7.1.2平面向量的加法.ppt
合集下载
7.1.2平面向量的加法.ppt

a + b = AB + BC = AC 字母接龙
8
若两个向量共线呢?比如反向
a C
CA
b
B首
尾 相 连
B
a + b = AB + BC = AC 字母接龙
9
A
首
尾
相
连
B
C
字母接龙 AB + BC = AC
10
AD + AB = ?
D
C
A
B
11
AD + AB = ?
D
C
A
B
12
性质1: a + 0 = 0 + a = a a + (-a) = 0
彼岸
小船渡河
水流速度
v水=5
C
此岸
16
B
划行 速度
v划 =12
A
速度单位:km/h
彼岸
小船渡河
17
水流速度 AB=5
此岸
B
D
划行 速度
v划 =12
A
C
悬挂重物
18
-G
F2
F2
F1
G
下一节:7.1.3平面向量的减法
19
性质2: a + b = b + a 性质3: ( a + b ) + c = a + ( b + c )
13
速度单位:km/h
彼岸
小船渡河
14
水流速度
v水=0
此岸
划行 速度
v划 =0
静止在此岸
速度单位:km/h
彼岸
小船渡河
水流速度
中职数学 下册 课件-第七章 平面向量

第七章 平面向量
7.1平面向量的概念及线性运算 7.1.1向量的概念 7.1.2平面向量的加法 7.1.3平面向量的减法 7.1.4平面向量的数乘运算
7.2平面向量的坐标表示 7.2.1平面向量的坐标 7.2.2向量线性运算的坐标表示 7.2.3共线向量的坐标表示
7.3平面向量的内积 7.2.1平面向量的内积 7.2.2内积的坐标表示
a
b
B
a
b
A a+b
C
一般地,设向量a与向量b不共线,在平面上任取一点A
依次作 AB a,BC b,则向量AC 叫做向量a与向量b的和,
距离、位移、身高、力、质量、时间、速度、面积、温度.
数量
向量
距离、身高、 质量、时间、 面积、温度
位移、力、 速度
【新知识】向量的表示
用有向线段表示(规定了起点、方向、长度的 线段)
a 始点
终点
始点
终点
A
B
a 用字母表示 AB, 或
始点
终点
1【.向(模新量)表知的示大识:小】(模向| A)量B: | 的向或有量| a关A|B概或念a 的大小
向量是不能比较大小的,但
向量的模是可以进行大小比较的.
a
| a || b | √
b
a b
×
2.两个基本向量:
零向量: 模 为零的 向量(方向不确定). 表示: 0, | 0 | 0
单位向量: 模为1个单位长度的向量.
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km, 另一架飞机从A处朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向线段表示两架 飞机的位移.
7.1平面向量的概念及线性运算 7.1.1向量的概念 7.1.2平面向量的加法 7.1.3平面向量的减法 7.1.4平面向量的数乘运算
7.1平面向量的概念及线性运算 7.1.1向量的概念 7.1.2平面向量的加法 7.1.3平面向量的减法 7.1.4平面向量的数乘运算
7.2平面向量的坐标表示 7.2.1平面向量的坐标 7.2.2向量线性运算的坐标表示 7.2.3共线向量的坐标表示
7.3平面向量的内积 7.2.1平面向量的内积 7.2.2内积的坐标表示
a
b
B
a
b
A a+b
C
一般地,设向量a与向量b不共线,在平面上任取一点A
依次作 AB a,BC b,则向量AC 叫做向量a与向量b的和,
距离、位移、身高、力、质量、时间、速度、面积、温度.
数量
向量
距离、身高、 质量、时间、 面积、温度
位移、力、 速度
【新知识】向量的表示
用有向线段表示(规定了起点、方向、长度的 线段)
a 始点
终点
始点
终点
A
B
a 用字母表示 AB, 或
始点
终点
1【.向(模新量)表知的示大识:小】(模向| A)量B: | 的向或有量| a关A|B概或念a 的大小
向量是不能比较大小的,但
向量的模是可以进行大小比较的.
a
| a || b | √
b
a b
×
2.两个基本向量:
零向量: 模 为零的 向量(方向不确定). 表示: 0, | 0 | 0
单位向量: 模为1个单位长度的向量.
