等腰三角形常用辅助线专题练习(含答案)
等腰三角形常用辅助线专题练习含答案

等腰三角形常用辅助线专题练习1.如图:已知,点D、E在三角形ABC的边BC上,AB=AC, AD二AE,求证:BD=CEo证明:作AF_LBC,垂足为F,则AF±DEo VAB=AC, AD=AE又VAF±BC , AF±DE, ABF=CF, DF=EF (等腰三角形底边上的高与底边上的中线互相重合)。
..・BD=CE.2.如图,在三角形ABC中,AB二AC,AF平行BC于F, D是AC边上任意一点,延RBA到E,使AE=AD,连接DE,试判断直线AF与DE的位置关系,并说明理由解:AF1DE.理由:延长ED 交BC 于G, VAB=AC, AE=AD /. ZB=ZC, ZE=ZADE A ZB+ZE=ZC+ZADE V ZADE=ZCDG A ZB+ZE=ZC+Z CDG VZB+ZE=ZDGC,ZC+ZCDG=ZBGE, ZBGE+ZCGD=180° AZ BGE=ZCGD=90° AEG±BC. VAF/7BCAAF±DE.E解法2:过A 点作AABC 底边上的高,BC 证明 AF±DE3.如图,A ABC 中,BA=BC,点D 是AB 延长线上一点,DF±AC 交BC 于E,求证: A DBE 是等腰三角形。
证明:在AABC 中, VBA=BC, A ZA=ZC, VDF1AC,A ZC+ZFEC=90° , ZA+ZD=90° , :. ZFEC^ZD V ZFEC^ZBED,ZBED=4.如图,AABC中,AB二AC, E在AC ±,且AD=AE, DE的延长线与BC相交于F。
求证:DF_LBC.证明:VAB=AC, AZB=ZC, 又VAD=AE, A ZD=ZAED,若把“AD=AE”与结论“DF_LBC”互换,结论也成立。
若把条件"AB=AC”与结论“DF_LBC”互换,结论依然成立。
等腰三角形常用辅助线专题练习(含答案)汇总

等腰三角形常用辅助线专题练习(含答案)1.如图:已知,点D、E在三角形ABCの边BC上, AB=AC,AD=AE,求证:BD=CE。
证明:作AF⊥BC,垂足为F,则AF⊥DE。
∵AB=AC,AD=AE又∵AF⊥BC ,AF⊥DE,∴BF=CF,DF=EF (等腰三角形底边上の高与底边上の中线互相重合)。
∴BD=CE.2.如图,在三角形ABC中,AB=AC,AF平行BC于F, D是AC边上任意一点,延长BA到E,使AE=AD,连接 DE,试判断直线AF与DEの位置关系,并说明理由解:AF⊥DE.理由:延长ED交BC于G,∵AB=AC,AE=AD ∴∠B=∠C,∠E=∠ADE ∴∠B+∠E=∠C+∠ADE ∵∠ADE=∠CDG ∴∠B+∠E=∠C+∠CDG ∵∠B+∠E=∠DGC,∠C+∠CDG=∠BGE,∠BGE+∠CGD=180°∴∠BGE=∠CGD=90°∴EG⊥BC.∵AF∥BC ∴AF⊥DE.解法2:过A点作△ABC底边上の高,再用∠BAC=∠D+AED=∠2∠ADE, 即∠CAG=∠AED,证明AG∥DE 利用AF∥BC证明AF⊥DE3.如图,△ABC中,BA=BC,点D是AB延长线上一点, DF⊥AC交BC于E,求证:△DBE是等腰三角形。
证明:在△ABC中,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D ∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.4. 如图,△ABC中,AB=AC,E在AC上,且AD=AE,DE の延长线与BC相交于F。
求证:DF⊥BC.证明:∵AB=AC,∴∠B=∠C,又∵AD=AE,∴∠D=∠AED,∴∠B+∠D=∠C+∠AED,∴∠B+∠D=∠C+∠CEF,∴∠EFC=∠BFE=180°× 1/2 = 90°,∴DF⊥BC;若把“AD =AE”与结论“DF⊥BC”互换,结论也成立。
八年级下册等腰三角形添辅助线的综合专题(含答案)

提升题:等腰三角形常见的七种添加辅助线技巧类型一:已知底边的中点,常作底边的中线例题1 如图,在△ABC 中,∠A =90°,AB =AC ,D 为BC 的中点,E ,F 分别是AB ,AC 上的点,且BE =AF ,求证:(1)ED =DF ;分析:D 是底边的中点,直接连接AD ,根据三线合一以及△BED ≌△AFD 即可证明。
证明:如图,连接AD ,∵AB =AC ,D 为BC 的中点,∴AD ⊥BC ,∠BAD =∠CAD ,∠B =∠C.∵∠BAC =90°,∴∠B =∠C =∠BAD =∠CAD =45°,∴AD =BD.在△BED 与△AFD 中,⎩⎪⎨⎪⎧BE =AF ,∠B =∠DAF ,BD =AD ,∴△BED ≌△AFD (SAS),∴ED =DF . (2) ED ⊥DF.证明:∵△BED ≌△AFD ,∴∠BDE =∠ADF ,∴∠BDE +∠EDA =∠EDA +∠ADF =90°,∴∠EDF =90°,∴ED ⊥DF.类型二:等腰三角形中没有底边中点时,常作底边上的高例题2 如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC.求证:EB⊥AB.证明:如图,作EF⊥AC于点F,∵EA=EC,∴AF=FC.又∵AC=2AB,∴AF=AB.又∵AD平分∠BAC,∴∠BAE=∠FAE.又∵AE=AE,∴△ABE≌△AFE,∴∠ABE=∠AFE=90°,∴EB⊥AB.类型三等腰三角形中证与腰有关联的线段时,常作腰的平行线(或垂线)如图,在△ABC中,AB=AC,点P从点B出发沿线段BA移动(点P与A,B不重合),同时,点Q从点C出发沿线段AC的延长线移动,点P,Q移动的速度相同,PQ与直线BC相交于点D.求证:PD=QD.证明:如图,过点P作PF△AC交BC于点F.∵点P和点Q同时出发,且速度相同,∴BP=CQ.△PF//AQ,∴∠PFB=∠ACB,∠DPF=∠CQD.又△AB=AC,∴∠B=∠ACB.∴∠B=∠PFB. ∴BP=PF.∴PF=CQ.在△PFD和△QCD中,∠DPF=∠DQC,∠PDF=∠QDC,PF=CQ,∴△PFD≌△QCD(AAS),∴PD=QD.类型四:等腰三角形中证与底有关联的线段时,常作底的平行线。
沪科版数学八年级上册第15章整合提升试题及答案

沪科版数学八年级上册第15章专训一:等腰三角形中四种常用作辅助线的方法名师点金:在几何图形中添加辅助线,往往能把分散的条件集中,使隐蔽的条件显露,将复杂的问题简单化,例如:作“三线”中的“一线”,作平行线构造等腰(边)三角形,利用截长补短法证线段和、差关系或求角的度数,利用加倍折半法证线段的倍分关系.作“三线”中的“一线”1.如图,在△ABC中,AB=AC,D是BC的中点,过点A作EF∥BC,且AE=AF.求证:DE=DF.(第1题)作平行线法2.如图,在△ABC中,AB=AC,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,点P,Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求证:PD=QD.(2)如图②,过点P作直线BC的垂线,垂足为E,当P,Q在移动的过程中,线段BE,ED,CD中是否存在长度保持不变的线段?请说明理由.(第2题)截长补短法3.如图,在△ABC中,AB=AC,D是△ABC外一点,且∠ABD=60°,∠ACD=60°.求证:BD+DC=AB.(第3题)加倍折半法4.如图,在△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,求∠C的度数.(第4题)5.如图,CE,CB分别是△ABC,△ADC的中线,且AB=AC.求证:CD =2CE.