等腰三角形辅助线的做法
构造等腰三角形解题的辅助线做法

构造等腰三角形解题的辅助线做法吕海艳等腰三角形是一种特殊的三角形,常与全等三角形的相关知识结合在一起考查。
在许多几何问题中,通常需要构造等腰三角形才能使问题获解。
那么如何构造等腰三角形呢一般有以下四种方法:(1)依据平行线构造等腰三角形;(2)依据倍角关系构造等腰三角形;(3)依据角平分线+垂线构造等腰三角形;(4)依据120°角或60°角,常补形构造等边三角形。
1、依据平行线构造等腰三角形例1:如图。
△ABC中,AB=AB,E为AB上一点,F为AC延长线上一点,且BE=CF,EF交BC于D,求证DE=DF.)[点拔]:若证DE=DF,则联想到D是EF的中点,中点的两旁容易构造全等三角形,方法是过E或F作平行线,构造X型的基本图形,只需证两个三角形全等即可。
证明:过E作EG∥AC交BC于G∴∠1=∠ACB,∠2=∠F∵AB=AC∴∠B=∠ACB∴∠1=∠B∴BE=GE∵BE=CF∴GE=CF在△EDG和△FDC中*∠3=∠4∠2=∠FGE=CF∴△EDG≌△FDC∴DE=DF[评注]:此题过E作AC的平行线后,构造了等腰△BEG,从而达到转化线段的目的。
2、依据倍角关系构造等腰三角形例2:如图。
△ABC中,∠ABC=2∠C,AD是∠BAC的平分线求证:AB+BD=AB.[点拔]:在已知条件中出现了一个角是另一个角的2倍,可延长CB,构造等腰三角形,问题即可解决。
证明:延长CB至E,使BE=BA,连接AE∵BE=BA∴∠BAE=∠E∵∠ABC=2∠C, ∠ABC=∠E+∠BAE=2∠E∴∠C=∠EAC=AE∵AD平分∠BAC∴∠1=∠2…∴∠EAD=∠BAE+∠1=∠E+∠1=∠C+∠2=∠BDA∴EA=ED∵ED=EB+BD,EB=AB,AC=AE∴AC=AB+BD[评注]:当一个三角形中出现了一个角是另一个角的2倍时,我们就可以通过转化倍角寻找等腰三角形。
3、依据角平分线+垂线,构造等腰三角形例3,如图。
2022七年级数学上册第二章轴对称阶段核心方法等腰三角形中作辅助线常用的八种方法鲁教版五四制

解法三:如图③,在BC上截取CE=CA,连接DE. 因为CD平分∠ACB,所以∠ACD=∠ECD. 又因为CD=CD,所以△ACD≌△ECD(SAS). 所以AD=DE,∠BAC=∠DEC. 因为∠BAC=2∠B,且易知∠DEC=∠B+∠BDE, 所以∠BDE=∠B.所以DE=BE, 所以AC+AD=CE+BE=BC.
所以△ABE≌△PBE(AAS).所以 BA=BP. 所以 BC=CP+BP=CE+AB.
(2)DE⊥DF. 解:因为△BED≌△AFD, 所以∠BDE=∠ADF. 所以∠BDE+∠EDA=∠EDA+∠ADF=90°. 所以∠EDF=90°. 所以DE⊥DF.
2 如图,在△ABC中,AC=2AB,AD平分∠BAC交BC于 D,E是AD上一点,且EA=EC.试说明:EB⊥AB.
解:如图,作EF⊥AC于点F. 因为EA=EC,所以AF=FC. 因为AC=2AB,所以AF=AB. 因为AD平分∠BAC,所以∠BAE=∠FAE. 又因为AE=AE,所以△ABE≌△AFE(SAS). 所以∠ABE=∠AFE=90°.所以EB⊥AB.
过点 E 分别作 EM⊥BA 交 BA 的延长线于点 M,EN⊥BC 于点 N. 因为 BE 平分∠ABC,EM⊥BA,EN⊥BC,所以 EM=EN. 因为∠BAC=100°,所以∠CAM=180°-100°=80°.
∠EAM=∠NDE=80°, 在△EMA 和△END 中,∠AME=∠DNE=90°,
第二章
轴对称
阶段核心方法 等腰三角形中作辅助线常用的八种方法
习题链接
温馨提示:点击 进入讲评
1
5
2
6
3
7
4
8
答案呈现
1 如图,在△ABC中,∠A=90°,AB=AC,D为 BC的中点,E,F分别是AB,AC上的点,且BE= AF.试说明: (1)DE=DF; (2)DE⊥DF.