巩固知识 典型例题
例1 一架飞机从A处向正南方向飞行200km, 另一架飞机从A处朝北偏东45°方向飞行200km, 两架飞机的位移相同吗?分别用有向线段表示两架 飞机的位移.
7.1平面向量的概念及线性运算 7.1.1向量的概念 7.1.2平面向量的加法 7.1.3平面向量的减法 7.1.4平面向量的数乘运算
【中职数学】7.1.2向量的加法

达超市(B处),买了文具后,又沿着北偏东60°角方向行
A
走200 m到达学校(C处)(如
图).王涛同学这两次位移的 总效果是从家(A处)到达了学
500m
C 200m
校(C处).
位移AC 叫做位移 AB与位移 BC 的和,记作 AC AB BC.
一、向量加法法则
1.向量加法的三角形法则
已知向量
a,
∴|B→D|=|A→C|,即该平行四边形的对角线相等,
∴四边形 ABCD 是矩形.
答案 B
3.在平行四边形 ABCD 中,设A→B=a,A→D=b,A→C=c,
B→D=d,则下列各式中不成立的是( )
A.a+b=c B.a+d=b C.b+d=a D.|a+b|=|c|
答案 C
4.若向量 a,b 满足|a|=8,|b|=12,则|a+b|的最大值是________, 最小值是________. 解: 当 a,b 同向时,|a+b|max=8+12=20;
→ ∴cos∠ABC=|A→B|=1200=12.
|BC| ∴∠ABC=60°,从而船与水流方向成 120°的角. 故船行进的方向与水流的方向成 120°的角.
巩固知识 典型例题
例4 用两条同样的绳子挂一个物体,设物体的重力为k,两条 绳子的方向与垂线的夹角为 ,求物体受到沿两条绳子的方向的 拉力 f1与 f2 的大小.
(2)如图(2),利用向量加法的平行四边形法 则作出 a+b.
解: (1)如图(a)所示,设O→A=a,∵a 与 b 有公共点, 故过 A 点作A→B=b,连接O→B即为 a+b.
(2)如图(b),设O→A=a,过 O 点作O→B=b,则以 OA、 OB 为邻边作▱OACB,连接 OC,则O→C=O→A+O→B=a+b.
平面向量的加法运算ppt课件

15
向量的加法
作业:课本第84页练习 1(2)(4)2题
课本第91页A组,3题
课外:
《世纪金榜》及知能提升作业(十六)
16
b
(2)作 OA a, b
(3)则OB a b
O
A
这种作法叫做向量加法
的三角形法则
B
4
向量的加法
练习:求作下列向量的和向量
(1)
b a
a
b
b
(2) a
b a
5
向量的加法
思考:当向量a,b为共线向量时,a b如何作出来?
(1)同向
a
b
(2)反向
a
b
A
B
C
A
C
B
AC a b
向量加法运算 及其几何意义
1
问问题题12::青指少挥年中科心技发创出新命大令赛:中向,东某走校4米学,生…在再展向台南上走展3 示米研。制在的此机过器程人中,机指器挥人中所心走发的出路命程令又:是向多东少走?3位米移,是… 再什向么东?走2米。在此过程中机器人所走的路程是多少? 位移是什么?
A
B
C
E
D
F
O.
C
A
B
10
练习.课本第84页3、4
11
向量的加法
例2. 在长江南岸某渡口处,江水以12.5km/h的速度向 东流,渡船的速度为25km/h. 渡船要垂直地渡过长江, 其航向应如何确定?
解:设 AB 表示水流的速度, AD 表示渡船的速度,AC 表示 渡船实际垂直过江的速度。
∵AB+AD=AC, ∴ 四边形ABCD为平行四边形
AB BC AC
B A
向量的加法
作业:课本第84页练习 1(2)(4)2题
课本第91页A组,3题
课外:
《世纪金榜》及知能提升作业(十六)
16
b
(2)作 OA a, b
(3)则OB a b
O
A
这种作法叫做向量加法
的三角形法则
B
4
向量的加法
练习:求作下列向量的和向量
(1)
b a
a
b
b
(2) a
b a
5
向量的加法
思考:当向量a,b为共线向量时,a b如何作出来?
(1)同向
a
b
(2)反向
a
b
A
B
C
A
C
B
AC a b
向量加法运算 及其几何意义
1
问问题题12::青指少挥年中科心技发创出新命大令赛:中向,东某走校4米学,生…在再展向台南上走展3 示米研。制在的此机过器程人中,机指器挥人中所心走发的出路命程令又:是向多东少走?3位米移,是… 再什向么东?走2米。在此过程中机器人所走的路程是多少? 位移是什么?
