .1个B .2个C .3个D .4个二、填空题 知识点一、平行公理的应用19.(1)平行公理是:____________________________________________.(2)平行公理的推论是如果两条直线都与______________,那么这两条直线也________.即三条直线,,a b c ,若//,//a b b c ,则_________.20.现有下列说法:①过一点有且只有一条直线与已知直线垂直;①过一点有且只有一条直线与已知直线平行;①若//b c ,//a c ,则//b a ;①若140∠=︒,2∠的两边与1∠的两边分别平行,则240∠=︒或140︒;①若b c ⊥,a c ⊥,则//b a .其中正确的是_______(填写序号).21.如图,在三角形ABC 中,已知AB AC ⊥,AD BC ⊥,3AC =,4AB =,5BC =,有下列结论:①B 与C ∠不是同旁内角;①点A 到直线BC 的距离为2.4;①过点A 仅能作一条直线与BC 垂直;①过直线AC 外一点有且只有一条直线与直线AC 平行.其中正确的结论序号有________.知识点二、平行公理推论的应用22.在同一平面内,三条直线a 、b 、c ,若a ①b ,a ①c ,则_____.23.下列说法正确的是________(填序号).①同位角相等;①对顶角相等;①在同一平面内,不相交也不重合的两条射线一定平行;①过直线外一点有且只有一条直线与这条直线平行;①如果直线,a b c d ⊥⊥,那么//a c ;①垂线段最短;①过一点有且只有一条直线与已知直线垂直.24.a ,b ,c 是直线,且a①b ,b①c ,则________ .知识点三、同位角相等,两直线平行25.如图,请写一个条件________________,使//AC EF .(不添加辅助线)26.如图,点A ,B ,C ,D 在同一条直线上,若满足条件____,则有CE ①DF ,理由是____.(要求:不再添加辅助线,只需填一个答案即可)27.两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果___________,那么这两条直线平行.这个判定方法可简述为:_________,两直线平行.知识点四、内错角相等,两直线平行28.如图所示,过点P 画直线a 的平行线b 的作法的依据是___________.29.在同一平面内,4条直线的位置如图所示,已知65A ∠=︒,请添加一个条件______,使//AD BC (填一个即可).30.如图,要使//AC BD ,可以添加的条件是______(填写一个你认为正确的即可).知识点五、同旁内角互补,两直线平行31.根据图完成下列填空(括号内填写定理或公理)(1)14∠=∠(已知)①__//____(__________________________________) (2)ABC ∠+∠_____180=︒(已知)//AB CD ∴(________________________) (3)∠_____=∠__(已知) //AD BC ∴(______________________________) (4)5∠=∠____(已知) //AB CD ∴(_______________________________) 32.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果______________,那么____________. 这个判定方法2可简述为:____________,____________.几何语言表述为:如图,∠_______=∠________ //AB CD ∴(2)两条直线被第三条直线所截,如果_______________,那么_____________. 这个判定方法3可简述为:___________,_________________.几何语言表述为:∠______ +∠______180=︒ //AB CD ∴33.如图所示,若162,2118∠=︒∠=︒,则________//_______,根据是_____________________.知识点六、垂直于同一直线的两直线平行34.规律探究:同一平面内有直线a 1,a 2,a 3…,a 100,若a 1①a 2,a 2①a 3,a 3①a 4…,按此规律,a 1和a 100的位置是________.35.如图, a ①c ,b ①c ,则直线a 、b 的关系是________36.若直线//,,a b b c c d ⊥⊥,则a 与d 的位置关系是_______.(填垂直或平行)三、解答题37.完成下面的证明:如图,BE 平分ABD ∠,DE 平分BDC ∠,且90αβ∠+∠=︒,求证//AB CD .证明:①BE 平分ABD ∠(已知),①2ABD α∠=∠( ).①DE 平分BDC ∠(已知),①BDC ∠=________( ).①22)2(ABD BDC αβαβ∠+∠=∠+∠=∠+∠( ).①90αβ∠+∠=︒(已知),①∠+∠=ABD BDC ________( ).①//AB CD ( ).38.如图,AB //CD .①1=①2,①3=①4,试说明AD //BE ,请你将下面解答过程填写完整.解:①AB //CD ,①①4= ( )①①3=①4①①3= ( )①①1=①2①①1+①CAF =①2+①CAE即①BAE = .①①3= )①AD //BE ( )39.已知:如图,点D ,E 分别在AB 和AC 上,CD 平分ACB ∠,40DCB ∠=︒,80AED ∠=︒.求证:DE BC ∥.40.如图,四边形ABCD 中,90A C ∠=∠=,BE 平分ABC ∠,DF 平分ADC ∠,试问BE 与DF 平行吗?为什么?参考答案1.B【分析】根据举反例可判断①,根据垂线的定义可判断①,根据举反例可判断①,根据平行线的基本事实可判断①.【详解】解:①如图①AOC=①2=150°,①BOC=①1=30°,满足①1+①2=180°,射线OC是两角的共用边,但①1与①2不是邻补角,故①不正确;①在同一个面内,过一点有且只有一条直线与已知直线垂直,故①不正确;①如图直线a、b被直线c所截,①1与①2是同位角,但①1>①2,故①不正确;①经过直线外一点,有且只有一条直线与这条直线平行,是基本事实,故①正确;其中正确的有①一共1个.故选择B.【点睛】本题考查基本概念的理解,掌握基本概念是解题关键.2.A【分析】依次判断所给内容的正误,即可得.【详解】解:①若a与c相交,b与c相交,则a与b相交;错误,符合题意,a与b还有可能平行,如图所示:①若a//b,b//c那么a//c;正确,不符合题意;①过一点有且只有一条直线与已知直线平行;错误,符合题意;应为“经过直线外一点,有且只有一条直线与已知直线平行,”①在同一平面内,两条直线的位置关系有平行、相交、垂直三种;错误,符合题意,因为垂直是相交的特殊情况,综上,①①①错误,故选A.【点睛】本题考查了平行线,解题的关键是熟记平行公理及其推论和平面内两条直线的位置关系.3.A【分析】根据平行线的判定判断即可.【详解】解:A、在同一平面内,a、b、c是直线,如果a①b,b①c,则a①c,故正确;B、在同一平面内,a、b、c是直线,如果a①b,b①c,则a①c,故错误;C、在同一平面内,a、b、c是直线,如果a①b,b①c,则a①c,故错误;D、在同一平面内,a、b、c是直线,如果a①b,b①c,则a①c,故错误;故选:A.【点睛】本题主要考查的是平行线的判定,平行公理,解题的关键是熟练掌握基本知识,属于中考常考题型.4.B【分析】(1)(5),根据同一平面内,两直线的位置关系只有相交和平行进行判断即可;(2),根据平行线的定义进行判断即可;(3)(4),根据平行线的公理以及公理的推论进行判断即可.【详解】(1)应该是在同一平面内,两直线不相交就平行,故错误;(2)在同一平面内,两条平行的直线没有交点,故错误;(3)应为过直线外一点有且只有一条直线与已知直线平行,故错误;(4)平行于同一直线的两条直线互相平行,是平行公理的推论,故正确;(5)应为在同一平面内,两直线的位置关系只有相交与平行,故错误,所以只有(4)一项正确,故选:B.【点睛】本题是一道有关两直线位置关系的题目,涉及同一平面内两直线的位置关系以及平行线的知识,掌握这些概念和定理是解题的关键.5.C【分析】利用所学的公理,定理,判断选择即可.