等腰三角形中的常见辅助线

等腰三角形中做辅助线的八种常用方法几何图形中添加辅助线,往往能把分散的条件集中,使隐蔽的条件显露,将复杂的问题简单化.例如:作“三线”中的一线或平行线证线段相等,利用截长补短证线段和差关系或求角的度数,利用加倍折半法证线段的倍分关系等,将不在同一个三角形的线段转移到同一个三角形(或两个全等三角形)中,然后运用等腰(或全等三角形)的性质来解决问题.方法1 等腰三角形中有底边上的中点时常作底边上的中线1.如图,在三角形ABC中,∠A=90°,AB=AC,D为BC的中点,E,F分别是AB,AC上的点,且BE=AF,求证:(1)DE=DF.(2)DE⊥DF方法2 等腰三角形中没有底边上的中点时常作底边上的高2.如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.方法3 等腰三角形中证与腰有关联的线段时常作腰的平行线或垂线3.如图,在△ABC中,AB=AC ,点P从点B出发沿线段BA移动(点P与A,B不重合),同时,点Q从点C出发沿线段AC的延长线移动,点P,Q移动的速度相同,PQ与直线BC相交于点D.(1)试说明:PD=QD(2)过点P作直线BC的垂线,垂足为E,P,Q在移动的过程中,线段BE,DE,CD中是否存在长度保持不变的线段?请说明理由.方法4 等腰三角形证与底有关的线段时常作底的平行线4.如图,等边三角形ABC中,D是边AC延长线上一点,延长BC至E,使CE=AD,DG⊥BE于G,求证:BG=EG.方法5补形法构造等腰三角形5.如图,AB∥CD,∠1=∠2,AD=AB+CD,求证:(1)BE=CE;(2)AE⊥DE;(3)AE平分∠BAD.方法6 倍长中线法构造等腰三角形6.如图,△ABC中,AD为中线,点E为AB上一点,AD,CE交于点F,且CE=EF,求证:AB=CF方法7 延长(或截长)法构造等腰三角形7.如图,在△ABC中,∠BAC=2∠B,CD平分∠ACB交AB于D,求证:AC+AD=BC.方法8 截长补短法构造等腰三角形8.如图,在△ABC中,∠BAC=120°,AD⊥BC于点D,且AB+BD=DC,求∠C的度数.。
专题训练(一) 等腰三角形中常见辅助线的作法

证明:过点 E 作 EF⊥AC 于点 F,∵EA=EC,∴AF=FC=12 AC. ∵AC=2AB,∴AF=AB.∵AD 平分∠BAC 交 BC 于点 D,∴∠BAD=∠CAD, 在△BAE 和△FAE 中,A∠BB=AADF=,∠CAD, ∴△ABE≌△AFE(SAS),
AE=AE, ∴∠ABE=∠AFE=90°,∴EB⊥AB
证明:过点 E 作 EG∥AC 交 BC 于点 G,则∠ACB=∠BGE,∠F=∠DEG, ∵AB=AC,∴∠B=∠ACB,∴∠B=∠BGE,∴BE=GE.
又∵BE=CF,∴GE=CF.在△CDF 和△GDE 中,∠ ∠FC= DF∠=D∠EGG, DE, CF=GE,
∴△CDF≌△GDE(AAS), ∴DE=DF
方法2:截长补短构造等腰三角形 技巧点拨:对于线段和差问题,利用“截长补短”的思想,添加辅助线,可构 造等腰三角形来实现边角之间的转化. 7.如图,在△ABC中,CA=CB,∠ACB=108°,BD平分∠ABC交AC于点D, 求证:AB=AD+BC.
证 明 : 方 法 一 : ( 截 长 法 ) , 如 图 ① , 在 AB 上 截 取 BE = BC , 连 接 ED , 易 证 △BCD≌△BED,∴∠DEB=∠ACB=108°.又∵∠A=∠ABC=36°,∴∠AED= ∠ADE=72°,∴AD=AE,∴AB=BE+AE=BC+AD.