A
B
C
E
D
F
O.
C
A
B
10
练习.课本第84页3、4
11
向量的加法
例2. 在长江南岸某渡口处,江水以12.5km/h的速度向 东流,渡船的速度为25km/h. 渡船要垂直地渡过长江, 其航向应如何确定?
解:设 AB 表示水流的速度, AD 表示渡船的速度,AC 表示 渡船实际垂直过江的速度。
∵AB+AD=AC, ∴ 四边形ABCD为平行四边形
AB BC AC
B A
平面向量的加法精选教学PPT课件

当我们爱自己的孩子的时候,可曾想过,我们把爱孩子的十分之一去爱母亲,她就足矣,往往这一点也做不到,说句心里话,我们欠母亲的无法补偿,更无法用语言表达。 我有这两位母亲,虽然我的人生很不幸,但我有她们给我的无私的爱,我永远是幸福的,她们对我的爱我永存心里。在美国西雅图的一所著名教堂里,有一位德高望重的牧师――戴尔·泰勒。有一天,他向教会学校一个班的学生们先讲了下面这个故事。 那年冬天,猎人带着猎狗去打猎。猎人一枪击中了一只兔子的后腿,受伤的兔子拼命地逃生,猎狗在其后穷追不舍。可是追了一阵子,兔子跑得越来越远了。猎狗知道实在是追不上了,只好悻悻地回到猎人身边。猎人气急败坏地说:“你真没用,连一只受伤的兔子都追不
上海 C
香港 B
A 台北
向量的加法:
a
b
首
C
尾
相
ab
接
b
A
a
B
已知非零向量 a 、b , 在平面内任取一点A,作 AB a, BC b, 则向量 AC叫做a与b的和,记作a b,即
a b AB BC AC 这种求向量和的方法,称为向量加法的三角形法则。
2019/4/27
向量的加法
看书 P80~83(限时6分钟)
学习目标:
通过实例,掌握向量的加法运 算及理解其几何意义。
熟练运用加法的“三角形法则” 和“平行四边形”法则
2019/4/27
由于大陆和台湾没有直航,因此要从台湾去上海探亲,乘飞机 要先从台北到香港,再从香港到上海,这两次位移之和是什么?
2019/4/27
A
b
ab
B
2019/4/27
三角形法则
例1.如图,已知向量 a, b,求做向量 a b 。
上海 C
香港 B
A 台北
向量的加法:
a
b
首
C
尾
相
ab
接
b
A
a
B
已知非零向量 a 、b , 在平面内任取一点A,作 AB a, BC b, 则向量 AC叫做a与b的和,记作a b,即
a b AB BC AC 这种求向量和的方法,称为向量加法的三角形法则。
2019/4/27
向量的加法
看书 P80~83(限时6分钟)
学习目标:
通过实例,掌握向量的加法运 算及理解其几何意义。
熟练运用加法的“三角形法则” 和“平行四边形”法则
2019/4/27
由于大陆和台湾没有直航,因此要从台湾去上海探亲,乘飞机 要先从台北到香港,再从香港到上海,这两次位移之和是什么?
2019/4/27
A
b
ab
B
2019/4/27
三角形法则
例1.如图,已知向量 a, b,求做向量 a b 。
平面向量加法课件.ppt

知识进阶
向量加法的交换律
1、已知:实数加法的结合律:a+b=b+a
例如: 3+2=2+3
2、思考:向量加法是否存在结合律 ?
abba
举例验证!