【详解】解:①根据平行线的性质:两直线平行,同位角相等;故此选项错误;①根据垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项正确;①由平行的公理知:平行于同一条直线的两条直线一定平行,故本选项正确;①连接直线外一点与直线上各点的所有线段中,垂线段最短,故本选项正确;所以正确的有①①①,故选:C.【点睛】此题主要考查了平行公理以及其推论和垂线的定义等,正确把握相关定义是解题关键. 6.A【分析】根据平行公理及其推论:在同一平面内,垂直于同一条直线的两直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可求解.【详解】①根据“同一平面内,如果两条直线都与第三条直线平行,那么这两条直线也互相平行”判定:若//,//,a b b c 则//a c ;故说法正确;①若//,,a b a c ⊥则b c ⊥,故说法正确;①根据“在同一平面内,垂直于同一条直线的两直线平行”判定:若,,a b b c ⊥⊥则a c ⊥;说法错误;①若a c ⊥且c 与b 相交,则a 与b 不一定相交,故说法错误故正确的有:①①故选:A【点睛】本题主要考查平行公理及其推论,解题的关键是熟练掌握同一平面内两直线的位置关系. 7.B【分析】根据平行线的判定定理分析即可.【详解】A 、①A 和①ACE 是AB 与CE 被AC 所截形成的内错角,则①A =①ACE 时,可以推出AB ①CE ,不符合题意;B 、①B 和①ACE 不属于AB 与CE 被第三条直线所截形成的任何角,则①B =①ACE 时,无法推出AB ①CE ,符合题意;C 、①B 和①ECD 是AB 与CE 被BD 所截形成的同位角,则①B =①ECD 时,可以推出AB ①CE ,不符合题意;D 、①B 和①BCE AB 与CE 被BD 所截形成的同旁内角,则①B +①BCE =180°时,可以推出AB ①CE ,不符合题意;故选:B .【点睛】本题考查平行线的判定,理解并熟练运用平行线的判定定理是解题关键.8.A由作图可得同位角相等,根据平行线的判定可作答.【详解】解:由图形得,有两个相等的同位角,所以依据为:同位角相等,两直线平行.故选:A.【点睛】本题考查的是作平行线,熟知过直线外一点,作已知直线的平行线的方法和平行线的判定定理是解答此题的关键.9.C【分析】根据平行线的判定定理进行逐一判断即可.【详解】选项A:因为①1=①2,所以EF①DC,故本选项能判断EF①DC;选项B:因为①4=①C,所以EF①DC,故本选项能判断EF①DC;选项C:因为①1+①3=180°,所以ED①BC,故本选项能不判断EF①DC;选项D:因为①3+①C=180°,所以EF①DC,故本选项能判断EF①DC,故选:C【点睛】本题考查了平行线的判定定理的应用,考查了数学推理论证能力.10.D【分析】a b.利用三角形板的特征可确定12∠=∠,然后根据内错角相等,两直线平行可判断//【详解】解:如图,由题意得12∠=∠,a b.根据内错角相等,两直线平行可得//【点睛】本题考查了平行线的判定与性质,解题的关键是熟练掌握内错角相等,两直线平行.11.A【分析】由″内错角相等,两直线平行″即可求解.【详解】解:①①1=①2,①CD①AB.故选:A.【点睛】此题考查了平行线的判定,熟记平行线判定定理是解题的关键.12.D【分析】根据平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行分别进行分析.【详解】解:A、根据“同旁内角互补,两直线平行”可判定AB①CD,故此选项不合题意;B、根据“同位角相等,两直线平行”可判定AB①CD,故此选项不合题意;C、根据“内错角相等,两直线平行”可判定AB①CD,故此选项不合题意;D、①1与①2属于直线AB和CD的内错角、同位角、同旁内角,无法判定AB①CD,故此选项符合题意;故选:D.【点睛】本题考查了平行线的判定,解题的关键是掌握平行线的判定定理.13.A【分析】根据平行线的判定方法逐项判断即得答案.【详解】解:A 、1∠与2∠不是直线BD 与AE 被BC 所截的同位角或内错角,若12∠=∠,不能判定//BD AE ,故本选项符合题意;B 、若34∠=∠,则可根据内错角相等,两直线平行判定//BD AE ,故本选项不符合题意;C 、若D DCE ∠=∠,则可根据内错角相等,两直线平行判定//BD AE ,故本选项不符合题意;D 、若180A ABD ∠+∠=,则可根据同旁内角互补,两直线平行判定//BD AE ,故本选项不符合题意.故选:A .【点睛】本题考查了平行线的判定,属于基础题型,熟练掌握平行线的判定方法是解题的关键. 14.A【分析】同位角相等,则两直线平行;内错角相等,则两直线平行 ;同旁内角互补,则两直线平行;根据这三点对四个选项逐一判断.【详解】A 、①AED =①ACD ,不能判定DE ①BC ,不符合题意;B 、①ADE =①B ,同位角相等,则两直线平行,能判定DE ①BC ,符合题意;C 、①EDC =①DCB ,内错角相等,则两直线平行,能判定DE ①BC ,符合题意;D 、①DEC +①ACB =180°,同旁内角互补,则两直线平行,能判定DE ①BC ,符合题意. 故选:A .【点睛】本题考查两直线平行的判定,掌握相关角度之间的关系推断平行时本题解题关键. 15.A【分析】根据平行线的判定定理逐一判断,排除错误答案.【详解】解:A 、正确,根据内错角相等,两直线平行;B 、错误,由内错角相等,两直线平行,得出AB //CD ,而不是//AD BC ;C 、错误,①1+①2=①3+①4,即①ABC =①ADC ,无法说明//AD BC ;D、错误,①A+①C=180°,但这两个角不是同旁内角,所以无法说明//AD BC.故选:A.【点睛】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.16.B【分析】根据平行线的性质与垂线的定义进行逐一判断即可.【详解】解:①一条直线的垂线能画无数条,此说法错误;①垂直于同一直线的两条直线互相平行,此说法错误;①平面内,过线段AB外一点有且只有一条直线与AB垂直,此说法正确;故选B.【点睛】本题主要考查了平行线的性质和垂线的定义,解题的关键在于能够熟练掌握相关知识进行求解.17.D【分析】根据垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行,逐条分析每个命题的真假即可.【详解】解:A、若a①c,b①c,则a①b,是真命题;B、若a①c,b①c,则a①b,是真命题;C、若a①b,b①c,则a①c,是真命题;D、若a①c,b①c,则a①b,原命题是假命题;故选:D.【点睛】本题主要考查同一平面内两条直线的位置关系,解题的关键是掌握垂直于同一直线的两条直线平行,平行于同一直线的两条直线平行.18.D【分析】分别根据对顶角、邻补角、平行线的判定方法即可解答.【详解】①对顶角相等,正确;①在同一平面内,若//a b ,c 与a 相交,则b 与c 也相交,正确;①邻补角之和为180°,所以它们平分线的夹角为180=902︒︒,即邻补角的平分线互相垂直,正确;①在同一平面内,垂直于同一条直线的两条直线互相垂直,正确.故选:D .【点睛】本题考查了平行线定理,两直线位置关系和对顶角、邻补角等知识,熟练掌握定理并灵活运用是解题关键.19.过直线外一点有且只有一条直线与已知直线平行 第三条直线平行 平行 //a c【分析】根据平行公理以及平行公理的推论解答即可.【详解】(1)平行公理是:过直线外一点有且只有一条直线与已知直线平行;(2)平行公理的推论是如果两条直线都与第三条直线平行,那么这两条直线也平行,即三条直线,,a b c ,若//,//a b b c ,则//a c . 故答案为:过直线外一点有且只有一条直线与已知直线平行;第三条直线平行,平行,//a c . 【点睛】本题主要考查了平行公理以及平行公理的推论,属于基础题,掌握平行公理以及平行公理的推论是解题的关键.20.①①【分析】根据平行线的判定与性质,平行公理及推论进行逐一判断即可.