(第5题)专训二:分类讨论思想在等腰三角形中的应用名师点金:分类讨论思想是解题的一种常用方法,在等腰三角形中,往往会遇到条件或结论不唯一的情况,此时就需要分类讨论.通过正确地分类讨论,可以使复杂的问题得到清晰、完整、严密的解答.其解题策略为:先分类,再画图,后计算.当顶角或底角不确定时,分类讨论1.若等腰三角形中有一个角等于40°,则这个等腰三角形的顶角度数为()A.40°B.100°C.40°或70°D.40°或100°2.已知等腰三角形ABC中,AD⊥BC于D,且AD=12BC,则等腰三角形ABC的底角的度数为()A.45°B.75°C.45°或75°D.65°3.若等腰三角形的一个外角为64°,则底角的度数为________.当底和腰不确定时,分类讨论4.(2015·荆门)已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10B.8C.10D.6或125.等腰三角形的两边长分别为7和9,则其周长为________.6.若实数x,y满足|x-4|+(y-8)2=0,则以x,y的值为边长的等腰三角形的周长为________.当高的位置关系不确定时,分类讨论7.等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数.由腰的垂直平分线引起的分类讨论8.在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,求底角∠B的度数.由腰上的中线引起的分类讨论9.等腰三角形ABC的底边BC长为5 cm,一腰上的中线BD把其分为周长差为3 cm的两部分.求腰长.点的位置不确定引起的分类讨论10.如图,在Rt△ABC中,∠ACB=90°,AB=2BC,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有()(第10题)A.7个B.6个C.5个D.4个11.如图,在△ABC中,BC>AB>AC,∠ACB=40°,如果D,E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的度数.(第11题)专训三:三角形中的五种常见证明类型名师点金:学习了全等三角形及等腰三角形的性质和判定后,与此相关的几何证明题的类型非常丰富,常见的类型有:证明数量关系,位置关系,线段的倍分关系、和差关系、不等关系等.证明数量关系题型1证明线段相等1.如图,在△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC 上的点,且AE=AF.求证:DE=DF.(第1题)题型2证明角相等2.如图,在△ABC中,AB=AC,∠BAC=90°,D为AC的中点,AE⊥BD 于F交BC于E.求证:∠ADB=∠CDE.(第2题)证明位置关系题型1证明平行关系3.已知△ABC为等边三角形,点P在AB上,以CP为边长作等边三角形PCE,连接AE.求证:AE∥BC.(第3题)题型2证明垂直关系4.如图,在△ABC中,AB=AC,点D,E,F分别在边BC,AB,AC上,且BD=CF,BE=CD,G是EF的中点.求证:DG⊥EF.(第4题)证明线段的倍分关系5.如图,在△ABC中,AB=AC,AD,BE是△ABC的高,AD,BE相交于点H,且AE=BE.求证:AH=2BD.(第5题)证明线段的和差关系6.如图,在△ABC中,∠ABC=2∠C,AD平分∠BAC.求证:AB+BD=AC.(第6题)证明线段的不等关系7.如图,AD是△ABC中∠BAC的平分线,P是AD上的任意一点,且AB >AC.求证:AB-AC>PB-PC.(第7题)专训四:四种常见热门考点名师点金:本章内容在中考试题中一直占有重要的地位,属必考内容,考查形式多以选择、填空形式出现,其考查内容主要有轴对称和轴对称图形的识别、最短距离问题、与翻折有关的计算和证明题等.轴对称图形与轴对称1.(2015·重庆)下列图形是轴对称图形的是()(第2题)2.(2015·乌鲁木齐)如图,△ABC的面积等于6,边AC=3,现将△ABC 沿AB所在直线翻折,使点C落在直线AD上的C′处,点P在直线AD上,则线段BP的长不可能是()A.3 B.4 C.5 D.63.(2015·绥化)点A(-3,2)关于x轴的对称点A′的坐标为________.4.(2014·宁夏)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(-2,1),B(-4,5),C(-5,2),画出△ABC关于y轴对称的△A1B1C1.(第4题)线段垂直平分线与角平分线(第5题)5.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC 于点D,交AB于点E,则下列结论错误的是()A.BD平分∠ABCB.△BCD的周长等于AB+BC(第6题)C.AD=BD=BCD.点D是线段AC的中点6.如图,已知在△ABC中,AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=130°,那么∠CAB的大小是()A.80°B.50°C.40°D.20°7.如图,已知C是∠MAN的平分线上一点,CE⊥AB于点E,点B,D分别在AM,AN上,且AE=错误!(AD+AB).问:∠1和∠2有何关系?(第7题)等腰三角形的判定与性质(第8题)8.如图,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F分别为垂足,则下列四个结论:(1)∠DEF=∠DFE;(2)AE=AF;(3)DA平分∠EDF;(4)AD垂直平分EF.其中正确的有()A.1个B.2个C.3个D.4个9.(中考·淄博)如图,AD∥BC,BD平分∠ABC.求证:AB=AD.(第9题)等边三角形的性质与判定10.如图,在等边三角形ABC中,D,E,F分别为AB,BC,CA上一点(不是中点),且AD=BE=CF,AE与CD,BF分别交于点G,H,BF与CD交于点N,则△GHN是(第10题)()A.等边三角形B.腰和底边不相等的等腰三角形C.直角三角形D.不等边三角形(第11题)11.如图,AD是△ABC的中线,∠ADC=60°,BC=6,把△ABC沿直线AD折叠,点C落在C′处,连接BC′,则BC′的长为________.答案专训一(第1题)1.证明:如图,连接AD.∵AB =AC ,BD =CD ,∴AD ⊥BC.∵EF ∥BC ,∴AD ⊥EF.∵AE =AF ,∴AD 垂直平分EF.∴DE =DF.2.(1)证明:如图①,过点P 作PF ∥AC 交BC 于F.∵点P 和点Q 同时出发,且速度相同,∴BP =CQ.∵PF ∥AQ ,∴∠PFB =∠ACB ,∠DPF =∠DQC.又∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠PFB ,∴BP =FP ,∴FP =CQ.在△PFD 和△QCD 中,∠DPF =∠DQC ,∠PDF =∠QDC ,FP =CQ ,∴△PFD ≌△QCD(AAS),∴PD =QD.(第2题)(2)解:线段ED 的长度保持不变.理由如下:如图②,过点P 作PF ∥AC 交BC 于F.由(1)知PB =PF.∵PE ⊥BF ,∴BE =EF.由(1)知△PFD ≌△QCD ,∴FD =CD ,∴ED =EF +FD =BE +CD =12BC ,∴线段ED 的长度保持不变.3.证明:如图,延长BD 至E ,使BE =AB ,连接CE ,AE.(第3题)∵∠ABE =60°,BE =AB ,∴△ABE 为等边三角形.∴∠AEB =60°,AB =AE.又∵∠ACD =60°,∴∠ACD =∠AEB.∵AB =AC ,AB =AE ,∴AC =AE.∴∠ACE =∠AEC.∴∠DCE =∠DEC.∴DC =DE.