证明:向量加法的交换律
b
ab
a
根据平行四边形对应边平行且相等的性质得出:
a b b a (向量的交换律)
课堂小结——总结与提高
基
向量加法的定义
2.2.1平面向量的加法
授课教师:葛珲
知识框架(向量相关概念复习)
定义:既有大小又有方向的量。如:力、位移、速度
几何表示: 有向线段方向表示向量的方向,线
表示:
段长度表示向量的大小。
向
代数表示法: AB、CD
量
相等向量: 长度相等,方向相同的向量。
向量相 关概念:
共线向量。如平行,重合
向量间的关系: 不共线向量。如两个
本 理 论
向量加法的运算
线性运算 AB BC AC
几何作图 1、平面外取一点A
2、平移
初
1、代数运算练习
步
应
用
2、学习P81例题1
3、首尾相接,始到终
在平面内任取一点A,作 AB a,BC b ,则向量
AC 就叫做 a 与 b 的和(或和向量),记作 a b。
有a b AB BC AC
b
a
A
ab
C
B
例题讲解
向量加法的三角形法则操作步骤:
(1)平面外取点A。 (2)平移。(注意平移不能改变向量的方向和长度) (3)首尾相连,始到终。
例1 已知两组向量如下图所示,用向量的三角形法则做出和向量
《平面向量的运算》平面向量及其应用 PPT教学课件 (向量的加法运算)

必修第二册·人教数学A版
返回导航 上页 下页
探究三 向量加法的实际应用
[例 3] 长江两岸之间没有大桥的地方,常常通过轮渡进行运输.如图,一艘船从长
江南岸 A 地出发,垂直于对岸航行,航行速度的大小为 15 km/h,同时江水的速度为
向东 6 km/h.
(1)用向量表示江水速度、船速以及船实际航行的速度;
解析:设A→B,B→C分别表示飞机从 A 地按北偏东 35°的方向飞行 800 km,从 B 地按 南偏东 55°的方向飞行 800 km, 则飞机飞行的路程指的是|A→B|+|B→C|; 两次飞行的位移的和指的是A→B+B→C=A→C. 依题意,有|A→B|+|B→C|=800+800=1 600 (km), 又 α=35°,β=55°,∠ABC=35°+55°=90°,
→ 因为 tan ∠CAB=|B→C|=52,所以利用计算工具可得∠CAB≈68°.
|AB| 因此,船实际航行速度的大小约为 16.2 km/h,方向与江水速度间的夹角约ห้องสมุดไป่ตู้ 68°.
必修第二册·人教数学A版
返回导航 上页 下页
向量加法应用的关键及技巧 (1)三个关键:一是搞清构成平面图形的向量间的相互关系;二是熟练找出图形中的 相等向量;三是能根据三角形法则或平行四边形法则作出向量的和向量. (2)应用技巧:①准确画出几何图形,将几何图形中的边转化为向量;②将所求问题 转化为向量的加法运算,进而利用向量加法的几何意义进行求解.
必修第二册·人教数学A版
1.如图,已知 a、b,求作 a+b. 解析: ①A→C=a+b ②A→C=a+b
返回导航 上页 下页
必修第二册·人教数学A版
返回导航 上页 下页
探究二 向量加法的运算律 [例 2] (1)化简下列各式: ①A→B+B→C+C→D+D→A; ②(A→B+M→B)+B→O+O→M. (2)如图,四边形 ABDC 为等腰梯形,AB∥CD,AC=BD, CD=2AB,E 为 CD 的中点.试求: ①A→B+A→E;②A→B+A→C+E→C; ③C→D+A→C+D→B+E→C.
平面向量的加法运算课件

平面向量的加法运算件
录
• 平面向量的加法定义 • 平面向量的加法运算性质 • 平面向量的加法运算律 • 平面向量的加法运算应用 • 平面向量加法运算的练习和巩固
contents
01
平面向量的加法定
定义及意义
平面向量的加法定 义
对于两个向量$\mathbf{a}$和$\mathbf{b}$,其和向量$\mathbf{c}$定义为 $\mathbf{c} = \mathbf{a} + \mathbf{b}$,其中$\mathbf{c}$的方向是 $\mathbf{a}$和$\mathbf{b}$的平行四边形的对角线方向。
向量$\mathbf{c}$等于零向量,即$\mathbf{c} = \mathbf{0}$。
向量加法的几何意 义
• 向量加法的几何意义:向量加法可以理解为将两个向量首尾相 连,得到一个新的向量,这个向量的长度等于两个向量的长度 之和,方向与两个向量的平行四边形的对角线方向一致。
02
平面向量的加法运算性
向量加法的多边形法则
总结词
向量加法满足多边形法则
详细描述