【详解】在同一平面内,过一点有且只有一条直线与已知直线垂直,故①错误;过直线外一点有且只有一条直线与已知直线平行,故①错误;若b ①c ,a ①c ,则b ①a ,故①正确;若①1=40°,①2的两边与①1的两边分别平行,则①2=40°或140°,故①正确;若在同一平面内,b ①c ,a ①c ,则b ①a ,故①错误.所以其中正确的是①①.故答案为:①①.【点睛】本题考查了平行线的判定与性质,平行公理及推论,解决本题的关键是掌握平行线的判定与性质.21.①①①【分析】根据同旁内角的定义,对①进行判断;根据三角形的面积公式,对①进行判断;根据垂线的性质对①进行判断;根据平行线的性质,对①进行判断【详解】解:B 与C ∠是直线AB 和AC 被直线BC 所截的同旁内角,故①错误;①AB AC ⊥,AD BC ⊥,3AC =,4AB =,5BC =,①三角形ABC 的面积=12AB ⨯AC==1⨯AD ①3⨯4=5⨯AD ,①AD=2.4①点A 到直线BC 的距离=AD=2.4,故①正确;①在同一平面内,过一点有且只有一条直线与已知直线垂直,①过点A 仅能作一条直线与BC 垂直,故①正确①在同一平面内,过直线外一点有且只有一条直线与已知直线平行,①过直线AC 外一点有且只有一条直线与直线AC 平行,故①正确故答案为:①①①【点睛】本题考查了点到直线的距离、同旁内角、平行线的性质、垂线的性质,解决本题的关键是熟练掌握相关的知识.22.b ①c .【分析】根据平行线的判定得出即可.【详解】①同一平面内三条直线a 、b 、c ,a ①b ,a ①c ,①b ①c ,故答案为:b ①c .【点睛】本题考查了平行线的性质和判定,平行公理及推理的应用,能熟记知识点(平行于同一直线的两直线平行)是解此题的关键.23.①①①【分析】根据同位角、对顶角、平行线的性质、垂线的性质即可依次判断.【详解】①两直线平行,同位角相等,故错误;①对顶角相等,正确;①在同一平面内,不相交也不重合的两条直线一定平行,故错误;①过直线外一点有且只有一条直线与这条直线平行,正确;①如果直线,a b c d ⊥⊥,那么a,c 的位置关系不确定,故错误;①垂线段最短,正确;①在同一平面内,过一点有且只有一条直线与已知直线垂直,故错误.故答案为:①①①.【点睛】此题主要考查同位角、对顶角、平行线的性质、垂线的性质,解题的关键是熟知各自的性质及特点.24.a①c【分析】根据平行公理推论,即可求解.【详解】①a ,b ,c 是直线,且a①b ,b①c①a①c故答案为:a①c【点睛】本题考查了平行公理及推论,如果两条直线都与第三条直线平行,那么这两条直线也互相平行.平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.∠=∠(答案不唯一)25.BEF EAC【分析】根据平行线的判定,即可求解.【详解】∠=∠,解:①BEF EAC①//AC EF(同位角相等,两直线平行),也可以写:AFE CAD∠=∠.∠=∠(答案不唯一).故答案为:BEF EAC【点睛】本题主要考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.26.①3=①F同位角相等,两直线平行【分析】根据平行线的判定定理可得.【详解】解:若①3=①F,则CE①DF,理由是:同位角相等,两直线平行,故答案为:①3=①F,同位角相等,两直线平行.(答案不唯一)【点睛】本题考查了平行线的判定定理,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.27.同位角相等(答案不唯一)同位角相等(答案不唯一)【分析】根据平行线的判定定理解答即可.【详解】两条直线平行的条件(除平行线定义和平行公理推论外):两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.这个判定方法可简述为:同位角相等,两直线平行.故答案为:同位角相等,同位角相等.【点睛】本题主要考查平行线的判定定理,属于基础题,熟练掌握平行线的判定定理是解题关键. 28.内错角相等,两直线平行【分析】根据平行线的判定方法解决问题即可.【详解】解:由作图可知,12∠=∠12∠=∠,a //b ∴(内错角相等两直线平行),故答案为:内错角相等,两直线平行.【点睛】本题考查作图,平行线的判定等知识,熟练掌握平行线的判定定理是解题的关键,属于中考常考题型.29.65ABF ∠=︒【分析】根据平行线的判定条件求解即可.【详解】解:①AD ①BC①①A =①ABF =65°故答案为:①ABF =65°.【点睛】本题主要考查了平行线的判定,解题的关键在于能够熟练掌握平行线的判定条件. 30.C CBD ∠=∠(答案不唯一,只要正确即可得分)【分析】根据平行线的判定方法即可解答.【详解】解:①C CBD ∠=∠①//AC BD (内错角相等,两直线平行).故答案为:C CBD ∠=∠(答案不唯一,只要正确即可得分).【点睛】本题主要考查了平行线的判定,熟练掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.31.AB CD 内错角相等,两直线平行 BCD 同旁内角互补,两直线平行 3 2 内错角相等,两直线平行 ABC 同位角相等,两直线平行【分析】(1)根据内错角相等,两直线平行得出即可;(2)根据同旁内角互补,两直线平行得出即可;(3)根据内错角相等,两直线平行得出即可;(4)根据同位角相等,两直线平行得出即可.【详解】解:(1)14∠=∠(已知),//AB CD ∴(内错角相等,两直线平行),(2)ABC ∠+∠BCD 180=︒(已知),//AB CD ∴(同旁内角互补,两直线平行),(3)∠3=∠2(已知),//AD BC ∴(内错角相等,两直线平行)(4)5∠=∠ABC (已知),//AB CD ∴(同位角相等,两直线平行),故答案为:AB;CD;内错角相等,两直线平行;BCD;同旁内角互补,两直线平行;3;2;内错角相等,两直线平行;ABC;同位角相等,两直线平行.【点睛】本题考查了平行线的判定,能正确运用定理进行推理是解此题的关键,注意:平行线的判定有:①同位角相等,两直线平行,①内错角相等,两直线平行,①同旁内角互补,两直线平行.32.内错角相等两直线平行内错角相等两直线平行 2 8 同旁内角互补两直线平行同旁内角互补两直线平行 2 5【分析】(1)根据“内错角相等,两直线平行”回答即可;(2)根据“同旁内角互补,两直线平行”回答即可.【详解】解:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行.这个判定方法2可简述为:内错角相等,两直线平行.几何语言表述为:如图,①①2=①8,①AB//CD;(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行.这个判定方法3可简述为:同旁内角互补,两直线平行.几何语言表述为:①①2+①5=180°,①AB//CD.故答案为:内错角相等;两直线平行;内错角相等;两直线平行;2;8;同旁内角互补;两直线平行;同旁内角互补;两直线平行;2;5.【点睛】本题考查了平行线的判定,掌握“内错角相等,两直线平行”以及“同旁内角互补,两直线平行”是解题的关键.33.AD BC同旁内角互补,两直线平行【分析】根据平行线的判定(同旁内角互补,两直线平行)回答即可.【详解】∠=︒∠=︒,解:①162,2118∠+∠=︒,①12180AD BC(同旁内角互补,两直线平行),①//故答案为:AD;BC;同旁内角互补,两直线平行.【点睛】本题考查了平行线的判定:同旁内角互补,两直线平行,熟练掌握平行线的判定定理是解决本题的关键.34.a1①a100;【分析】从已知两直线的位置关系,运用平行线的性质,观察分析得几条特殊直线与a1的位置关系为a1①a4,a1①a5;a1①a2,a1①a3;且a1与a n的位置关系是4为周期进行循环,下角标的余数为0或1时与a1平行,下角标的余数为2或3时与a1垂直,计算100=4×25,余数为0判定两直线的位置关系为a1①a100.【详解】解:在同一平面内有直线两直线的位置,关系是相交或平行,如图所示:①a1①a2,a2①a3,①a1①a3,又①a3①a4,①a1①a4,又①a4①a s,①a1①a5,又①a5①a6,①a1①a6,又①a6①a7,①a1①a7,…。