解:如图,过点 C 作 BA 的垂线,交 BA 的延长线于点 D. ∵AB=AC,∠B=15°,∴∠CAD=∠B+∠ACB=15°+15°=30°. ∵AC=2ห้องสมุดไป่ตู้CD 是 AB 边上的高,∴CD=12 AC=12 ×2=1. ∴AB 边上的高是 1
4.如图,四边形ABCD中,∠C=30°,∠B=90°,∠ADC=120°. 若AB=2,CD=8,求AD的长.
(完整)等腰三角形时常用的辅助线作法

有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BD⊥AC于D,求证:∠BAC = 2∠DBC⑵有底边中点时,常作底边中线例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE = DF⑶将腰延长一倍,构造直角三角形解题例:已知,如图,△ABC中,AB = AC,在BA延长线和AC上各取一点E、F,使AE = AF,求证:EF⊥BC⑷常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在△ABC中,AB = AC,D在AB上,E在AC延长线上,且BD = CE,连结DE交BC于F求证:DF = EF⑸常过一腰上的某一已知点做底的平行线例:已知,如图,△ABC中,AB =AC,F在AC上,E在BA延长线上,且AE = AF,连结DE求证:EF⊥BC⑹常将等腰三角形转化成特殊的等腰三角形---—--等边三角形例:已知,如图,△ABC中,AB = AC,∠BAC = 80o,P为形内一点,若∠PBC = 10o,∠PCB = 30o求∠PAB的度数。
有等腰三角形时常用的辅助线⑴作顶角的平分线,底边中线,底边高线例:已知,如图,AB = AC,BD⊥AC于D,求证:∠BAC = 2∠DBC证明:(方法一)作∠BAC的平分线AE,交BC于E,则∠1 = ∠2 = 12∠BAC又∵AB = AC∴AE⊥BC∴∠2+∠ACB = 90o∵BD⊥AC∴∠DBC+∠ACB = 90o∴∠2 = ∠DBC∴∠BAC = 2∠DBC(方法二)过A作AE⊥BC于E(过程略)(方法三)取BC中点E,连结AE(过程略)⑵有底边中点时,常作底边中线例:已知,如图,△ABC中,AB = AC,D为BC中点,DE⊥AB于E,DF⊥AC于F,求证:DE = DF21EDC BA证明:连结AD.∵D 为BC 中点, ∴BD = CD又∵AB =AC ∴AD 平分∠BAC ∵DE ⊥AB ,DF ⊥AC ∴DE = DF⑶将腰延长一倍,构造直角三角形解题例:已知,如图,△ABC 中,AB = AC,在BA 延长线和AC 上各取一点E 、F ,使AE = AF , 求证:EF ⊥BC证明:延长BE 到N ,使AN = AB ,连结CN ,则AB = AN = AC∴∠B = ∠ACB, ∠ACN = ∠ANC ∵∠B +∠ACB +∠ACN +∠ANC = 180o∴2∠BCA +2∠ACN = 180o ∴∠BCA +∠ACN = 90o 即∠BCN = 90o ∴NC ⊥BC ∵AE = AF ∴∠AEF = ∠AFE又∵∠BAC = ∠AEF +∠AFE ∠BAC = ∠ACN +∠ANC ∴∠BAC =2∠AEF = 2∠ANC ∴∠AEF = ∠ANCF E DCBAN FE CBA∴EF ∥NC ∴EF ⊥BC⑷常过一腰上的某一已知点做另一腰的平行线例:已知,如图,在△ABC 中,AB = AC,D 在AB 上,E 在AC 延长线上,且BD = CE ,连结DE 交BC 于F 求证:DF = EF证明:(证法一)过D 作DN ∥AE ,交BC 于N ,则∠DNB = ∠ACB,∠NDE = ∠E ,∵AB = AC, ∴∠B = ∠ACB ∴∠B =∠DNB ∴BD = DN 又∵BD = CE ∴DN = EC在△DNF 和△ECF 中 ∠1 = ∠2 ∠NDF =∠E DN = EC ∴△DNF ≌△ECF ∴DF = EF(证法二)过E 作EM ∥AB 交BC 延长线于M ,则∠EMB =∠B(过程略)⑸常过一腰上的某一已知点做底的平行线21NFED C BA21MFED CBA例:已知,如图,△ABC 中,AB =AC ,E 在AC 上,D 在BA 延长线上,且AD = AE ,连结DE求证:DE ⊥BC证明:(证法一)过点E 作EF ∥BC 交AB 于F ,则∠AFE =∠B ∠AEF =∠C ∵AB = AC ∴∠B =∠C ∴∠AFE =∠AEF ∵AD = AE∴∠AED =∠ADE又∵∠AFE +∠AEF +∠AED +∠ADE = 180o ∴2∠AEF +2∠AED = 90o 即∠FED = 90o∴DE ⊥FE 又∵EF ∥BC ∴DE ⊥BC(证法二)过点D 作DN ∥BC 交CA 的延长线于N,(过程略) (证法三)过点A 作AM ∥BC 交DE 于M ,(过程略)⑹常将等腰三角形转化成特殊的等腰三角形————--等边三角形例:已知,如图,△ABC 中,AB = AC,∠BAC = 80o ,P为形内一点,若∠PBC = 10o ∠PCB = 30o 求∠PAB 的度数. 解法一:以AB 为一边作等边三角形,连结CE则∠BAE =∠ABE = 60oN M FE D CBA PECBAAE = AB = BE∵AB = AC∴AE = AC ∠ABC =∠ACB ∴∠AEC =∠ACE∵∠EAC =∠BAC-∠BAE= 80o-60o = 20o∴∠ACE = 12(180o-∠EAC)= 80o∵∠ACB= 12(180o-∠BAC)= 50o∴∠BCE =∠ACE-∠ACB= 80o-50o = 30o∵∠PCB = 30o∴∠PCB = ∠BCE∵∠ABC =∠ACB = 50o, ∠ABE = 60o∴∠EBC =∠ABE-∠ABC = 60o-50o =10o ∵∠PBC = 10o∴∠PBC = ∠EBC在△PBC和△EBC中∠PBC = ∠EBCBC = BC∠PCB = ∠BCE∴△PBC≌△EBC∴BP = BE∵AB = BE∴AB = BP∴∠BAP =∠BPA∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o∴∠PAB = 12(180o-∠ABP)= 70o解法二:以AC为一边作等边三角形,证法同一。
专题 等腰三角形中常用的辅助线作法(原卷版)

(苏科版)八年级上册数学《第2章轴对称图形》专题等腰三角形中常用的辅助线作法解题技巧提炼当遇到等腰三角形时,常利用“三线合一”的性质,若已知图中无此线,可将其构造出来以辅助解决问题,通常是作底边上的高,再证底边上的中线或顶角的平分线.【例题1】(2022秋•秦淮区月考)如图所示,在五边形ABCDE中,AB=AE,∠B=∠E,BC=DE,F是CD的中点,连接AF.求证:AF⊥CD.【变式1-1】如图,△ABC中,CA=CB,D在AC的延长线上,E在BC上,且CD=CE,求证:DE⊥AB.【变式1-2】(2022秋•新洲区期中)如图.△ABC中,CA=CB.D是AB的中点.∠CED=∠CFD=90°,CE=CF,求证:∠ADF=∠BDE.【变式1-3】已知:如图,△ABC中,AB=AC,CE⊥AE于E,CE=12BC,E在△ABC外,求证:∠ACE=∠B.【变式1-4】(2022秋•晋江市期中)如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.【变式1-5】(2022秋•大足区期末)如图所示,△ABC中,AC=BC,点D是AB上一点,DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若∠ADE=160°,求∠DEF的度数;(2)若点D是AB的中点,求证:∠BDE=12∠ACB.【变式1-6】(2022秋•南乐县月考)如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,且BE=4.(1)求∠D的度数;(2)若BC=5,求ED的长.【变式1-7】如图,AB∥CD,∠1=∠2,AD=AB+CD.(1)求证:BE=CE;(2)求证:AE⊥DE;(3)求证:AE平分∠DAB.【例题2】如图,在△ABC 中,AB =AC ,EF 交AB 于点E ,交BC 与点D .交AC 的延长线于点F ,且BE =CF .求证:DE =DF .【变式2-1】如图,△ABC 是等边三角形,D 为AC 延长线上一点,E 是BC 延长线上一点,CE =AD ,求证:DB =DE.