∴AB =BE =BD +DE =BD +DC ,即BD +DC =AB.4.解:在DC 上截取DE =BD ,连接AE ,∵AD ⊥BC ,BD =DE ,∴AD 是线段BE 的垂直平分线,∴AB =AE ,∴∠B =∠AEB.∵AB +BD =DC ,DE =BD ,∴AB +DE =CD.而CD =DE +EC ,∴AB =EC ,∴AE =EC.∴∠EAC =∠C ,可设∠EAC =∠C =x ,∵∠AEB 为△AEC 的外角,∴∠AEB =∠EAC +∠C =2x ,∴∠B =2x ,∴∠BAE =180°-2x -2x =180°-4x.∵∠BAC =120°,∴∠BAE +∠EAC =120°,即180°-4x +x =120°,解得x =20°,则∠C =20°.(第5题)5.证明:如图,延长CE 到点F ,使EF =CE ,连接FB ,则CF =2CE.∵CE是△ABC 的中线,∴AE =BE.在△BEF 和△AEC 中,⎩⎨⎧BE =AE ,∠BEF =∠AEC ,EF =EC ,∴△BEF ≌△AEC(SAS).∴∠EBF =∠A ,BF =AC.又∵AB =AC ,∴∠ABC =∠ACB.∴∠CBD =∠A +∠ACB =∠EBF +∠ABC =∠CBF.∵CB 是△ADC 的中线,∴AB =BD.又∵AB =AC ,AC =BF ,∴BF =BD.在△CBF 与△CBD 中,⎩⎨⎧CB =CB ,∠CBF =∠CBD ,BF =BD ,∴△CBF ≌△CBD(SAS).∴CF=CD.∴CD =2CE.专训二1.D 2.C 3.32° 4.C 5.23或25 6.207.解:设AB =AC ,BD ⊥AC ;(1)高与底边的夹角为25°时,高一定在△ABC 的内部,如图①,∵∠DBC =25°,∴∠C =90°-∠DBC =90°-25°=65°,∴∠ABC =∠C =65°,∠A =180°-2×65°=50°.(第7题)(2)当高与另一腰的夹角为25°时,如图②,高在△ABC 的内部时,∵∠ABD =25°,∴∠A =90°-∠ABD =65°,∴∠C =∠ABC =(180°-∠A)÷2=57.5°;如图③,高在△ABC 的外部时,∵∠ABD =25°,∴∠BAD =90°-∠ABD =90°-25°=65°,∴∠BAC =180°-65°=115°, ∴∠ABC =∠C =(180°-115°)÷2=32.5°,故三角形各个内角的度数为:65°,65°,50°或65°,57.5°,57.5°或115°,32.5°,32.5°.点拨:由于题目中的“另一边”没有指明是“腰”还是“底边”,因此必须进行分类讨论,另外,还要结合图形,分高在三角形内还是在三角形外.8.解:此题分两种情况:(1)如图①,AB 边的垂直平分线与AC 边交于点D ,∠ADE =40°,则∠A =50°,∵AB=AC,∴∠B=(180°-50°)÷2=65°.(第8题)(2)如图②,AB边的垂直平分线与CA的延长线交于点D,∠ADE=40°,则∠DAE=50°,∴∠BAC=130°.∵AB=AC,∴∠B=(180°-130°)÷2=25°.故∠B的大小为65°或25°.9.分析:由于题目中没有指明是“(AB+AD)-(BC+CD)”为3 cm,还是“(BC+CD)-(AB+AD)”为3 cm,因此必须分两种情况讨论.解:∵BD为AC边上的中线,∴AD=CD,(1)当(AB+AD)-(BC+CD)=3 cm时,有AB-BC=3 cm,∵BC=5 cm,∴AB=5+3=8(cm);(2)当(BC+CD)-(AB+AD)=3 cm时,有BC-AB=3 cm,∵BC=5 cm,∴AB=5-3=2(cm),但是当AB=2 cm时,三边长分别为2 cm,2 cm,5 cm.而2+2<5,不能构成三角形,舍去.故腰长为8 cm.10.B11.解:(1)当点D、E在点A的同侧,且都在BA的延长线上时,如图①,(第11题)∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,∵∠DCE=∠BEC -∠ADC,∴∠DCE=(180°-∠ABC)÷2-∠BAC÷2=(180°-∠ABC-∠BAC)÷2=∠ACB÷2=40°÷2=20°.(2)当点D、E在点A的同侧,且点D在D′的位置,E在E′的位置时,如图②,与(1)类似地也可以求得∠D′CE′=∠ACB÷2=20°.(3)当点D、E在点A的两侧,且E点在E′的位置时,如图③,∵BE′=BC ,∴∠BE′C =(180°-∠CBE′)÷2=∠ABC÷2,∵AD =AC ,∴∠ADC =(180°-∠DAC)÷2=∠BAC÷2,又∵∠DCE′=180°-(∠BE′C +∠ADC),∴∠DCE′=180°-(∠ABC +∠BAC)÷2=180°-(180°-∠ACB)÷2=90°+∠ACB÷2=90°+40°÷2=110°.(4)当点D 、E 在点A 的两侧,且点D 在D′的位置时,如图④,∵AD′=AC ,∴∠AD′C =(180°-∠BAC)÷2,∵BE =BC ,∴∠BEC =(180°-∠ABC)÷2,∴∠D′CE =180°-(∠D′EC +∠ED′C)=180°-(∠BEC +∠AD′C)=180°-[(180°-∠ABC)÷2+(180°-∠BAC)÷2]=(∠BAC +∠ABC)÷2=(180°-∠ACB)÷2=(180°-40°)÷2=70°.综上所述,∠DCE 的度数为20°或110°或70°.专训三1.证明:连接AD.∵AB =AC ,D 是BC 的中点,∴∠EAD =∠FAD.在△AED 和△AFD 中,⎩⎨⎧AE =AF ,∠EAD =∠FAD ,AD =AD ,∴△AED ≌△AFD(SAS).∴DE =DF.2.证明:过点C 作CG ⊥AC 交AE 的延长线于G ,则CG ∥AB ,∴∠BAF =∠G .又∵AF ⊥BD ,AC ⊥CG ,∴∠BAF +∠ABD =90°,∠CAG +∠G =90°.∴∠ABD =∠CAG .在△ABD 和△CAG 中,⎩⎨⎧∠ABD =∠CAG ,AB =CA ,∠BAD =∠ACG =90°,∴△ABD ≌△CAG(ASA).∴AD =CG ,∠ADB =∠G .又∵D 为AC 的中点,∴AD =CD ,∴CD =CG .∵AB =AC ,∴∠ABC =∠DCE.又∵AB ∥CG ,∴∠ABC =∠GCE.∴∠DCE =∠GCE.又∵CE =CE ,∴△CDE ≌△CGE(SAS).∴∠CDE =∠G .∴∠ADB =∠CDE.3.证明:∵△ABC ,△PCE 均为等边三角形,∴BC =AC ,PC =EC ,∠ACB =∠B =∠PCE =60°.∴∠ACB -∠ACP =∠PCE -∠ACP ,即∠BCP =∠ACE.在△CBP 和△CAE 中,⎩⎨⎧BC =AC ,∠BCP =∠ACE ,PC =EC ,∴△CBP ≌△CAE(SAS).∴∠CAE =∠B =60°.∴∠CAE =∠ACB.∴AE ∥BC.(第4题)4.证明:如图,连接ED ,FD.∵AB =AC ,∴∠B =∠C.在△BDE 和△CFD 中,⎩⎨⎧BD =CF ,∠B =∠C ,BE =CD ,∴△BDE ≌△CFD(SAS).∴DE =DF.又∵G 是EF 的中点,∴DG ⊥EF.5.证明:∵AD ,BE 是△ABC 的高,∴∠ADB =∠AEB =90°,又∵∠BHD =∠AHE ,∴∠EBC =∠EAH.在△BCE 和△AHE 中,⎩⎨⎧∠EBC =∠EAH ,BE =AE ,∠BEC =∠AEH =90°,∴△BCE ≌△AHE(ASA).∴AH =BC.又∵AB =AC ,AD ⊥BC ,∴BC =2BD.∴AH =2BD.6.证明:如图,延长CB 至E ,使BE =BA ,则∠BAE =∠E ,∴∠ABC =2∠E.又∵∠ABC =2∠C ,∴∠E =∠C ,∴AE =AC.