人教版七年级下册数学平行线及其判定第2课时平行线的判定——利用同位角、第三直线 同步练习

人教版七年级下册数学平行线及其判定第2课时平行线的判定——利用同位角、第三直线 同步练习

5.2 平行线及其判定第2课时平行线的判定——利用“同位角、第三直线”基础训练知识点1 由“同位角相等”判定两直线平行1.如图,用直尺和三角尺作直线AB,CD,从图中可知,直线AB与直线CD的位置关系为_______________,理由是______________.2.如图,直线a,b被直线c所截,下列条件能使a∥b的是( )A.∠1=∠6B.∠2=∠6C.∠1=∠3D.∠5=∠73.如图,能判定EB∥AC的条件是( )A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠C=∠EBD4.如图,已知∠1=∠2,则下列结论正确的是( )A.AD∥BCB.AB∥CDC.AD∥EFD.EF∥BC5.如图,CD平分∠ACE,且∠B=∠ACD,可以得出的结论是( )A.AD∥BCB.AB∥CDC.CA平分∠BCDD.AC平分∠BAD知识点2 由“第三直线”判定两直线平行6.如图,木工师傅利用直角尺在木板上画出两条线段,则线段AB______CD.7.在每一步推理后面的括号内填上理由.(1)如图①,因为AB∥CD,EF∥CD,所以AB∥EF(____________).(2)如图②,因为AB∥CD,过点F作EF∥AB(____________),所以EF∥CD(____________).8.在同一个平面内,不重合的两个直角,如果它们有一条边共线,那么另一条边( )A.互相平行B.互相垂直C.共线D.互相平行或共线9.三条直线a,b,c,若a∥c,b∥c,则a与b的位置关系是( )A.a⊥bB.a∥bC.a⊥b或a∥bD.无法确定易错点填错理由而致错10.如图,已知AB⊥BD于点B,CD⊥BD于点D,∠1=∠2,试问CD与EF平行吗?为什么?解:CD∥EF.理由:因为∠1=∠2( ),所以AB∥EF( ).因为AB⊥BD,CD⊥BD,所以AB∥CD( ).所以CD∥EF( ).提升训练考查角度1 利用“同位角相等”说明两直线平行11.如图,点B在DC上,BE平分∠ABD,∠ABE=∠C,试说明:BE∥AC. 解:因为BE平分∠ABD,所以∠ABE=∠DBE( ).因为∠ABE=∠C,所以∠DBE=∠C,所以BE∥AC( ).12.如图,已知∠1=68°,∠2=68°,∠3=112°.(1)因为∠1=68°,∠2=68°(已知),所以∠1=∠2.所以∥(同位角相等,两直线平行).(2)因为∠3+∠4=180°(邻补角的定义),∠3=112°,所以∠4=68°.又因为∠2=68°,所以∠2=∠4,所以∥(同位角相等,两直线平行).考查角度2 利用“同位角”“第三直线”(平行或垂直)判定平行13.如图,已知直线a,b,c,d,e,且∠1=∠2,∠3=∠4,则a与c平行吗?为什么?解:a与c平行.理由:因为∠1=∠2( ),所以a∥b( ).因为∠3=∠4( ),所以b∥c( ).所以a∥c( ).14.如图,已知∠1=90°,∠2=90°,试说明:CD∥EF.(1)方法一:用“同位角相等”说明.(2)方法二:用“第三直线”说明.探究培优拔尖角度1 利用平行线、垂线的基本事实说明三点共线15.在同一平面内,已知A,B,C是直线l同旁的三个点.(1)若AB∥l,BC∥l,则A,B,C三点在同一条直线上吗?为什么?(2)若AB⊥l,BC⊥l,则A,B,C三点在同一条直线上吗?为什么?拔尖角度2 利用同位角探究两线段的位置关系16.如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F, 问:CE与DF的位置关系怎样?试说明理由.参考答案1.【答案】AB∥CD;同位角相等,两直线平行2.【答案】B3.【答案】D4.【答案】C解:找出∠1和∠2是直线AD,EF被直线CD所截而形成的同位角,因此由∠1=∠2可得出AD∥EF.5.【答案】B6.【答案】∥7.【答案】(1)平行于同一条直线的两条直线平行(2)过直线外一点,有且只有一条直线与这条直线平行;平行于同一条直线的两条直线平行8.【答案】D9.【答案】B解:由平行于同一条直线的两条直线互相平行知选B.10.已知;同位角相等,两直线平行;在同一平面内,垂直于同一条直线的两条直线互相平行;平行于同一条直线的两条直线互相平行分析:本题学生容易混淆判定两直线平行的几种方法,从而导致错误.11.【答案】角平分线的定义;同位角相等,两直线平行12.【答案】(1)a;b (2)b;c13.【答案】已知;同位角相等,两直线平行;已知;同位角相等,两直线平行;平行于同一条直线的两条直线平行14.解:(1)方法一:因为∠1=90°,∠2=90°,所以∠1=∠2.所以CD∥EF.(2)方法二:因为∠1=90°,∠2=90°,所以CD⊥AB,EF⊥AB.所以CD∥EF.15.解:(1)在同一条直线上.理由:因为直线AB,BC都经过点B,且都与直线l平行,而过直线外一点有且只有一条直线与这条直线平行,所以AB,BC为同一条直线,所以A,B,C三点在同一条直线上.(2)在同一条直线上.理由:因为直线AB,BC都经过点B,且都与直线l垂直,而在同一平面内,过一点有且只有一条直线与已知直线垂直,所以AB,BC为同一条直线,所以A,B,C三点在同一条直线上.16.解:CE∥DF.理由如下:因为BD平分∠ABC,CE平分∠ACB,所以∠DBC=错误!未找到引用源。

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5-2平行线及其判定》同步练习题(附答案)

2022-2023学年人教版七年级数学下册《5.2平行线及其判定》同步练习题(附答案)一.选择题1.在下列4个判断中:①在同一平面内,不相交也不重合的两条线段一定平行;②在同一平面内,不相交也不重合的两条直线一定平行;③在同一平面内,不平行也不重合的两条线段一定相交;④在同一平面内,不平行也不重合的两条直线一定相交.正确判断的个数是()A.4B.3C.2D.12.如图,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=62°,那么添加下列哪个条件后,可判定l1∥l2()A.∠2=118°B.∠4=128°C.∠3=28°D.∠5=28°3.若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE4.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个5.在同一个平面内,不相邻的两个直角,如果它们有一条边共线,那么另一边互相()A.平行B.垂直C.共线D.平行或共线6.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行7.如图,①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥EF 的条件有()A.1个B.2个C.3个D.4个8.下列画出的直线a与b不一定平行的是()A.B.C.D.二.填空题9.在同一平面内,直线a、b、c中,若a⊥b,b∥c,则a、c的位置关系是.10.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.11.如图,共有组平行线段.12.一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=时,CD∥AB.13.下列四种说法:①过一点有且只有一条直线与已知直线平行;②在同一平面内,两条不相交的线段是平行线段;③相等的角是对顶角;④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.其中,错误的是(填序号).14.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:.三.解答题15.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?16.如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?17.证明:两直线平行,同位角的角平分线互相平行.18.如图1,已知AC∥BD,点P是直线AC,BD间的一点,连接AB,AP,BP,过点P作直线MN∥AC.(1)MN与BD的位置关系是什么,请说明理由;(2)试说明∠APB=∠PBD+∠P AC;(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.19.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?20.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.21.如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.22.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)若∠DCE=35°,求∠ACB的度数;(2)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)请你动手操作,现将三角尺ACD固定,三角尺BCE的CE边与CA边重合,绕点C 顺时针方向旋转,当0°<∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.参考答案一.选择题1.解:在同一平面内,不相交也不重合的两条直线一定平行,故①错误,②正确;在同一平面内,不平行也不重合的两条直线一定相交故,③错误,④正确.故正确判断的个数是2.故选:C.2.解:∠1=62°,要使l1∥l2,则需∠3=62°(同位角相等,两直线平行),由图可知,∠2与∠3是邻补角,则只需∠2=180°﹣62°=118°,故选:A.3.解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=30°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:B.4.解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.5.解:如图所示:不相邻的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行或共线.故选:D.6.解:由题意得,这样做的理由是:两点之间线段最短,故选:C.7.解:①当∠B+∠BFE=180°时,由同旁内角互补,两直线平行得AB∥EF,故①符合题意;②当∠1=∠2时,由内错角相等,两直线平行得DE∥BC,故②不符合题意;③当∠3=∠4时,由内错角相等,两直线平行得AB∥EF,故③符合题意;④当∠B=∠5时.由同位角相等,两直线平行得AB∥EF,故④符合题意;综上所述,能判定AB∥EF的有3个.故选:C.8.解:A.直线a与b不一定平行,故本选项符合题意;B.根据同旁内角互补,两直线平行可得a∥b,故本选项不符合题意;C.根据平行线的定义可得a∥b,故本选项不符合题意;D.根据同位角相等,两直线平行可得a∥b,故本选项不符合题意;故选:A.二.填空题9.解:∵c∥b,a⊥b,∴c⊥a.故答案为c⊥a10.解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.11.解:图中的平行线段有AD∥EF;BD∥EF;DE∥FB;DE∥FC;DF∥AE;DF∥EC;DE∥BC;DF∥AC;EF∥AB.共有9对.故答案为:9.12.解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.13.解:∵过直线外一点有且只有一条直线与已知直线平行,∴①错误;∵在同一平面内,两条不相交的线段可能在一条直线上,说两线段是平行线段不对,∴②错误;∵相等的角不一定是对顶角,∴③错误;∵在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交,正确,∴④正确;故答案为:①②③.14.解:∵PC∥AB,QC∥AB,∵PC和CQ都过点C,∴P、C、Q在一条直线上(过直线外一点有且只有一条直线与已知直线平行),故答案为:过直线外一点有且只有一条直线与已知直线平行.三.解答题15.解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.16.解:结论:AB∥DG.理由:∵AD⊥BC于D,EF⊥BC于F,∴AD∥EF,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.17.解:已知:如图,AB∥CD,HI与AB,CD分别交于点M、N,EM,FN分别是∠AMH,∠CNH的平分线.求证:EM∥FN.证明:∵AB∥CD,∴∠AMH=∠CNH(两直线平行,同位角相等),∵EM,FN分别是∠AMH,∠CNH的平分线,∴∠1=∠AMH,∠2=∠CNH,∴∠1=∠2,∴EM∥FN(同位角相等,两直线平行).18.解:(1)平行;理由如下:∵AC∥BD,MN∥AC,∴MN∥BD;(2)∵AC∥BD,MN∥BD,∴∠PBD=∠1,∠P AC=∠2,∴∠APB=∠1+∠2=∠PBD+∠P AC.(3)答:不成立.它们的关系是∠APB=∠PBD﹣∠P AC.理由是:如图2,过点P作PQ∥AC,∵AC∥BD,∴PQ∥AC∥BD,∴∠P AC=∠APQ,∠PBD=∠BPQ,∴∠APB=∠BPQ﹣∠APQ=∠PBD﹣∠P AC.19.解:共线.因为过直线AB外一点C有且只有一条直线与AB平行,CD、DE都经过点C且与AB平行,所以点C、D、E三点共线.20.证明:∵∠1+∠2=180°(已知)∵∠1=∠4(对顶角相等)∴∠2+∠4=180°(等量代换)∴AB∥EF(同旁内角互补,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)21.证明:(1)∵∠A=∠AGE,∠D=∠DGC,又∵∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE∥FB,∴∠C=∠BFD,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.又∵AB∥CD,∴∠B=∠BFD,∴∠C=∠BFD=∠B=50°.22.解:(1)∵∠ECB=90°,∠DCE=35°,∴∠DCB=90°﹣35°=55°,∴∠ACB=∠ACD+∠DCB=90°+55°=145°;(2)∠ACB+∠DCE=180°,理由:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;(3)存在,当∠ACE=30°时,AD∥BC,当∠ACE=∠E=45°时,AC∥BE,当∠ACE=120°时,AD∥CE,当∠ACE=135°时,BE∥CD,当∠ACE=165°时,BE∥AD.。