多边形法则是指将一个多边形的起点与另一 个多边形的终点相连,得到的向量等于两个 多边形的向量之和。这个法则可以用于求解 多个向量的和以及判断多边形的方向。
04
平面向量的加法运算用
解向量方程
求解与向量相关的方 程,例如平行向量、 垂直向量、共线向量 等。
03
平面向量的加法运算律
向量加法的平行四边形法则
总结词
向量加法满足平行四边形法则
详细描述
根据平行四边形的性质,向量加法满足平行四边形法则,即以两个向量为邻边的平行四边形的对角线 向量等于两个向量的和。
录
• 平面向量的加法定义 • 平面向量的加法运算性质 • 平面向量的加法运算律 • 平面向量的加法运算应用 • 平面向量加法运算的练习和巩固
contents
01
平面向量的加法定
定义及意义
平面向量的加法定 义
对于两个向量$\mathbf{a}$和$\mathbf{b}$,其和向量$\mathbf{c}$定义为 $\mathbf{c} = \mathbf{a} + \mathbf{b}$,其中$\mathbf{c}$的方向是 $\mathbf{a}$和$\mathbf{b}$的平行四边形的对角线方向。
向量$\mathbf{c}$等于零向量,即$\mathbf{c} = \mathbf{0}$。
向量加法的几何意 义
• 向量加法的几何意义:向量加法可以理解为将两个向量首尾相 连,得到一个新的向量,这个向量的长度等于两个向量的长度 之和,方向与两个向量的平行四边形的对角线方向一致。
02
平面向量的加法运算性
向量加法的多边形法则
总结词
向量加法满足多边形法则
详细描述
多边形法则是指将一个多边形的起点与另一 个多边形的终点相连,得到的向量等于两个 多边形的向量之和。这个法则可以用于求解 多个向量的和以及判断多边形的方向。
04
平面向量的加法运算用
解向量方程
求解与向量相关的方 程,例如平行向量、 垂直向量、共线向量 等。
03
平面向量的加法运算律
向量加法的平行四边形法则
总结词
向量加法满足平行四边形法则
详细描述
根据平行四边形的性质,向量加法满足平行四边形法则,即以两个向量为邻边的平行四边形的对角线 向量等于两个向量的和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a + b = AB + BC = AC 字母接龙
8
若两个向量共线呢?比如反向
a C
CA
b
B首
尾 相 连
B
a + b = AB + BC = AC 字母接龙
9
A
首
尾
相
连
B
C
字母接龙 AB + BC = AC
10
AD + AB = ?
D
C
A
B
11
AD + AB = ?
D
C
A
B
12
性质1: a + 0 = 0 + a = a a + (-a) = 0
3
一般地,设向量 a 与向量 b 不共线,
这两个向量不平行,不为零
在平面上分别作向量 AB = a ,BC= b
图示加法:三角形定则
并且让向量 AB 与向量BC首尾相接,
图示加法:三角形定则
则向量 AC 叫做向量 a 与向量 b 的和
图示加法:三角形定则
叫做和向量.记作: a + b = AB + BC = AC
彼岸
小船渡河
水流速度
v水=5
C
此岸
16
B
划行 速度
v划 =12
A
速度单位:km/h
彼岸
小船渡河
17
水流速度 AB=5
此岸
B
D
划行 速度
v划 =12
A
C
悬挂重物
18
-G
F2
F2
F1
G
下一节:7.1.3平面向量的减法
19
“ 字符母号接加龙法” ?
4
a
b
B
A
a+b
首 尾 相 连
C
字母接龙 a + b = AB + BC = AC
5
首
a
b
尾
相
连
B
a+b
A
a+b
a
C
6
b
a
首尾相连
b
C
C
B
a +b
a
a
A
a +b
A
b
B
a + b = AB + BC = AC 字母接龙
7
若两个向量共线呢?比如同向
a
b
首
A
B
尾
C相
连
AC
性质2: a + b = b + a 性质3: ( a + b ) + c = a + ( b + c )
13
速度单位:km/h
彼岸
小船渡河
14
水流速度
v水=0
此岸
划行 速度
v划 =0
静止在此岸
速度单位:km/h
彼岸
小船渡河
水流速度
v水=0
此岸
15
B
A 到达正对岸
划行 速度
v划 =12
速度单位:km/h
第 李小富
教学目标
1
向量的加法 和向量
2
三角形法则 平行四边形法则
2
3
向量的加法 3性质
创设情景:小强从家里A处向正南方向行走500m到超 市B处,又沿北偏东60°方向行走200m到学校C处.
A
东
500m
南
C
200m
AB + BC =? B