∵AD 平分∠BAC ,∴∠BAD =∠DAC.∵∠BAE =∠E ,∠E =∠C ,∴∠BAE =∠C.又∵∠EAD =∠BAE +∠BAD ,∠EDA =∠C +∠DAC ,∴∠EAD =∠EDA.∴AE =DE.∴AC =DE =BE +BD =AB +BD.(第6题)(第7题)7.证明:如图,在AB 上截取AE ,使AE =AC ,连接PE.∵AD 是∠BAC 的平分线,∴∠EAP =∠CAP.在△AEP 和△ACP 中,⎩⎨⎧AE =AC ,∠EAP =∠CAP ,AP =AP ,∴△AEP ≌△ACP(SAS),∴PE =PC.在△PBE 中,BE >PB -PE ,即AB -AC >PB -PC.专训四1.A 2.A 3.(-3,-2)4.解:如图所示.(第4题)5.D 6.D(第7题)7.解:作CF ⊥AN 于F(如图),∵∠3=∠4,CE ⊥AM ,∴CF =CE ,又∵AC =AC ,∴Rt △ACF ≌Rt △ACE(HL),∴AF =AE.∵AE =12(AD +AB)=12(AF -DF +AE +BE)=AE +12 (BE -DF),∴BE -DF =0,∴DF =BE ,又∵CF =CE ,∠CFD =∠CEB =90°,∴△DFC ≌△BEC(SAS).∴∠5=∠2.∵∠1+∠5=180°,∴∠1+∠2=180°,即∠1与∠2互补.8.D9.证明:∵AD ∥BC ,∴∠ADB =∠DBC.∵BD 平分∠ABC ,∴∠ABD =∠DBC.∴∠ADB =∠ABD ,∴AB =AD.10.A 11.3专训一:轴对称与轴对称图形的关系名师点金:轴对称图形是指一个图形.....在....的位置关系.....,成轴对称是指两个图形某种情况下,二者可以相互转换.利用轴对称的性质可以求平面直角坐标系中关于x轴、y轴对称的点的坐标,还可以利用轴对称的性质解决几何图形中的最短路径等问题.轴对称的作图1.下列图形中,右边图形与左边图形成轴对称的是()2.如图,已知△ABC和直线MN,求作△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)(第2题)轴对称图形的再认识3.(2015·河北)一张四边形纸片按图①,图②依次对折后,再按图③打出一个圆形小孔,则展开铺平后的图案是()(第3题)(第4题)4.如图是4×4的正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形,这样的白色小方格有________个.轴对称及轴对称图形的性质的应用类型1利用轴对称及轴对称图形的性质求面积(转化思想)(第5题)5.如图,△ABC是轴对称图形,且直线AD是△ABC的对称轴,点E,F 是线段AD上的任意两点,若△ABC的面积为12 cm2,则图中阴影部分的面积是________cm2.类型2利用轴对称求与坐标有关的问题6.已知点M(2a-b,5+a),N(2b-1,-a+b).(1)若点M,N关于x轴对称,试求a,b的值;(2)若点M,N关于y轴对称,试求(b+2a)2 016的值.类型3利用轴对称解决四边形中的折叠问题7.把一张长方形纸片ABCD按图中的方式折叠,使点A与点E重合,点C 与点F重合(E,F两点均在BD上),折痕分别为BH,DG.求证:△BHE≌△DGF.(第7题)类型4利用轴对称的性质解决几何中的最值问题8.如图,∠AOB=30°,点P是∠AOB内一点,OP=10,点M,N分别在OA,OB上,求△PMN的周长的最小值.(第8题)专训二:轴对称图形性质的应用名师点金:本章中除了等腰三角形之外,还有两类特殊的轴对称图形——线段和角,灵活运用线段的垂直平分线和角的平分线的性质可以求线段的长度,求角的度数,证明数量关系等.应用于求线段的长1.如图,在△ABC中,AB,AC的垂直平分线分别交BC于点D,E,垂足分别为F,G,已知△ADE的周长为12 cm,则BC=________.(第1题)2.如图,在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.若△ABC的周长为41 cm,一边长为15 cm,求△BCE的周长.(第2题)应用于求角的度数3.如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点D,交AB于点E,连接AD,AD将∠CAB分成两个角,且∠1∶∠2=2∶5,求∠ADC的度数.(第3题)应用于证线段相等(作垂线段法)4.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C,D.求证:PC=PD.(提示:四边形的内角和等于360°)(第4题)应用于证不等关系(截取法)5.如图,AD为△ABC的中线,DE,DF分别是△ADB和△ADC的角平分线.求证:BE+CF>EF.(第5题)专训三:活用“三线合一”巧解题名师点金:等腰三角形“顶角平分线、底边上的高、底边上的中线”只要知道其中“一线”,就可以说明是其他“两线”.运用等腰三角形“三线合一”的性质证明角相等、线段相等或垂直关系,可减少证全等的次数,简化解题过程.利用“三线合一”求角的度数1.如图,房屋顶角∠BAC=100°,过屋顶A的立柱AD⊥BC,屋檐AB=AC.求顶架上的∠B,∠C,∠BAD,∠CAD的度数.(第1题)利用“三线合一”求线段的长2.如图,在△ABC中,AB=AC,AD=BD=BC,DE⊥AB于点E,若CD =6,且△BDC的周长为26,求AE的长.(第2题)利用“三线合一”证线段、角相等3.如图,已知△ABC中,∠A=90°,AB=AC,D为BC的中点,E,F分别是AB,AC上的点,且BE=AF.求证:DE=DF.(第3题)利用“三线合一”证垂直4.如图,在△ABC中,AC=2AB,AD平分∠BAC,E是AD上一点,且EA=EC.求证:EB⊥AB.(第4题)利用“三线合一”证线段的倍数关系(构造三线法)5.如图,已知等腰直角三角形ABC中,AB=AC,∠BAC=90°,BF平分∠ABC,CD⊥BF交BF的延长线于点D.试说明:BF=2CD.(第5题)利用“三线合一”证线段的和差关系(构造三线法)6.如图,在△ABC中,AD⊥BC于点D,且∠ABC=2∠C.试说明:CD=AB+BD.(第6题)专训四:巧用特殊角构造含30°角的直角三角形名师点金:在解决有关三角形的问题时,遇到含有120°角的等腰三角形或含有30°角的三角形时,常常通过连线,延长或作垂线的方式,构造含30°角的直角三角形,将角的关系转化为边的关系来解决问题.直接运用含30°角的直角三角形的性质(第1题)1.(2015·青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC 的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. 3 B.2 C.3 D.3+22.如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4 cm.求BC的长.(第2题)连线段构造含30°角的直角三角形3.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AC 于E,AE=8,求CE的长.(第3题)4.如图,已知在△ABC中,AB=AC,∠A=120°,DE垂直平分AB于点D,交BC于点E.求证:CE=2BE.(第4题)延长两边构造含30°角的直角三角形5.如图,四边形ABCD中,AD=4,BC=1,∠A=30°,∠B=90°,∠ADC =120°,求CD的长.(第5题)作垂线构造含30°角的直角三角形6.如图,四边形ABCD中,∠B=90°,DC∥AB,AC平分∠DAB,∠DAB =30°.求证:AD=2BC.(第6题)7.如图,在△ABC中,BD=DC,若AD⊥AC,∠BAD=30°.