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题含答案

七年级数学(下)第五章《相交线与平行线——平行线的判定》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面几种说法中,正确的是A.同一平面内不相交的两条线段平行B.同一平面内不相交的两条射线平行C.同一平面内不相交的两条直线平行D.以上三种说法都不正确【答案】C2.如图所示,若∠1与∠2互补,∠2与∠4互补,则A.l3∥l4B.l2∥l5C.l1∥l5D.l1∥l2【答案】D【解析】因为∠1与∠2互补,∠2与∠4互补,可知∠1+∠2=180°,∠2+∠4=180°,所以∠1=∠4,根据内错角相等,两直线平行可得l1∥l2,故选D.3.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是A.第一次向右拐40°,第二次向左拐140°B.第一次向右拐40°,第二次向右拐140°C.第一次向左拐40°,第二次向左拐140°D.第一次向左拐40°,第二次向右拐40°【答案】D4.如图,是我们学过的用直尺和三角尺画平行线的方法示意图,画图的原理是A.同位角相等,两直线平行B.内错角相等,两直线平行C.两直线平行,同位角相等D.两直线平行,内错角相等【答案】A【解析】三角板的∠CAB,沿着FE进行平移后角的大小没变,而平移前后的两个角是同位角,所以画图原理是“同位角相等,两直线平行”.5.如图,给出下面的推理:①∵∠B=∠BEF,∴AB∥EF;②∵∠B=∠CDE,∴AB∥CD;③∵∠B+∠BEC=180°,∴AB∥EF;④∵AB∥CD,CD∥EF,∴AB∥EF.其中正确的是A.①②③B.①②④C.①③④D.②③④【答案】B二、填空题:请将答案填在题中横线上.6.在同一平面内有四条直线a、b、c、d,已知:a∥d,b∥c,b∥d,则a和c的位置关系是__________.【答案】a∥c【解析】∵a∥d,b∥c,b∥d,∴a∥c.故答案为:a∥c.7.如图,直线a、b被直线c所截,若要a∥b,需增加条件__________(填一个即可).【答案】答案不唯一,如∠1=∠3.【解析】∵∠1=∠3,∴a∥b(同位角相等,两直线平行),故答案为:∠1=∠3.8.如图所示,若∠1=70°,∠2=50°,∠3=60°,则________________∥________________.【答案】DE;AC三、解答题:解答应写出文字说明、证明过程或演算步骤.9.如图,已知∠1=∠3,AC平分∠DAB,你能推断出哪两条直线平行?请说明理由.【解析】可以推断出DC∥AB,理由如下:∵AC平分∠DAB,∴∠1=∠2(角平分线的定义),又∵∠1=∠3,∴∠2=∠3(等量代换),∴DC∥AB(内错角相等,两直线平行).10.如图,若∠1与∠B互为补角,∠B=∠E,那么直线AB与直线DE平行吗?直线BC与直线EF平行吗?为什么?【解析】BC∥EF,理由如下:∵∠1+∠B=180°,∴AB∥DE,∵∠1+∠B=180°,∠B=∠E.∴∠1+∠E=180°,又∠1=∠2,∴∠2+∠E=180°,∴BC∥EF.11.如图,已知∠A+∠ACD+∠D=360°,试说明:AB∥DE.12.如图,∠1=65°,∠2=65°,∠3=115°.试说明:DE∥BC,DF∥AB.根据图形,完成下面的推理:因为∠1=65°,∠2=65°,所以∠1=∠2.所以__________∥__________.(__________)因为AB与DE相交,所以∠1=∠4(__________),所以∠4=65°.又因为∠3=115°,所以∠3+∠4=180°.所以__________∥__________.(__________)。

人教版数学七年级下册:第五章《相交线与平行线》 全章知识点归纳及典型题目练习(含答案)

人教版数学七年级下册:第五章《相交线与平行线》 全章知识点归纳及典型题目练习(含答案)

