《算数平方根一》PPT课件
合集下载
七级数学下册六实数平方根一新版新人教版PPT课件

.-6
D.-8
课后巩固
23.计算下列各题:
(1)(1 0.09 1 0.25) 100
;(1)23
5
(2) 196 6( 5 4 20
27
(3) 2 1 (2)2 1 9 25
;4
25
(3)7
课后巩固
24.学校小会议室面积为27 m2,小明数了一下地面 所铺的地砖,正好是300块一样大小的正方
(2)∵ 6 =
5
,
∴
的算
课堂导学
1. 3
对点训练一 表示3的__算__术__平__方__根_________;
2.5的算术平方根可写成_____5_____;
3.(1)4的算术平方根是____2______;
3
(2)2的算术平方根是2__________;
(3)0的算术平方根是0__________.
核心目标
了解算术平方根的概念,会用根号表示正数的算术 平方根,并了解算术平方根的非负性.
课前预习
1.如果一个正数x的平方等于a,即x2=a,那么这个 正数x叫做a算的术__平__方__根________,记作a______.
2.25的算术平方根是____5____,49的算术平方根是 7________.
课堂导学
知识点:算术的平方根
【例题】求下列各数的算术平方根: (1)0.11215; (2)
25
【解析】尝试哪一个数的平方等于已知数,然后依据
算术平方根的概念进行计算.
【答案】解:(1)∵0.52=0.25,
方根是0.5 ,=
∴0.25的算术平
1 11
36
62 ()
36
25 25 5 25
北师大版八年级数学上册《平方根(1)》课件

谢谢观赏
You made my day!
我们,还在路上……
的算术平方根是____非__负__数____.
1.(2 分)(2014·陕西)4 的算术平方根是( B )
A.-2
B.2
C.-12
1 D.2
2.(2 分)下列说法正确的是( A )
A.5 是 25 的算术平方根
B.±4 是 16 的算术平方根
C.-6 是(-6)2 的算术平方根
D.0.01 是 0.1 的算术平方根
(1)计算冰川消失 16 年后苔藓的直径. (2)如果测得一些苔藓的直径是 35 厘米,问冰川约是在多少年前消失 的?
解:(1)当 t=16 时,d=7× t-12=7× 16-12=7×2=14(cm).即 冰川消失 16 年后苔藓的直径约为 14 cm
(2)当 d=35 时, t-12=5,即 t-12=25,解得 t=37.即冰川约是 在 37 年前消失的
(B ) A.28 cm C.25 cm
B.24 cm D.不能确定
9.(10 分)全球气候变暖导致一些冰川融化并消失.在冰川消失 12 年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近 似圆形的形状,苔藓的直径和其生长年限近似地满足如下的关系式:d =7× t-12(t≥12).其中 d 代表苔藓的直径,单位是厘米;t 代表冰川 消失的时间,单位是年.
3.(2 分) 81的算术平方根是( B )
A.9
B.3
C. 9
D. 3
4.(2 分)算术平方根等于它本身的数是( D )
A.0
B.1
C.-1
D.0,1
5.(2 分)(-5)2 的算 100;
解:(1)10
You made my day!
我们,还在路上……
的算术平方根是____非__负__数____.
1.(2 分)(2014·陕西)4 的算术平方根是( B )
A.-2
B.2
C.-12
1 D.2
2.(2 分)下列说法正确的是( A )
A.5 是 25 的算术平方根
B.±4 是 16 的算术平方根
C.-6 是(-6)2 的算术平方根
D.0.01 是 0.1 的算术平方根
(1)计算冰川消失 16 年后苔藓的直径. (2)如果测得一些苔藓的直径是 35 厘米,问冰川约是在多少年前消失 的?
解:(1)当 t=16 时,d=7× t-12=7× 16-12=7×2=14(cm).即 冰川消失 16 年后苔藓的直径约为 14 cm
(2)当 d=35 时, t-12=5,即 t-12=25,解得 t=37.即冰川约是 在 37 年前消失的
(B ) A.28 cm C.25 cm
B.24 cm D.不能确定
9.(10 分)全球气候变暖导致一些冰川融化并消失.在冰川消失 12 年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近 似圆形的形状,苔藓的直径和其生长年限近似地满足如下的关系式:d =7× t-12(t≥12).其中 d 代表苔藓的直径,单位是厘米;t 代表冰川 消失的时间,单位是年.
3.(2 分) 81的算术平方根是( B )
A.9
B.3
C. 9
D. 3
4.(2 分)算术平方根等于它本身的数是( D )
A.0
B.1
C.-1
D.0,1
5.(2 分)(-5)2 的算 100;
解:(1)10
1.第2课时算术平方根PPT课件(沪科版)