求证:AC=12AB.(第7题)答案专训一1.B2.解:如图.(第2题)3.C 4.45.6 点拨:∵△ABC 是轴对称图形,且直线AD 是对称轴,∴△ABD 与△ACD 关于直线AD 对称.∴S △ABD =S △ACD =12S △ABC .又∵点E ,F 是AD 上的任意两点,∴△BEF 与△CEF 关于直线AD 对称.∴S △BEF =S △CEF .∴S 阴影=S △ABE+S △BEF +S △BDF =S △ABD =12S △ABC =12×12=6(cm 2).6.解:(1)∵点M ,N 关于x 轴对称,∴⎩⎨⎧2a -b =2b -1,5+a =-(-a +b ),解得⎩⎨⎧a =-8,b =-5. (2)∵点M ,N 关于y 轴对称,∴⎩⎨⎧2a -b =-(2b -1),5+a =-a +b ,解得⎩⎨⎧a =-1,b =3. ∴(b +2a)2 016=[3+2×(-1)]2 016=1.7.证明:由折叠可知∠ABH =∠EBH =12∠ABD ,∠CDG =∠FDG =12∠CDB ,∠HEB =∠A =∠GFD =∠C =90°,AB =BE ,CD =DF.∵AB ∥CD ,∴∠ABD =∠CDB.∴∠EBH =∠FDG .∵AB =CD ,∴BE =DF.在△BHE 和△DGF 中,⎩⎨⎧∠EBH =∠FDG ,BE =DF ,∠HEB =∠GFD ,∴△BHE ≌△DGF(ASA). 点拨:用轴对称性质解决折叠问题的关键是折叠前后重合的部分全等,所以对应角相等、对应线段相等.(第8题)8.解:如图,分别作点P 关于OA ,OB 的对称点P 1,P 2,连接P 1P 2,交OA 于M ,交OB 于N ,连接PM ,PN ,OP 1,OP 2,此时△PMN 的周长最小,△PMN 的周长=PM +MN +PN =P 1M +MN +NP 2=P 1P 2,∵∠P 1OP 2=2∠AOP +2∠BOP =2∠AOB =60°,OP =OP 1=OP 2,∴△OP 1P 2为等边三角形.∴P 1P 2=OP 1=OP 2=OP =10.∴△PMN 的周长的最小值为10.专训二1.12 cm2.解:因为△ABC 的周长为41 cm ,一边长为15 cm ,AB >BC ,所以AB =15 cm ,所以BC =11 cm .根据线段垂直平分线的性质可得BE +CE =AE +CE =AC ,所以△BCE 的周长=BE +CE +BC =26 cm .3.解:∵∠1∶∠2=2∶5,∴设∠1=2x ,则∠2=5x.∵DE 是线段AB 的垂直平分线,∴AD =BD.∴∠B =∠2=5x.∴∠ADC =∠2+∠B =10x.在△ADC 中,2x +10x =90°,解得x =7.5°,∴∠ADC =10x =75°.4.证明:如图,过点P 作PE ⊥OA 于点E ,PF ⊥OB 于点F ,(第4题)∴∠PEC =∠PFD =90°.又∵OM 是∠AOB 的平分线,∴PE =PF.∵∠AOB =90°,∠CPD =90°,∴∠PCE +∠PDO =360°-90°-90°=180°.而∠PDO +∠PDF =180°,∴∠PCE =∠PDF.在△PCE 和△PDF 中,⎩⎨⎧∠PCE =∠PDF ,∠PEC =∠PFD ,PE =PF ,∴△PCE ≌△PDF(AAS).∴PC =PD.5.证明:在DA 上截取DH =BD ,连接EH ,FH.∵AD是BC边上的中线,∴CD=BD=DH.∵DE平分∠ADB,∴∠BDE=∠HDE.又∵DE=DE,∴△BDE≌△HDE(SAS).∴BE=HE.同理△CDF≌△HDF(SAS),∴CF=HF.在△HEF中,∵HE+HF>EF,∴BE+CF>EF.专训三1.解:因为AB=AC,∠BAC=100°,AD⊥BC,所以∠B=∠C=40°,∠BAD =∠CAD=50°.2.解:∵△BDC的周长=BD+BC+CD=26,CD=6,∴BD+BC=20.∵AD=BD=BC,∴AD=BD=BC=10.∴AB=AC=AD+CD=10+6=16.∵AD=BD,DE⊥AB,∴AE=EB=12AB=8.3.证明:连接AD.∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°.∵AB=AC,∠BAC=90°,∴∠B=∠C=45°.在△ABD中,∠BAD=180°-∠B-∠ADB=45°,∴∠B=∠BAD,∴BD=AD.又∵BD=CD,∴AD=CD,∴∠DAC=∠C=45 °,∴∠B=∠DAC.又∵BE=AF,∴△BDE≌△ADF(SAS),∴DE=DF.(第4题)4.证明:如图,过点E作EF⊥AC于F.∵EA=CE,∴AF=12AC.又∵AB=12AC,∴AF=AB.∵AD平分∠BAC,∴∠FAE=∠BAE.又∵EA=EA,∴△AEF≌△AEB(SAS).∴∠ABE=∠AFE=90°,即EB⊥AB.(第5题)5.解:如图,延长BA,CD交于点E.∵BF平分∠ABC,CD⊥BD,∴∠DBC=∠DBE,∠BDC=∠BDE=90°,又∵BD=BD,∴△BDC≌△BDE.∴BC=BE.又∵BD⊥CE,∴CE=2CD.∵∠BAC=90°,∠BDC=90°,∠AFB=∠DFC,∴∠ABF=∠ACE.又∵AB=AC,∠BAF=∠CAE=90°,∴△ABF≌△ACE(ASA).∴BF=CE.∴BF=2CD.(第6题)6.解:如图,以A为圆心,AB长为半径画弧交CD于点E,连接AE,则AE=AB,所以∠AEB=∠ABC.因为AD⊥BC,所以AD是BE边上的中线,即DE=BD.又因为∠ABC=2∠C,所以∠AEB=2∠C.而∠AEB=∠CAE+∠C,所以∠CAE=∠C.所以CE=AE=AB,故CD=AB+BD.专训四1.C2.解:∵AB=AC,∠C=30°,∴∠B=∠C=30°.又∵AB⊥AD,∴∠ADB=60°.又∵∠ADB=∠C+∠CAD,∴∠CAD=30°=∠C.∴CD=AD=4 cm.∵AB⊥AD,∠B=30°,∴BD=2AD=8 cm.∴BC=BD+CD=12 cm.3.解:连接AD,∵AB=AC,D为BC的中点,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×120°=60°.在Rt△ADE中,∠EAD=60°,∴∠ADE=30°,∴AD=2AE=16.在△ABC 中,AB=AC,∠BAC=120°.∴∠B=∠C=30°,∴AC=2AD=2×16=32.∴CE=AC-AE=32-8=24.(第4题)4.证明:如图,连接AE.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∵DE垂直平分AB,∴BE=AE.∴∠BAE=∠B=30°.∴∠EAC=120°-30°=90°.又∵∠C=30°,∴CE=2AE.又∵BE=AE,∴CE=2BE.5.解:延长AD,BC交于点E.∵∠A=30°,∠B=90°,∴∠E=60°.又∵∠ADC=120°,∴∠EDC=180°-120°=60°.∴△DCE是等边三角形.设CD=CE=DE=a,则有2(1+a)=4+a,解得a=2.∴CD的长为2.6.证明:过点C作CE⊥AD交AD的延长线于E.∵DC∥AB,∠DAB=30°,∴∠CDE=30°.在Rt△CDE中,∠CDE=30°,∴CD=2CE.又∵AC平分∠DAB,∴∠DAC=∠BAC,又∵DC∥AB,∴∠BAC=∠DCA,∴∠DAC=∠DCA,∴AD=CD.又∵CE⊥AE,CB⊥AB,AC平分∠DAB,∴BC=CE,∴AD=2BC.7.证明:过点B作BE⊥AD交AD的延长线于点E,则∠DEB=90 °.∵∠BAD=30°,∴BE=12AB.∵AD⊥AC,∴∠DAC=90°,∴∠DEB=∠DAC.又∵BD=CD,∠BDE=∠CDA,∴△BED≌△CAD,∴BE=AC,∴AC=12AB.点拨:由结论AC=12AB和条件∠BAD=30°,就想到能否找到或构造直角三角形,而显然图中没有含30°角的直角三角形,所以过点B作BE⊥AD交AD 的延长线于点E,这样就得到了直角三角形ABE,这是解决本题的关键.。