第五章《相交线与平行线》1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.熟悉以下各题:13. 如图,,8,6,10,BC AC CB cm AC cm AB cm ⊥===那么点A 到BC 的距离是_____,点B 到AC 的距离是_______,点A 、B 两点的距离是_____,点C 到AB 的距离是________.14. 设a 、b 、c 为平面上三条不同直线,a) 若//,//a b b c ,则a 与c 的位置关系是_________;b) 若,a b b c ⊥⊥,则a 与c 的位置关系是_________;c) 若//a b ,b c ⊥,则a 与c 的位置关系是________.15. 如图,已知AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,∠FOD =28°,求∠COE 、∠AOE 、∠AOG 的度数.16. 如图,AOC ∠与BOC ∠是邻补角,OD 、OE 分别是AOC ∠与BOC ∠的平分线,试判断OD 与OE 的位置关系,并说明理由.17. 如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE过点C 作CF ∥AB ,则B ∠=∠____( )又∵AB ∥DE ,AB ∥CF ,∴____________( )∴∠E =∠____( )∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .18. ⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.19. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ .证明:∵AB ∥CD ,∴∠MEB =∠MFD ( )又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2,即 ∠MEP =∠______∴EP ∥_____.( )20. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG 的大小.21. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA交CA 于G .求证12∠=∠.22. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.参考答案1.邻补角2. 对顶角,对顶角相等3.垂直 有且只有 垂线段最短4.点到直线的距离5.同位角 内错角 同旁内角6.平行 相交 平行7.平行 这两直线互相平行8.同位角相等 两直线平行; 内错角相等 两直线平行; 同旁内角互补 两直线平行.9.平行 10.两直线平行 同位角相等;两直线平行 内错角相等;两直线平行 同旁内角互补.11.命题 题设 结论 由已知事项推出的事项 题设 结论 真命题 假命题 12.平移 相同 平行且相等 13.6cm 8cm 10cm 4.8cm. 14.平行 平行 垂直 15. 28° 118° 59° 16. OD ⊥OE 理由略 17. 1(两直线平行,内错角相等)DE ∥CF (平行于同一直线的两条直线平行) 2 (两直线平行,内错角相等). 18.⑴∵∠1=∠2 ,又∵∠2=∠3(对顶角相等),∴∠1=∠3∴a ∥b (同位角相等 两直线平行) ⑵∵a ∥b ∴∠1=∠3(两直线平行,同位角相等)又∵∠2=∠3(对顶角相等) ∴∠1=∠2. 19. 两直线平行,同位角相等 MFQ FQ 同位角相等两直线平行 20. 96°,12°.21.,AD BC FE BC ⊥⊥Q 90EFB ADB ∴∠=∠=o//EF AD ∴23∴∠=∠ //,31DG BA ∴∠=∠Q 1 2.∴∠=∠ 22. ∠A =∠F .∵∠1=∠DGF (对顶角相等)又∠1=∠2 ∴∠DGF =∠2 ∴DB ∥EC (同位角相等,两直线平行) ∴∠DBA =∠C (两直线平行,同位角相等) 又∵∠C =∠D ∴∠DBA =∠D ∴DF ∥AC (内错角相等,两直线平行)∴∠A =∠F (两直线平行,内错角相等).。

2024-2025学年人教版数学七年级下学期《第5章相交线与平行线》测试卷及答案解析

2024-2025学年人教版数学七年级下学期《第5章相交线与平行线》测试卷及答案解析

A.3.5
B.4
10.如图,下列说法错误的是( )
C.5.5
第 2 页 共 38 页
D.6.5
A.∠A 与∠B 是同旁内角
B.∠1 与∠3 是同位角
C.∠2 与∠A 是同位角
D.∠2 与∠3 是内错角
11.下列所示的四个图形中,∠1 和∠2 是同位角的是( )
A.①②
B.②③
12.如图,∠BAC 和∠BCA 是( )
A.A 点
B.B 点
C.C 点
8.下列图形中,线段 MN 的长度表示点 M 到直线 l 的距离的是(
D.D 点 )
A.
B.
C.
D.
9.如图,A 是直线 l 外一点,过点 A 作 AB⊥l 于点 B,在直线 l 上取一点 C,连结 AC,使
AC=2ABLeabharlann P 在线段 BC 上连结 AP.若 AB=3,则线段 AP 的长不可能是( )
循反射定律发生反射,当光线 PQ 经过 n 次反射后与边 OA 或 OB 平行时,称角为定角α
的 n 阶平行逃逸角,特别地,当光线 PQ 直接与 OA 平行时,称角β为定角α的零阶平行
逃逸角.
(1)已知∠AOB=α=20°,
①如图 1,若 PQ∥OA,则∠BPQ=
°,即该角为α的零阶平行逃逸角;
第 5 页 共 38 页
25.已知,如图,∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°,
C.110°
D.100°
3.如图,若 AB,CD 相交于点 O,∠AOE=90°,则下列结论不正确的是( )
A.∠EOC 与∠BOC 互为余角
B.∠EOC 与∠AOD 互为余角