【变式2-2】如图,BD平分∠ABC交AC于D,点E为CD上一点,且AD=DE,EF∥BC交BD于F.求证:AB=EF.【变式2-3】如图,在△ABC中,AB=AC,在AB上取一点E,在AC的延长线上取一点F,使BE=CF,EF交BC于点G.(1)试说明EG=FG;(2)试说明AB+AC>2EG.【变式2-4】如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E 作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG=BF+CG.【变式2-5】如图所示,等边三角形ABC的边长是6,点P在边AB上,点Q在BC的延长线上,且AP=CQ,设PQ与AC相交于点D.(1)当∠DQC=30°时,求AP的长.(2)作PE⊥AC于E,试探究DE、AE、CD三条线段之间的数量关系,并证明你的结论.【变式2-6】已知,△ABC为等边三角形,点D为AC上的一个动点,点E为BC延长线上一点,且BD=DE.(1)如图1,若点D在边AC上,猜想线段AD与CE之间的关系,并说明理由;(2)如图2,若点D在AC的延长线上,(1)中的结论是否成立,请说明理由.【变式2-7】如图,AD为△ABC的平分线,E为BC的中点,EF∥AD交BA的延长线于F,交AC于G.(1)求证:AF=AG;(2)求证:BF=CG;(3)求AB AC CG的值.【例题3】如图,△ABC 中,CA =CB ,∠ACB =108°,BD 平分∠ABC 交AC 于D ,求证:AB =AD +BC .【变式3-1】如图,△ABC 中,AB =AC ,∠A =100°,CD 平分∠ACB 交AB 于D ,E 为BC 上一点,BE =DE .求证:BC =CD +AD.解题技巧提炼对于线段和差问题,利用“截长补短法”的思想,添加辅助线,可构造等腰三角形来实现边角之间的转化.【变式3-2】如图,在△ABC中,AD平分∠BAC,AD=AB,CM⊥AD交AD延长线于点M.求证:AM=12(AB+AC).【变式3-3】如图(1),线段AD∥BC,连接AB、CD,取CD中点E,连接AE,AE平分∠BAD.(1)线段AB与AD、BC之间存在怎样的等量关系?请说明理由.(2)如果点C在AB的左侧,其他条件不变,如图(2)所示,那么(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请写出新的结论,并说明理由.【变式3-4】(2022秋•崇川区校级月考)如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.【变式3-5】在等边三角形ABC的两边AB、AC所在直线上分别有两点M、N,P为△ABC外一点,且∠MPN=60°,∠BPC=120°,BP=CP.探究:当点M、N分别在直线AB、AC上移动时,BM,NC,MN之间的数量关系.(1)如图①,当点M、N在边AB、AC上,且PM=PN时,试说明MN=BM+CN.(2)如图②,当点M、N在边AB、AC上,且PM≠PN时,MN=BM+CN还成立吗?答: .(请在空格内填“一定成立”“不一定成立”或“一定不成立”).(3)如图③,当点M、N分别在边AB、CA的延长线上时,请直接写出BM,NC,MN之间的数量关系.【例题4】阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E 是BC 的中点,点A 在DE 上,且∠BAE =∠CDE .求证:AB =CD .分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB =CD ,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE 到点F ,使EF =DE ,连接BF ;②如图2,分别过点B 、C 作BF ⊥DE ,CG ⊥DE ,垂足分别为点F ,G .(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.【变式4-2】如图,在△ABC 中,点D 是BC 的中点,点E 是AD 上一点,BE =AC .若∠C =70°,∠DAC =50°,求∠EBD的度数.解题技巧提炼当题目中已知某线段的中点时,通过倍长中点处的线段构造全等三角形,从而将题目中的相等的角或边集中到新的三角形中构成等腰三角形.