;(3) .;(4) (-) .
第2课时
算术平方根
解: (1)因为 52=25,所以 =5.
(2)因为
2
= ,所以
= .
(3)因为(0.2)2=0.04,所以 .=0.2.
(4)因为(-4) =16=4 ,所以 (-) = =4.
2
2
第2课时
平方米,
= =0.8(米).
所以这种正方形地板砖的边长为 0.8 米.
第2课时
算术平方根
总结反思
算
术
平
方
根
概
念
正数a的正的 平方根叫做a的
算术平方根, 0的算术平方根
是0
求一个非负数的
算术平方根
应
用
用计算器求一个数
的算术平方根
算术平方根的实
际应用
性
质
算术平方根的
双重非负性:
± ≥0
(a ≥0)
第2课时
算术平方根
小结
知识点一 算术平方根的概念
正数 a 的正的平方根叫做 a 的算术平方根,用 Nhomakorabea
表示.
[点拨] 算术平方根的双重非负性: 是一个非负数,
而被开方数 a 也是一个非负数,因此 具有双重非负性,即
a≥0, ≥0.
第2课时
算术平方根
知识点二
算术平方根的性质
一下,用 25 块某种正方形的地板砖正好铺满客厅,请你计算一下
这种正方形地板砖的边长.
第2课时
算术平方根
[解析] 根据题意可知,25 块这种正方形地板砖的面积
6.1.1 算术平方根(第一课时)(课件)七年级数学下册(人教版)

−0.3 2 =0.3.
迁移应用
1.计算:(1) 9 =_____;
(4) (−6)2 =_____;
(2) 0.25=_____;
.
(3)﹣
64
=______;
−
49
(5) 36+ 16- 25=_____.
2.已知 + 4=3,则x=______.
3.若单项式2xmy3与3xym+n是同类项,则 2 + 的值为______.
解:因为(x-2)2+ + 1+|z-3|=0,
(x-2)2≥0, + 1≥0,|z-3|≥0,
所以(x-2)2=0, + 1=0,|z-3|=0.
所以x-2=0,y+1=0,z-3=0.
所以x=2,y=-1,z=3.
所以(x+3y)z=[2+3×(-1)]3=(-1)3=-1.
迁移应用
所以|3x-3|=0, − 2 =0.
所以3x-3=0,y-2=0,即x=1,y=2.
所以x+4y=1+4×2=9.
因为 9=3,所以x+4y的算术平方根为+ + 3=0,求a(b+c)的值.
解:因为(a+1)2+|b-2|+ + 3=0,
所以a+1=0,b-2=0,c+3=0,
4.若4是3x-2的算术平方根,则x的值是______.
迁移应用
5.求下列各数的算术平方根:
121
(2) ;
100
(1)0.64;
算术平方根课件

直接开平法
对于形如a^(1/2)的算术平方根, 可以直接开平方得到结果。
迭代法
通过不断逼近的方式求得算术平方 根的值。
算术平方根的运算性质
非负性
有序性
算术平方根的结果总是非负的,即对 于任意实数a,其算术平方根√a≥0。
对于任意两个实数a和b(a≥0,b≥0 ),如果a≥b,那么√a≥√b。
唯一性
进行因式分解或化简。
几何学
在几何学中,算术平方根用于计 算图形的边长、面积和体积等, 例如,求圆的半径、矩形的宽或
长等。
数学分析
在数学分析中,算术平方根用于 研究函数的单调性、极值和积分
等。
算术平方根在物理中的应用
力学
在力学中,算术平方根用于计算速度、加速度和力的关系,例如 ,根据牛顿第二定律计算物体的加速度。
在此添加您的文本16字
题目:计算 $sqrt{25}$。
在此添加您的文本16字
答案:5
在此添加您的文本16字
解析:同样根据算术平方根的定义,$sqrt{25}$ 的解为 5 。
进阶练习题
题目:计算 $sqrt{16}$。
解析:进阶题目需要理解平方根的性质,$sqrt{16}$ 的 解为 4。 答案:9
电磁学
在电磁学中,算术平方根用于计算与电场、磁场相关的物理量,例 如,计算带电粒子的洛伦兹力。
热学
在热学中,算术平方根用于计算热量、温度和压力等物理量的关系 ,例如,计算热容和热传导系数。
算术平方根在日常生活中的应用
1 2 3
建筑学
在建筑学中,算术平方根用于计算建筑物的横梁 、立柱和地基等结构的尺寸和强度。
03
答案
约等于 1.73205(四舍五入到小数点后五位 )
《平方根》课件PPT1