人教版七年级数学下册第五章相交线与平行线复习训练题

人教版七年级数学下册第五章相交线与平行线复习训练题

第五章相交线与平行线类型一邻补角与对顶角巧分辨1.如图1所示的几个图形中,能构成对顶角的是( )图12.如图2,三条直线AB,CD,EF相交于点O,则∠1的邻补角为______________.图23.如图3,直线AB,CD交于点O,射线OM平分∠AOC.若∠BOD=76°,求∠AOM的度数.图3类型二区分同位角、内错角、同旁内角有原则4.如图4,与∠1构成内错角的是( )图4A.∠2 B.∠3 C.∠4 D.∠55.如图5,直线DE经过点C,则∠A的内错角是________,∠A的同旁内角是________________.图56.如图6,E是AB延长线上一点,指出下面各组中的两个角是由哪两条直线被哪一条直线所截形成的?它们是什么角?(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.图6类型三掌握相交的特殊情形——垂直7.如图7,已知AB,CD相交于点O,OE⊥CD,垂足为O,∠AOC=30°,则∠BOE等于( )图7A .30°B .60°C .120°D .130°8.如图8所示,在直角三角形ABC 中,∠ACB=90°,CD⊥AB 于点D ,则点A 到BC 的距离为线段______的长度;点A到CD 的距离为线段______的长度;点C 到AB 的距离为线段______的长度.图8类型四 平行线的判定和性质9.如图9,直线a ,b 被直线c 所截,下列说法正确的是( )A .当∠1=∠2时,一定有a∥bB .当a∥b 时,一定有∠1=∠2C .当a∥b 时,一定有∠1+∠2=90°D .当∠1+∠2=180°时,一定有a∥b10.如图10,已知AB∥CD,∠1=60°,则∠2=________°.图9图1011.如图11,不添加辅助线,请你写出一个能判定EB∥AC的条件:________________________.图1112.如图12,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,求∠2的度数.图1213.如图13,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并说明理由.图1314.如图14所示,已知OP∥QR∥ST,连接PR,SR,猜想∠1,∠2,∠3三个角之间的关系,并说明理由.图14类型五命题与定理须细辨15.下列语句不是命题的是( )A.若a<0,b<0,则ab>0B.用三角板画一个60°的角C.对顶角相等D.互为相反数的两个数的和为016.下列命题中,是真命题的是( )A.对顶角相等B.同位角相等C.若a2=b2,则a=bD.若a>b,则-2a>-2b17.将下列命题改写成“如果……那么……”的形式.(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)三角形的内角和是180°.类型六平移平移的特征:图形的平移变换中,图形的形状、大小、方向都不发生改变,只是改变了图形的位置;平移前后图形的对应点的连线平行(或在同一条直线上)且相等.18.下列现象中,不属于平移的是( )A.钟表的指针转动B.电梯的升降C.火车在笔直的铁轨上行驶D.传送带上物品的运动19.如图15,将周长为8的三角形ABC沿BC方向向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为( )图15A.6 B.8 C.10 D.12类型七方程思想在几何中的应用20.如图16,已知a∥b,∠1=(3x+70)°,∠2=(5x+22)°,求∠1的补角的度数.图16类型八开放型问题21.给出下列三个论断:①∠B+∠D=180°;②AB∥CD;③BC∥DE.请你以其中两个论断作为已知条件,填入“已知”栏中,以一个论断作为结论,填入“结论”栏中,使之成为一道由已知可得到结论的题目,并说明理由.已知:如图17,________________________.结论:________________________.图17类型九探究型问题22.【阅读材料】在“相交线与平行线”的学习中,有这样一道典型问题:如图18①,AB∥CD,点P在AB与CD之间,可得结论:∠BAP+∠APC+∠PCD=360°.理由如下:过点P作PQ∥AB.∴∠BAP+∠APQ=180°.∵AB∥CD,PQ∥AB,∴PQ∥CD,∴∠PCD+∠CPQ=180°.∴∠BAP+∠APC+∠PCD=∠BAP+∠APQ+∠CPQ+∠PCD=180°+180°=360°.【问题解决】(1)如图②,AB∥CD,点P在AB与CD之间,可得∠BAP,∠APC,∠PCD间的等量关系是________________________________________________________________________;(2)如图③,AB∥CD,点P ,E 在AB 与CD 之间,AE 平分∠BAP,CE 平分∠DCP,写出∠AEC 与∠APC 间的等量关系,并写出理由;(3)如图④,AB∥CD,点P ,E 在AB 与CD 之间,∠BAE=13∠BAP,∠DCE=13∠DCP ,可得∠AEC与∠APC 间的等量关系是________________________.图18答案1.D2.∠BOE 和∠AOF 3.解:∵∠BOD=76°, ∴∠AOC=∠BOD=76°. ∵射线OM 平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°.4.B5.∠ACD ∠ACB,∠ACE 和∠B6.解:(1)∠A 和∠D 是直线AE ,DC 被直线AD 所截而成的同旁内角. (2)∠A 和∠CBA 是直线AD ,BC 被直线AE 所截而成的同旁内角. (3)∠C 和∠CBE 是直线DC ,AE 被直线BC 所截而成的内错角. 7.C 8.AC AD CD 9.D 10.12011.答案不唯一,如∠C=∠EBD 12.解:∵AB∥CD,∴∠2=∠BEG,∠BEF+∠1=180°. ∵∠1=50°,∴∠BEF=130°. ∵EG 平分∠BEF,∴∠BEG=12∠BEF=65°, ∴∠2=65°.13.解:∠ACB=∠DEB.理由:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE,∴AB∥EF,∴∠DEF=∠BDE.∵∠DEF=∠A,∴∠A=∠BDE,∴AC∥DE,∴∠ACB=∠DEB.14.解:∠2+∠3=180°+∠1.理由:∵OP∥QR,∴∠2+∠QRP=180°,∴∠QRP=180°-∠2.∵QR∥ST,∴∠3=∠QRS=∠1+∠QRP=∠1+180°-∠2.∴∠2+∠3=180°+∠1.15.B16. A17.解:(1)如果几个角是直角,那么它们都相等.(2)如果一个整数的末位数字是5,那么它能被5整除.(3)如果一个图形是三角形,那么它的内角和是180°.18.A19. C20.解:如图,因为a∥b,所以∠1=∠3.又因为∠1=(3x+70)°,∠2=(5x+22)°,∠2+∠3=180˚,所以(3x +70)°+(5x+22)°=180°,解得x=11,所以∠1=(3x+70)°=103°.又因为180°-103°=77°,所以∠1的补角的度数为77°.21.解:答案不唯一,符合题意的情况有3种,即①②→③;①③→②;②③→①,任选其中一种即可.已知:如图17,∠B+∠D=180°,AB∥CD.结论:BC∥DE.理由:因为AB∥CD,所以∠B=∠C(两直线平行,内错角相等).又因为∠B+∠D=180°,所以∠C+∠D=180°,所以BC∥DE(同旁内角互补,两直线平行).22.解:(1)如图②,作PE∥AB,得∠APE=∠BAP.∵AB∥CD,AB∥PE,∴CD∥PE,∴∠CPE=∠PCD,∴∠APC=∠APE+∠CPE=∠BAP+∠PCD.故答案为∠APC=∠BAP+∠PCD.(2)∠APC=2∠AE C.理由:设∠EAB=∠EAP=x,∠ECD=∠ECP=y.由(1)可知:∠AEC=x+y,∠APC=2x+2y,∴∠APC=2∠AE C.(3)设∠EAB=a,∠DCE=b,则∠BAP=3a,∠DCP=3b. 由题意得∠AEC=a+b,∠APC+3a+3b=360°,∴∠APC+3∠AEC=360°.故答案为∠APC+3∠AEC=360°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《平行线》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)下列说法中,正确的有()①过两点有且只有一条直线;②有AB=MA+MB,AB<NA+NB,则点M在线段AB上,点N在线段AB外;③一条射线把一个角分成两个角,这条射线叫这个角的平分线;④40°50′=40.5°;⑤不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个2.(5分)下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行.(2)在同一平面内,两条直线的位置关系只有相交、平行两种.(3)不相交的两条直线叫做平行线.(4)相等的角是对顶角.A.1个B.2个C.3个D.4个3.(5分)下列说法正确的有()①同位角相等;②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;④同一平面内两条直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.A.1个B.2个C.3个D.4个4.(5分)在同一平面内,两直线的位置关系必是()A.相交B.平行C.相交或平行D.垂直5.(5分)下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c二、填空题(本大题共5小题,共25.0分)6.(5分)平面上有10条直线,其中有4条直线是互相平行,那么这10条直线最多将平面分成个部分.7.(5分)在同一平面内,两条不相重合的直线位置关系有两种:和.8.(5分)下列说法正确的有(填序号):.①同位角相等;②一条直线有无数条平行线;③在同一平面内,两条不相交的线段是平行线;④在同一平面内,如果a∥b,b∥c,则a∥c;⑤过一点有且只有一条直线与已知直线平行.9.(5分)在同一平面内,不重合的两条直线有种位置关系,它们是.10.(5分)如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来;.三、解答题(本大题共5小题,共50.0分)11.(10分)在同一平面内,任意三条直线有哪几种不同的位置关系?你能画图说明吗?下面是小明的解题过程:解:有两种位置关系,如图:你认为小明的解答正确吗?如果不正确,请你给出正确的解答.12.(10分)(1)如图,三根木条相交成∠1、∠2,固定木条b、c,转动木条a,在木条a的转动过程中,∠1与∠2的大小关系发生了什么变化?木条a、b的位置关系发生了什么变化?(2)改变图中∠1的大小,按照上面的方式再试一试,当∠2与∠1的大小满足什么关系时,木条a与木条b平行?