【变式4-3】(2022秋•文峰区月考)如图,已知△ABC中,AD是中线,AE是△ABD的中线,BA=BD,∠BAD =∠BDA,求证:AC=2AE.【变式4-4】阅读并完成以下填空:如图1,已知:AD为△ABC的中线,求证AB+AC>2AD.证明:延长AD至E使得DE=AD.连接EC,则AE=2AD.∵AD为△ABC的中线,∴BD=CD.在△ABD和△CED中,BD=CD, , .∴△ABD≌△CED.∴AB=EC.在△ACE中,根据三角形的三边关系有AC+EC AE.而AB=EC,AE=2AD,∴AB+AC>2AD.这种添加辅助线的方法,我们称为“倍长中线法”.请利用这种方法解决下列问题:问题1:如图2,在△ABC中,AC=5,AB=13,D为BC的中点,DA⊥AC.求△ABC的面积.问题2:如图3,在△ABC中,AD是三角形的中线.点F在中线AD上,且BF=AC,连接并延长BF 交AC于点E.求证AE=EF.【变式4-5】(2023春•汉寿县期中)已知:△ABC和△ADE均为等腰直角三角形,∠ABC=∠ADE=90°,AB=BC,AD=DE,按图1放置,使点E在AB上,取CE的中点F,连接DF,BF.(1)观察发现:图1中DF,BF的数量关系是 ,位置关系是 ;(2)探究证明:将图1中的△ADE绕点A顺时针转动45°,再连接CE,取CE的中点F(如图2),问(1)中的结论是否仍然成立?请证明你的结论;(3)拓展延伸:将图1中的△ADE绕点A顺时针转动任意角度(转动角度在0°到90°之间),再连接CE的中点F(如图3),问(1)中的结论是否仍然成立?请证明你的结论.【例题5】如图,在△ABC中,∠BAC=2∠B,CD平分∠ACB交AB于D,求证:AC+AD=BC.【变式5-1】在△ABC中,AD是BC边上的高,CD=AB+BD.求证:∠B=2∠C.【变式5-2】如图,在△ABC中∠ABC=2∠C,若AD⊥BC于D,BD=4,CD=16,求AB的长.【变式5-3】(2022•南京模拟)小明在完成一道几何证明问题时,往往会思考看是否会有不同的证明方法.例如:在如图1所示的△ABC中,∠ACB=90°,点D在AB上,且BD=BC,求证:∠ABC=2∠ACD.他发现,除了方法1直接用角度计算的方法外,还可以用下面两种方法:方法2:如图2,作BE⊥CD,垂足为点E.方法3:如图3,作CF⊥AB,垂足为点F.根据阅读材料,请你从三种方法中任选一种方法,证明∠ABC=2∠ACD,并写出其证明过程.。
2等腰三角形中作辅助线的四种常用方法

方法 4 加倍折半法
4.如图,在△ABC中,∠BAC=120°,AD⊥BC 于点D,且AB+BD=DC,
求∠C的度数.
解: 如图,在DC上截取DE,使DE=BD,连接AE. ∵AD⊥BC,∴∠ADB=∠ADE=90°. ∵BD=DE,AD=AD, ∴△ABD≌△AED(SAS). ∴AB=AE,∠B=∠AEB. ∵AB+BD=CD,DE=BD, ∴AB+DE=CD.
求证:BD+DC=AB.
证明: 如图,延长BD至点E,使BE=AB, 连接CE,AE. ∵∠ABE=60°,BE=AB, ∴△ABE为等边三角形. ∴∠AEB=60°,AB=AE. 又∵∠ACD=60°,∴∠ACD=∠AEB.
∵AB=AC,AB=AE,∴AC=AE. ∴∠ACE=∠AEC.∴∠DCE=∠DEC. ∴DC=DE. ∴AB=BE=BD+DE=BD+CD, 即BD+DC=AB.
而CD=DE+EC,∴AB=EC. ∴AE=EC. ∴∠EAC=∠C. 设∠EAC=∠C=x,∵∠AEB为△AEC的外角, ∴∠AEB=∠EAC+∠C=2x. ∴∠B=2x,∠BAE=180°-2x-2x=180°-4x. ∵∠BAC=120°, ∴∠BAE+∠EAC=120°,
返回
即180°-4x+x=120°. 解得x=20°,则∠C=20°.
返回
∴DE=DF.
方法 2 作平行线法
2.如图,在△ABC中,AB=AC,点P从点B出发沿线段BA 移动,同时,点Q从点C出发沿线段AC的延长线移动, 点P,Q移动的速度相同,PQ与直线BC相交于点D.
(1)求证:PD=QD. (2)过点P作直线BC的垂线,垂足为E, P,Q在移动的过程中,线段BE,DE, CD中是否存在长度保持不变的线段?请说明理由.