辅助线证明题三角形全等

做辅助线证明三角形全等1、如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E .求证∠CDA =∠EDB .2、在Rt △ABC 中,∠A =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G ,求证:AF =BG .3、如图,已知△ABC 是等边三角形,∠BDC =120º,说明AD=BD+CD 的理由4、如图,在△ABC 中,AD 是中线,BE 交AD 于F,且AE=EF,说明AC=BF 的理由5、如图,在△ABC 中,∠ABC=100º,AM=AN,CN=CP,求∠MNP 的度数C 1 2 A B CD E6、用两个全等的等边三角形△ABC 和△ACD 拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A 重合,两边分别与AB 、AC 重合.将三角尺绕点A 按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC 、CD 相交于点E 、F 时(如图所示),通过观察或测量BE 、CF 的长度,你能得出什么结论?并证明你的结论;B(2)当三角尺的两边分别与菱形的两边BC 、CD 的延长线相交于点E 、F 时(如图所示),你在(1)中得到的结论还成立吗?说明理由。
B7、.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.C B A ED 图1 N M A B C DE M N 图2 A C B E D N M 图3。
最新修订人教版八年级下册数学解题技巧专题练习:等腰三角形中辅助线的作法

解题技巧专题:等腰三角形中辅助线的作法——形成精准思维模式,快速解题◆类型一利用“三线合一”作辅助线一、已知等腰作垂线(或中线、角平分线)1.如图,在△ABC中,AB=AC,AE⊥BE于点E,且∠ABE=∠ABC.若BE=2,则BC=________.2.如图,在△ABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的点,且AE=AF.求证:DE=DF.二、构造等腰三角形3.如图,在△ABC中,BP平分∠BAC,且AP⊥BP于点P,连接CP.若△PBC的面积为2,则△ABC的面积为()A.3B.4C.5D.64.如图,已知△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D,CE⊥BD,交BD的延长线于点E.求证:BD=2CE.◆类型二巧用等腰直角三角形构造全等5.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上.求证:DE=DF.◆类型三等腰(边)三角形中截长补短或作平行线构造全等6.如图,在△ABC中,AB=AC,∠A=108°,BD平分∠ABC交AC于点D.求证:BC=AB+CD.7.如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上一点,且P A =CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.【方法8】参考答案与解析1.42.证明:连接AD .∵AB =AC ,D 是BC 的中点,∴∠EAD =∠F AD .在△AED 和△AFD 中,⎩⎪⎨⎪⎧AE =AF ,∠EAD =∠F AD ,AD =AD ,∴△AED ≌△AFD ,∴DE =DF .3.B4.证明:如图,延长BA 和CE 交于点M .∵CE ⊥BD ,∴∠BEC =∠BEM =90°.∵BD 平分∠ABC ,∴∠MBE =∠CBE .又∵BE =BE ,∴△MBE ≌△CBE ,∴EM =EC =12MC .∵△ABC 是等腰直角三角形,∴∠BAC =∠MAC =90°,BA =AC ,∴∠ABD +∠BDA =90°.∵∠BEC =90°,∴∠ACM +∠CDE =90°.∵∠BDA =∠EDC ,∴∠ABE =∠ACM .又∵AB =AC ,∴△ABD ≌△ACM (ASA),∴DB =MC ,∴BD =2CE .5.证明:连接CD .∵AC =BC ,∠C =90°,D 是AB 的中点,∴CD 平分∠ACB ,CD ⊥AB ,∴∠CDB =90°,∴∠BCD =∠ACD =45°,∠B =∠C =45°,∴∠ACD =∠B =∠BCD ,∴CD =BD .∵ED ⊥DF ,∴∠EDF =∠EDC +∠CDF =90°.又∵∠CDF +∠BDF =90°,∴∠EDC =∠FDB ,∴△ECD ≌△FBD ,∴DE =DF .6.证明:如图,在线段BC 上截取BE =BA ,连接DE .∵BD 平分∠ABC ,∴∠ABD =∠EBD .又∵BD =BD ,∴△ABD ≌△EBD (SAS),∴∠BED =∠A =108°,∴∠CED =180°-∠BED =72°.又∵AB=AC ,∠A =108°,∴∠ACB =∠ABC =12×(180°-108°)=36°,∴∠CDE =180°-∠ACB -∠CED =180°-36°-72°=72°.∴∠CDE =∠DEC ,∴CD =CE ,∴BC =BE +EC =AB +CD .7.(1)证明:过点P 作PF ∥BC 交AC 于点F ,∴∠AFP =∠ACB ,∠FPD =∠Q ,∠PFD =∠QCD .∵△ABC 为等边三角形,∴∠A =∠ACB =60°,∴∠AFP =60°,∴△APF 是等边三角形,∴PF=P A =CQ ,∴△PFD ≌△QCD ,∴PD =DQ .(2)解:由(1)知△APF 是等边三角形,∵PE ⊥AC ,∴AE =EF .由(1)知△PFD ≌△QCD ,∴DF =CD ,∴DE =EF +DF =12AF +12CF =12AC .又∵AC =1,∴DE =12.。
初中数学等腰直角三角形添加辅助线三垂直构建K字型全等专项练习题2(附答案详解)

8.如图所示, ,且 ,延长 交 于点 ,且 .求证: .
9.已知:在直角坐标系中,点 ,点 ,点 在第二象限, ,求点 的坐标.
10.如图,A(-2,0),B(0,4)以B点为直角顶点在第二象限作等腰直角△ABC
(1)求C点的坐标;
(2)如图2点E为y轴正半轴上一动点,以E为直角顶点作等腰直角△AEM,过M作MN⊥x轴于N,求OE-MN的值.
二、填空题
22.过原点的直线 经过A3,1,将此直线绕原点逆时针方向旋转45后所对应的直线的解析式为________.
23.如图,在 中, , ,点C的坐标为 ,点A的坐标为 ,则B点的坐标是_______.
参考答案
1.(1)不成立,DE=AD-BE,理由见解析;(2) DE=BE-AD
【解析】
【分析】
(3)如图3, , , .点 从 点出发沿 路径向终点 运动;点 从 点出发沿 路径向终点 运动.点 和 分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过 和 作 于 , 于 .问:点 运动多少秒时, 与 全等?(直接写出结果即可)
7.如图所示, ,延长 交 于 ,求证: .
(1)如图1,过 点作 交 于 点,求证: ;
(2)如图2,连结 交 于 点,若 , ,求证: 点为 中点.
(3)当 点在射线 上,连结 与直线 交于 点,若 , ,则 ______.(直接写出结果)
20.已知,在 中, , ,点 是 的中点,点 是 边上一点.若 于点 ,交 于点 ,过点 作 于点.