画出图形,填下列表格:图形∠2与∠1的大小关∠2∠1∠2∠1∠2∠1系木条a与b的位置关系13.(10分)如图,在长方体中,A1B1∥AB,AD∥BC,你还能再找出图中的平行线吗?14.(10分)如图所示,AB∥DC,在AD上取一点E,过E作EF∥AB交BC于F,试说明EF与DC的位置关系,并解释原因.15.(10分)直线a∥b,b∥c,直线d与a相交于点A.(1)判断a与c的位置关系,并说明理由;(2)判断c与d的位置关系,并说明理由.《平行线》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列说法中,正确的有()①过两点有且只有一条直线;②有AB=MA+MB,AB<NA+NB,则点M在线段AB上,点N在线段AB外;③一条射线把一个角分成两个角,这条射线叫这个角的平分线;④40°50′=40.5°;⑤不相交的两条直线叫做平行线.A.1个B.2个C.3个D.4个【分析】利用直线的性质,度分秒的换算,以及角平分线定义判断即可.【解答】解:①过两点有且只有一条直线,正确;②有AB=MA+MB,AB<NA+NB,则点M在线段AB上,点N在线段AB外,正确;③在角的内部,一条射线把一个角分成两个角,这条射线叫这个角的平分线,错误;④40°50′=40.83°,错误;⑤在一个平面内,不相交的两条直线叫做平行线,错误.故选:B.【点评】此题考查了平行线,直线的性质,度分秒的换算,以及角平分线定义,熟练掌握各自的性质是解本题的关键.2.(5分)下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行.(2)在同一平面内,两条直线的位置关系只有相交、平行两种.(3)不相交的两条直线叫做平行线.(4)相等的角是对顶角.A.1个B.2个C.3个D.4个【分析】直接利用对顶角的性质以及平行线和相交线的定义分析得出即可.【解答】解:(1)过直线外一点有且只有一条直线与已知直线平行,故原命题错误;(2)在同一平面内,两条直线的位置关系只有相交、平行两种,正确;(3)在同一平面内,不相交的两条直线叫做平行线,故原命题错误;(4)相等的角不一定是对顶角,故原命题错误.故错误的有3个.故选:C.【点评】此题主要考查了对顶角的性质以及平行线和相交线的定义等知识,正确把握平行线的定义是解题关键.3.(5分)下列说法正确的有()①同位角相等;②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;④同一平面内两条直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.A.1个B.2个C.3个D.4个【分析】平行线的性质即可判断①;根据补角的定义即可判断②,根据平行线的性质即可判断③,根据两直线的位置关系即可判断④;根据对顶角的定义即可判断⑤.【解答】解:∵同位角不一定相等,∴①错误;∵互补或互余是两个角之间的关系,∴说∠A+∠B+∠C=180°,则∠A、∠B、∠C互补错误,∴②错误;∵同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交,∴③正确;∵同一平面内两条直线的位置关系可能是平行或相交,∴④错误;∵如图,∠ABC=∠ABD,∠ABC和∠ABD有公共顶点并且相等的角,但不是对顶角,∴⑤错误;即正确的个数是1个,故选:A.【点评】本题考查了对顶角的定义,平行线的性质,两直线的位置关系灯知识点,能熟记知识点的内容是解此题的关键.4.(5分)在同一平面内,两直线的位置关系必是()A.相交B.平行C.相交或平行D.垂直【分析】利用同一个平面内,两条直线的位置关系解答,同一平面内两条直线的位置关系有两种:平行、相交.【解答】解:在同一个平面内,两条直线只有两种位置关系,即平行或相交.故选:C.【点评】本题主要考查了同一平面内,两条直线的位置关系,解题的关键是注意垂直是相交的一种特殊情况,不能单独作为一类.5.(5分)下列说法正确的是()A.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a∥cB.在同一平面内,a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.在同一平面内,a,b,c是直线,且a∥b,b⊥c,则a∥cD.在同一平面内,a,b,c是直线,且a∥b,b∥c,则a⊥c【分析】根据题意画出图形,从而可做出判断.【解答】解:先根据要求画出图形,图形如下图所示:根据所画图形可知:A正确.故选:A.【点评】本题主要考查的是平行线,根据题意画出符合题意的图形是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)平面上有10条直线,其中有4条直线是互相平行,那么这10条直线最多将平面分成50个部分.【分析】先计算出6条不平行的直线所能将平面分成的部分,然后再计算加入第一条平行线所增加的平面数量,从而可得出第二、第三、第四条加上后的总数量.【解答】解:6条不平行的直线最多可将平面分成2+2+3+4+5+6=22个部分,加入第一条平行线后,它与前面的6条直线共有6个交点,它被分成7段,每一段将原有的部分一分为二,因此增加了7个部分,同理每增加一条平行线就增加7个部分,故这10条直线最多将平面分成22+7×4=50.故答案为50.【点评】本题考查直线相交所产生平面个数的问题,有一定难度,注意先计算6条不平行的直线所分成的平面数量.7.(5分)在同一平面内,两条不相重合的直线位置关系有两种:相交和平行.【分析】同一平面内,直线的位置关系通常有两种:平行或相交.【解答】解:平面内的直线有平行或相交两种位置关系.故答案为:相交,平行.【点评】本题主要考查了在同一平面内的两条直线的位置关系,属于基础题,应熟记这一知识点.8.(5分)下列说法正确的有(填序号):②④.①同位角相等;②一条直线有无数条平行线;③在同一平面内,两条不相交的线段是平行线;④在同一平面内,如果a∥b,b∥c,则a∥c;⑤过一点有且只有一条直线与已知直线平行.【分析】根据平行线的性质,平行公理以及平行线与线段的区别对各小题分析判断后利用排除法求解.【解答】解:①应是两直线平行,同位角相等,故本小题错误;②一条直线有无数条平行线,正确;③因为线段有端点,所以有长短,不相交也不一定平行,故在同一平面内,两条不相交的线段不一定是平行线,故本小题错误;④在同一平面内,如果a∥b,b∥c,则a∥c,符合平行公理,正确;⑤应为过直线外一点可以而且只可以画一条直线与已知直线平行,故本小题错误,故答案为:②④.【点评】本题主要考查了平行线的性质及平行公理,都是基础知识,需要熟练记忆.9.(5分)在同一平面内,不重合的两条直线有2种位置关系,它们是相交或平行.【分析】根据同一平面内,不重合的两条直线的位置关系可知.【解答】解:在同一平面内,不重合的两条直线有2种位置关系,它们是相交或平行.【点评】本题是基础题型,主要考查了在同一平面内,不重合的两条直线的两种位置关系.10.(5分)如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来;CD∥MN,GH∥PN.【分析】分别找出各线段与水平方向的夹角在网格上所截得的竖直方向的线段与水平方向的线段的长度,然后求出它们的比值,比值相同的线段就是互相平行的线段.【解答】解:AB,竖直方向的长度为3个单位,水平方向的长度为1个单位,比值为:3:1;CD,竖直方向的长度为2个单位,水平方向的长度为3个单位,比值为:2:3;EF,竖直方向的长度为3个单位,水平方向的长度为2个单位,比值为:3:2;GH,竖直方向的长度为2个单位,水平方向的长度为1个单位,比值为:2:1;MN,竖直方向的长度为2个单位,水平方向的长度为3个单位,比值为:2:3;PN,竖直方向的长度为2个单位,水平方向的长度为1个单位,比值为:2:1;结合图形线段的倾斜方向相同,比值相同的线段是CD与MN,GH与PN,∴互相平行的线段是CD∥MN,GH∥PN.故答案为:CD∥MN,GH∥PN.【点评】本题考查了平行线与网格相结合,准确识图,找出线段在网格上的水平方向上的长度与竖直方向上的长度并求出比值是解题的关键,是基础题.三、解答题(本大题共5小题,共50.0分)11.(10分)在同一平面内,任意三条直线有哪几种不同的位置关系?你能画图说明吗?下面是小明的解题过程:解:有两种位置关系,如图:你认为小明的解答正确吗?如果不正确,请你给出正确的解答.【分析】根据同一平面内的两条直线有相交、平行两种关系画出图形即可解答.【解答】解:不正确,如图所示,故在同一平面内,任意三条直线有四种不同的位置关系.【点评】本题考查的是相交线与平行线,解答此题的关键是熟知同一平面内两条直线的两种位置关系.12.(10分)(1)如图,三根木条相交成∠1、∠2,固定木条b、c,转动木条a,在木条a的转动过程中,∠1与∠2的大小关系发生了什么变化?木条a、b 的位置关系发生了什么变化?(2)改变图中∠1的大小,按照上面的方式再试一试,当∠2与∠1的大小满足什么关系时,木条a与木条b平行?画出图形,填下列表格:图形∠2与∠1的大小关∠2<∠1∠2=∠1∠2>∠1系木条a与b的位置关相交平行相交系【分析】(1)利用已知操作方法得出,∠1与∠2的大小关系的变化和木条a、b 的位置关系变化情况;(2)利用平行线的判定方法得出即可.【解答】解:(1)图形∠2<∠1∠2=∠1∠2>∠1∠2与∠1的大小关系相交平行相交木条a与b的位置关系(2)如图所示:当∠2=∠1时,木条a与木条b平行.【点评】此题主要考查了平行线的判定与性质,根据题意得出a,b的位置关系是解题关键.13.(10分)如图,在长方体中,A1B1∥AB,AD∥BC,你还能再找出图中的平行线吗?【分析】根据平行线的定义:在同一平面内,不相交的两条直线叫平行线,结合长方体直接判断即可.【解答】解:图中的平行线有:AB∥DC∥D1C1∥A1B1,AD∥BC∥B1C1∥A1D1,AA1∥BB1∥CC1∥DD1.【点评】本题考查了平行线的定义,注意在同一平面内,两直线的位置关系只有平行和相交(重合除外).14.(10分)如图所示,AB∥DC,在AD上取一点E,过E作EF∥AB交BC于F,试说明EF与DC的位置关系,并解释原因.【分析】根据平行于同一直线的两直线互相平行解答.【解答】解:∵AB∥DC,EF∥AB,∴EF∥DC(平行公理).【点评】本题考查了平行公理,是基础题,需熟记.平行公理的推论可以看做是平行线的一种判定方法,在解题中要注意该结论在证明直线平行时应用.15.(10分)直线a∥b,b∥c,直线d与a相交于点A.(1)判断a与c的位置关系,并说明理由;(2)判断c与d的位置关系,并说明理由.【分析】(1)根据平行公理得出即可;(2)根据c∥a和直线d与a相交推出即可.【解答】解:(1)a与c的位置关系是平行,理由是:∵直线a∥b,b∥c,∴a∥c;(2)c与d的位置关系是相交,理由是:∵c∥a,直线d与a相交于点A,∴c与d的位置关系是相交.【点评】本题考查了平行公理和推论的应用,主要考查学生的理解能力和推理能力,题目比较好,难度不大.。

相关文档
最新文档