技巧专题技巧专题等腰三角形7种常用辅助线添加方法

技巧专题等腰三角形7种常用辅助线添加方法方法1.三线合一法例1.如图,△ABC中,AB=AC,D是BC的中点,过A点的直线EF//BC,且AE=AF.求证: DE=DF.方法2.作一腰的平行线构造等腰三角形法例2.如图,AB=AC,F 为DE的中点,求证BD=CE.例3.如图,AABC中,AB=AC,点P从点B出发沿线段BA移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P, Q移动的速度相同,PQ与直线BC相交于点D.(1).如图①,当点P为AB的中点时,求证: PD=QD;(2).如图②,过点P作直线BC的垂线,垂足为E,当点P,Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由.方法3.截长补短构造等腰三角形法例4.如图,在△ABC中,AB=AC, D是△ABC外一点,且∠ABD=60°,∠ACD=60°求证:BD+DC=AB例5.如图,在AABC中,∠BAC=120°, AD⊥BC于D,且AB+BD=DC,求∠C.方法4.证与底有关的线段时,通常作底的平行线例6.如图,等边△ABC中,D是边AB延长线上一点,延长BC至E点,使CE=AD, DG⊥BE 于G,求证BG=EG.方法5.加倍折半法,倍长中线法例7.如图,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.方法6.以底或腰为边作等边三角形,出三角形全等例8.如图,在△ABC中,∠ABC=∠ACB=40°,点P为三角形内一点,且∠PCA=∠PAB=20°.求∠PBC的度数方法7、将以腰为边的一个三角形绕顶角的顶点旋转例9.如图,△ABC中,点P是△ABC内一点,且∠APB>∠APC. 求证:PC> PB.课后培优练习题1.如图,在△ABC中,AB=AC, ∠A=90°,点D是BC的中点,点E、F分别在AB、AC上,且AE=CF.求证:△DEF 是等腰直角三角形.2.如图,等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于点E,判断△ADE的形状,并证明你的结论.3.如图,△ABC中,AB=AC, D为BC边的中点,过点D作DE⊥AB, DF⊥AC,垂足分别为E, F.(1)求证: DE=DF;(2)若∠A=90°,图中与DE相等的有哪些线段? (不需说明理由)4.如图,△ABC中,AC=2AB, AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证: EB⊥AB.5.如图,△ABC的面积为1cm2, AP垂直∠ABC的平分线BP于P,求△PBC的面积.6.如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E、F分别在AC、BC 上,求证: DE=DF.7.如图,已知AB=AC, ∠A=108°,BD平分∠ABC交AC于D.求证: BC=AB+CD.8.如图,在△ABC中,AB=AC, AE⊥BE于点E,且BC=2BE,若∠EAB=20°,求∠BAC的度数.9.如图,△ABC是等腰直角三角形,∠A=90°,BD平分∠ABC交AC于点D, CE ⊥BD. 求证: BD=2CE.10.如图,等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一一点,且PA=CQ,连PQ交AC边于D.(1).求证: PD=DQ;(2).若△ABC的边长为1,求DE的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形辅助线的做法 Prepared on 22 November 2020
专题:等腰三角形辅助线的作法
类型一:利用三线合一作辅助线
(1)等腰三角形中有底边中点时,常连底边上的中线
1、如图ΔABC中,AB=AC,D是BC的中点,E、F分别是AB、AC上的
点且AE= AF,求证:DE=DF
2、如图,在ΔABC中,D是BC的中点,过A作EF‖BC且AE= AF,求
证:DE=DF
(2)没有底边中点时作底边上的高
3、如图,在ΔABC中,AB=AC,BD⊥AC于D,
求证:∠BAC=2∠DBC
类型二:做平行线构造等腰三角形
(1)作腰的平行线构造等腰三角形
4、如图,ΔABC中,AB=AC,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:DF=EF
(2)作底边的平行线构造等腰三角形
5、如图,AB=AC,点D是BA的延长线上一点,E在AC上,且AD=AE,求证:DE⊥BC
(3)利用“角平分线+平行线”构造等腰三角形
6、如图,BD平分∠ABC交AC于D,点E为CD上一点,
且AD=DE,EF‖BC交BD于F,求证:AB=EF
类型三:用“截长补短法”构造等腰三角形
7、如图,ΔABC中,∠BAC=120,AD⊥BC于D,且AB+BD=DC,求∠C 的度数。
8、如图,ΔABC中,∠BAC=108,AB=AC,BD平分∠ABC交AC于D,求证:BC=CD+AB
类型四:运用角平分线作垂线
9、如图,四边形AOBC中,AC=BC,∠A+∠OBC=180,CD⊥OA于D。
(1)求证:OC平分∠AOB;
(2)若OD=3DA =6,求OB的长。
10、如图,已知等腰RTΔABC中,∠ACB=90,AC=BC=4,D为ΔABC的一个外角∠ABF的平分线上一点,且∠ADC=45,CD交AB于E,
(1)求证:AD=CD
(2)求AE的长。