专题 等腰三角形中常用的辅助线作法(原卷版)

(苏科版)八年级上册数学《第2章轴对称图形》专题等腰三角形中常用的辅助线作法解题技巧提炼当遇到等腰三角形时,常利用“三线合一”的性质,若已知图中无此线,可将其构造出来以辅助解决问题,通常是作底边上的高,再证底边上的中线或顶角的平分线.【例题1】(2022秋•秦淮区月考)如图所示,在五边形ABCDE中,AB=AE,∠B=∠E,BC=DE,F是CD的中点,连接AF.求证:AF⊥CD.【变式1-1】如图,△ABC中,CA=CB,D在AC的延长线上,E在BC上,且CD=CE,求证:DE⊥AB.【变式1-2】(2022秋•新洲区期中)如图.△ABC中,CA=CB.D是AB的中点.∠CED=∠CFD=90°,CE=CF,求证:∠ADF=∠BDE.【变式1-3】已知:如图,△ABC中,AB=AC,CE⊥AE于E,CE=12BC,E在△ABC外,求证:∠ACE=∠B.【变式1-4】(2022秋•晋江市期中)如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.【变式1-5】(2022秋•大足区期末)如图所示,△ABC中,AC=BC,点D是AB上一点,DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若∠ADE=160°,求∠DEF的度数;(2)若点D是AB的中点,求证:∠BDE=12∠ACB.【变式1-6】(2022秋•南乐县月考)如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,且BE=4.(1)求∠D的度数;(2)若BC=5,求ED的长.【变式1-7】如图,AB∥CD,∠1=∠2,AD=AB+CD.(1)求证:BE=CE;(2)求证:AE⊥DE;(3)求证:AE平分∠DAB.【例题2】如图,在△ABC 中,AB =AC ,EF 交AB 于点E ,交BC 与点D .交AC 的延长线于点F ,且BE =CF .求证:DE =DF .【变式2-1】如图,△ABC 是等边三角形,D 为AC 延长线上一点,E 是BC 延长线上一点,CE =AD ,求证:DB =DE.【变式2-2】如图,BD平分∠ABC交AC于D,点E为CD上一点,且AD=DE,EF∥BC交BD于F.求证:AB=EF.【变式2-3】如图,在△ABC中,AB=AC,在AB上取一点E,在AC的延长线上取一点F,使BE=CF,EF交BC于点G.(1)试说明EG=FG;(2)试说明AB+AC>2EG.【变式2-4】如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E 作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.【变式2-5】如图所示,等边三角形ABC的边长是6,点P在边AB上,点Q在BC的延长线上,且AP=CQ,设PQ与AC相交于点D.(1)当∠DQC=30°时,求AP的长.(2)作PE⊥AC于E,试探究DE、AE、CD三条线段之间的数量关系,并证明你的结论.【变式2-6】已知,△ABC为等边三角形,点D为AC上的一个动点,点E为BC延长线上一点,且BD=DE.(1)如图1,若点D在边AC上,猜想线段AD与CE之间的关系,并说明理由;(2)如图2,若点D在AC的延长线上,(1)中的结论是否成立,请说明理由.【变式2-7】如图,AD为△ABC的平分线,E为BC的中点,EF∥AD交BA的延长线于F,交AC于G.(1)求证:AF=AG;(2)求证:BF=CG;(3)求AB AC CG的值.【例题3】如图,△ABC 中,CA =CB ,∠ACB =108°,BD 平分∠ABC 交AC 于D ,求证:AB =AD +BC .【变式3-1】如图,△ABC 中,AB =AC ,∠A =100°,CD 平分∠ACB 交AB 于D ,E 为BC 上一点,BE =DE .求证:BC =CD +AD.解题技巧提炼对于线段和差问题,利用“截长补短法”的思想,添加辅助线,可构造等腰三角形来实现边角之间的转化.【变式3-2】如图,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延长线于点M.求证:AM=12(AB+AC).【变式3-3】如图(1),线段AD∥BC,连接AB、CD,取CD中点E,连接AE,AE平分∠BAD.(1)线段AB与AD、BC之间存在怎样的等量关系?请说明理由.(2)如果点C在AB的左侧,其他条件不变,如图(2)所示,那么(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请写出新的结论,并说明理由.【变式3-4】(2022秋•崇川区校级月考)如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.【变式3-5】在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?答: .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.【例题4】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E 是BC 的中点,点A 在DE 上,且∠BAE =∠CDE .求证:AB =CD .分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB =CD ,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE 到点F ,使EF =DE ,连接BF ;②如图2,分别过点B 、C 作BF ⊥DE ,CG ⊥DE ,垂足分别为点F ,G .(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.【变式4-2】如图,在△ABC 中,点D 是BC 的中点,点E 是AD 上一点,BE =AC .若∠C =70°,∠DAC =50°,求∠EBD的度数.解题技巧提炼当题目中已知某线段的中点时,通过倍长中点处的线段构造全等三角形,从而将题目中的相等的角或边集中到新的三角形中构成等腰三角形.【变式4-3】(2022秋•文峰区月考)如图,已知△ABC中,AD是中线,AE是△ABD的中线,BA=BD,∠BAD =∠BDA,求证:AC=2AE.【变式4-4】阅读并完成以下填空:如图1,已知:AD为△ABC的中线,求证AB+AC>2AD.证明:延长AD至E使得DE=AD.连接EC,则AE=2AD.∵AD为△ABC的中线,∴BD=CD.在△ABD和△CED中,BD=CD, , .∴△ABD≌△CED.∴AB=EC.在△ACE中,根据三角形的三边关系有AC+EC AE.而AB=EC,AE=2AD,∴AB+AC>2AD.这种添加辅助线的方法,我们称为“倍长中线法”.请利用这种方法解决下列问题:问题1:如图2,在△ABC中,AC=5,AB=13,D为BC的中点,DA⊥AC.求△ABC的面积.问题2:如图3,在△ABC中,AD是三角形的中线.点F在中线AD上,且BF=AC,连接并延长BF 交AC于点E.求证AE=EF.【变式4-5】(2023春•汉寿县期中)已知:△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,AB=BC,AD=DE,按图1放置,使点E在AB上,取CE的中点F,连接DF,BF.(1)观察发现:图1中DF,BF的数量关系是 ,位置关系是 ;(2)探究证明:将图1中的△ADE绕点A顺时针转动45°,再连接CE,取CE的中点F(如图2),问(1)中的结论是否仍然成立?请证明你的结论;(3)拓展延伸:将图1中的△ADE绕点A顺时针转动任意角度(转动角度在0°到90°之间),再连接CE的中点F(如图3),问(1)中的结论是否仍然成立?请证明你的结论.【例题5】如图,在△ABC中,∠BAC=2∠B,CD平分∠ACB交AB于D,求证:AC+AD=BC.【变式5-1】在△ABC中,AD是BC边上的高,CD=AB+BD.求证:∠B=2∠C.【变式5-2】如图,在△ABC中∠ABC=2∠C,若AD⊥BC于D,BD=4,CD=16,求AB的长.【变式5-3】(2022•南京模拟)小明在完成一道几何证明问题时,往往会思考看是否会有不同的证明方法.例如:在如图1所示的△ABC中,∠ACB=90°,点D在AB上,且BD=BC,求证:∠ABC=2∠ACD.他发现,除了方法1直接用角度计算的方法外,还可以用下面两种方法:方法2:如图2,作BE⊥CD,垂足为点E.方法3:如图3,作CF⊥AB,垂足为点F.根据阅读材料,请你从三种方法中任选一种方法,证明∠ABC=2∠ACD,并写出其证明过程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形常用辅助线 专题练习 (含答案)AB=AC,AF 平行BC 于F , D 是AC 边上任意一点,延长 BA AF 与DE 的位置关系,并说 明理由•/ AB=AC , AE=AD B= / C , / E= / ADE•••/ B+ / E= / C+ / CDG •// B+ / E= /DGC , •••/ BGE= / CGD=90 •• EG 丄 BC . •/AF // BC解法2:过A 点作△ ABC 底边上的高,再用/ BAC= / D+AED= / 2/ ADE,即/ CAG= / AED,证明 AG // DE 利用 AF // BC 证明AF 丄 DE3.如图,△ ABC 中,BA=BC ,点D 是AB 延长线上一点, DF 丄AC 交BC 于E,求证:△ DBE是等腰三角形。
证明:在 △ ABC 中,•/ BA=BC ,•••/A= / C , •/ DF 丄 AC ,/ A+ / D=90 , •••/ FEC= / D v/ FEC= / BED ,BED= / D ,是等腰三角形.4.如图,△ ABC 中,AB=AC,E 在AC 上,且 AD=AE,DE 的延长线与 DF 丄 BC.证明:v AB=AC ,•••/ B= / C , 又 v AD=AE , ••/ D= / AED ,•••/ B+ / D= / C+ / AED , •••/ B+ / D= / C+/ CEF , •••/ EFC= / BFE=180 X 1/2 = 90 , • DF 丄 BC; 若把“AD =Ae 与结论“DFL BC ”互换,结论也成立。
若把条件“AB=AC 与结论“ DFL BC ”互换,结论依然成立。
5. 如图,AB=AE,BC=ED, / B= / E,AM 丄 CD, A 求证:CM=MD.证明:连接AC,AD•/ AB=AE, / B= / E,BC=ED ••△ ABC ◎△ AED(SAS)1.如图:已知,点 D 、E 在三角形 ABC 的边BC 上, 证明:作AF 丄BC ,垂足为 又••• AF 丄 BC , AF 丄 DE , 互相重合)。
••• BD=CE.AB=AC , AD=AE ,求证: F ,贝U AF 丄 DE 。
•/ AB=AC , AD=AE ••• BF=CF , DF=EF (等腰三角形底边上的高与 BD=CE 。
底边上的中线2.如图,在三角形 ABC 中,到E ,使AE=AD , 连接DE ,试判断直线 解:AF 丄DE .理由:延长ED 交BC 于G , •••/ B+ / E= / C+/ ADE •// ADE= / CDG / C+ /CDG= / BGE , / BGE+ / CGD=18° ••• AF 丄DE .•••/ C+ /FEC=90 ,BC 相交于F 。
求证:•/ AM 丄CD •••/ AMC= / AMD=90 •/ AM=AM (公共边)二RTA ACM 也RT△ ADM (HL)6. 如图,已知 AD 是^ABC 的中线,BE 交AC 于F,且AE=EF,求证:BF=AC证明:过B 点做AC 的平行线,交AD 的延长线于G 点•/ AD 为中线,••• BD=CD •/ BG 平行于 AC ,FGB= / CAF , / DBG= / ACD在^ AFE 和^GFB 中,•••/ FGB= / CAF , / GFB= / AFE ••△ AFE GFB•••/ FGB= / FAE•/ AE=EF, •/ FAE= / AFE•••/ BFG= / G •••△ GFB 为等腰三角形,且 BF=BG 在△ ADC 和△ GBD 中 •// DBG= /ACD , BD=CD , / BDG= / CDA ••△ ADC N GBD •• BG=AC••• BF=AC7. 已知:如图, △ ABC(ABM AC)中,D 、E 在 BC 上, 且 DE=EC,过 D 点作 DF // BA,交 AE 于点F,DF=AC,求证:AE 平分/ BAC证明:延长AE ,过D 作DMI AC 交AE 延长线于 M M= / 1,/ C= / 2在^ DEM 与^ CEA 中/ M= / 1,/ C= / 2, DE=CE•••△ DEM ◎△ CEA•• DM=CA又•/ DF=CA, • DM=DF, •/ M= / 3 •/ AB|| FD,•/ 3=/ 4, •/ 4= / 1 • AE 平分/ BAC8. 已知:如图, △ ABC 中,AB=AC,在AB 上取一点 D,在 延长线上取一点 BC 于点F 若F 是DE 中点。
求 证:BD=CE证明:过 D 作 DF // AC 交 BC 于 F , •/ DF // AC (已知),••/ DFC= / FCE , (平行线的性质)••• AB=AC (已知),•••/ B= / ACB (等边对等角),(等量代换),••• BD=DF (等角对等边),••• BD=CE (已知),•• DF=CE (等量代换),•••/ DFC= / FCE , / DGF= / CGE (已证),•••△ DFG ◎△ ECG (AAS ),••• DG=GE (对应边相等)E,连接DE 交/ DFB= / ACB •••/ B= /DFB9.已知:如图,在^ABC 中,AB=AC=CE,B 求证:BE=1/2BC 证明:过点 A 作AF 丄BC 交BC 于点F •/△ ABC 是等腰三角形, AB=AC ,/ ABF= AF丄 BC , BF=CF=BC/2 ……(•••/ DBE= / BAF ................................... •••/ DBE+ / ABF=90 = / ACF+ / ECB .....是AD 上一点, (1)BE 丄 CB 交 CD 于 E,AC 丄 DC,/ DBE= / ECB ......................... ( 5) 由( 3 )和(5)知道:/ / BFA= / EBC=90 •• RT △ BFA 也 RT △ EBC (角角边) • BF=EB 由(2)和(6)知道:BE=BC/2••• AF 是BC 上的垂直平分线,•/ BE 丄 BC ,••• BE//AF )•••/ CBE=90(1 )和(4 )知道:BAF= / ECB 又••• AB=CE ,(6)10.如图,AD为^ ABC的角平分线,M为BC的中点,ME // DA交BA延长线于E,求证:BE=CF=1/2(AB+AC)证明:(1)延长EM,使EM=MG,连接CG•••点M 是BC 的中点,••• BM=CM •••/ BME= / CMG •△ BME ◎△ CMG (SAS)••• BE=CG, / E= / G•/ AD 平分 / BAC , •••/ BAD= / CAD •/ ME // DA, •/ BAD= / E , / CAD= / AFE •••/ E= / AFE , ••• AE=AF T/AFE= / CFG , ••/ G= / CFG •• CF=CG , •• BE=CG ,••• BE=CF⑵T BE=AB+AE,••• 2BE=2AB+2AET CF=BE , AC=CF+AF , AE=AF•2BE=2CF=AB+(AB+AE)+AE =AB+BE+AE=AB+(CF+AE) T AC=AF+CF•• 2BE=AB+AC•BE=CF=1/2(AB+AC)11. 如图,已知△ ABC中,AD丄BC, / ABC=2 / C.试说明AB+BD=CD 的理由。
证明:在DC 上截取DE=BD ,连接AE •/ AD 丄BC, •/ ADB= / ADE=90°•/ AD=AD ••• RT △ ADB 也RT△ ADE ( SAS) • AB=AE , / ABC= / AEB•// AEB= / C+ / EAC •// ABC=2 / C (已知) EAC= / C••• AE=CE , • AB=CE •/ CD=CE+DE , • AB+BD=CD12. 已知:如图,AD是^ ABC的角平分线,且AC=AB+BD. 求证:/ B=2 / C.证明:在AC 上作AE = AB,连结DE •/ AC=AB+BD = AE+CE , • BD = CE •/ AD 是角平分线,•/ BAD =/ EAD 又••• AB=AE , AD=AD ••△ ABD ◎△ EAD B = / AED , BD = DE = CE •••/ EDC= / C,/ AED = 2/ C即:/ B = 2/ C13. 如图所示,已知在△ ABC中AD是/ A的平分线,且/ B=2/ C.求证:AC=AB+BD. 证明:延长AB至U E,使AC=AE,连接DE••• AD 是/ BAC 的角平分线•••/ BAD= / DAC (角平分线的定义)•• •公共边AD=AD AC=AE / BAD= / DAC ••△ ACD ◎△ AED (SAS) ACB= / DEA (全等三角形形的对角相等)•// BDE+ / DEB= / CBA / CBA=2 / ACB / ACB= / DEA BDE= / DEA •• BD=BE (等角对等边)•/ AB+BE=AE,AC=AE,BD=BE••• AB+BD=AC14. 如图,点E是等边△ ABC内一点,且EA=EB, △ ABC外一点D满足BD=AC,且BE平分/ BDE。
求/ BDE的度数解:连接CE, •/AC=BC , AE=BE , CE为公共边,•••△ BCE ◎△ ACE , •••/BCE= / ACE=30 又T BD=AC=BC , / DBE= / CBE , BE 为公共边,•••△ BDE ◎△ BCE ,•••/ BDE= /BCE=3015. 如图,已知在 △ ABC 中,AB=BC=CA,E 是 AD 上一点,并且 EB=BD=DE. 求证: BD+DC=AD. A提示:证明 △ ABE ◎△ BCD 即可 E B C16.已知:如图, △ ABC 中,/ C=90° , CM 丄AB 于M,AT 平分 / BAC 交CM 于D,交BC 于T,过D作DE // AB 交BC 于E , 求证:CT=BE 证明1: 作DF // BC 交AB 于F 则:•// AFD= / B= / ACD, AT 为/ BAC 的角平分线,AD 为公共边 ••△ AFD ◎△ ACD,AF=AC 连接TF •/ AF=AC, AT 为/ BAC 的角平分线,AT 为公共边 ••△ ACT ◎△ AFT, TF 丄 AF,TF // CM •/ DF // CT // BE,TF // CD,DE // BF 二四边形 CTFD 和四边形 BEDF 都是平 行四边形作 TF 丄 AB 于 F 则:•••/ CDT= / ADM=90 - / DAM=90 - / DAC= / CTD CDT ,••• CT=CD•/ AT 为/ BAC 的角平分线,TF 丄 AB , AC 丄TC •• CT=TF=CD :.△ CDE ◎△ TFB,••• CT=DF=BE证明2: =/ CTD•/ DE // BF,TF // CD,DEC= / B, / DCE= / FTB 又•/ TF=CD••• CE=BT ••• CE -TE=BT-TE,CT=BE。