只有非负数才有算 术平方根
25 我们看到,±3的平方等于 9,9 的平方根是±3,
5
0.09 0.3
121 11
2
0 0 3 3
获取新知 知识点一:平方根的概念
思考 所以平方与开平方互为逆运算.
因为(±11)2=121,所以121的平方根是_____.
问 题 一个正数的两个平方根,
C.1
如 果 一 D.-3或1
解:(1)因为62=36,所以 =6;
出它们的算术平方根. 例3 一个正数的两个平方根分别是2a+1和a-4,求这个数.
(3)因为
,所以
.
所以可以借助算术平方根来
25 09 ,
, 0, 2,
.
-36 , 0.09 , , 0 , 知识点一:平方根的概念
(3)因为(±0.
121
2,
32 .
“± ”的意义是( )
(3)因为( 7 )2 49 ,所以 49 7 .
39
93
例3 一个正数的两个平方根分别是2a+1和a-4,求这个数.
解:由于一个正数的两个平方根是2a+1和a-4, 则有2a+1+a-4=0,即3a-3=0,解得a=1. 所以这个数为(2a+1)2=(2+1)2=9.
题目改为:2a+1和a-4是 一个正数的两个平方根, 是否答案照旧呢?
记作 a
a﹙a≥0﹚的平方根表示为 a
例题讲解
例2 求下列各式的值:
(1) 36; (2) 0.81; (3) 49 . 9
解:(1)因为62=36,所以 36 =6;
算术平方根是平方根中正的那个, 同时正数平方根两个互为相反数,
所以可以借助算术平方根来 解决平方根问题
七年级数学下册教学课件《算术平方根》

(2) 9 3; (3) 22 2. 25 5
3. (1)若一个数的算术平方根是 13 ,则这个数 是___1_3___.
4
(2)① 16 =___4__, 16的算术平方根是___2___;
② ( - 5)2 =___5___,( - 5)2 的算术平方根是 ___5___,(-5)2的算术平方根是____5___.
概念
提取 ( 0 )2 = 0 ,规定:0 的算术平方根是 0.
一般地,如果一个正数 x 的平方等于 a,
即 x2 = a,那么这个正数 x 叫做 a 的算术平
方根.
(非负数 x )2 = a
非负数 x 是非负数 a 的算术平方根
那么 1,9,16,36,4 的算术平方根是?
25
概念 提取
a 的算术平方根记为 a ,读作“根 号 a”,a 叫做被开方数.
(1)根据计算结果,回答 a2 一定等于 a 吗?你
发现其中的规律了吗?请你用自己的语言描述出来. (2)利用你总结的规律,计算:(3.14-)2 .
解:(1) a2 不一定等于a, a2 a .
(2)原式 = |3.14-π| = π-3.14 .
课堂总结
一般地,如果一个正数 x 的平方等于 a, 即 x2 = a,那么这个正数 x 叫做 a 的算术平
从
100 10
从
大 到
49 7 64 8
大 到
小
小
0.0001 0.1
被开方数越大,对应的算术平方根也越大.
若a b 0,则 a __>___ b.
对应训练
【选自教材P41练习 第1题】
1. 求下列各数的算术平方根: (1)0.0025;(2)81;(3)32.
3. (1)若一个数的算术平方根是 13 ,则这个数 是___1_3___.
4
(2)① 16 =___4__, 16的算术平方根是___2___;
② ( - 5)2 =___5___,( - 5)2 的算术平方根是 ___5___,(-5)2的算术平方根是____5___.
概念
提取 ( 0 )2 = 0 ,规定:0 的算术平方根是 0.
一般地,如果一个正数 x 的平方等于 a,
即 x2 = a,那么这个正数 x 叫做 a 的算术平
方根.
(非负数 x )2 = a
非负数 x 是非负数 a 的算术平方根
那么 1,9,16,36,4 的算术平方根是?
25
概念 提取
a 的算术平方根记为 a ,读作“根 号 a”,a 叫做被开方数.
(1)根据计算结果,回答 a2 一定等于 a 吗?你
发现其中的规律了吗?请你用自己的语言描述出来. (2)利用你总结的规律,计算:(3.14-)2 .
解:(1) a2 不一定等于a, a2 a .
(2)原式 = |3.14-π| = π-3.14 .
课堂总结
一般地,如果一个正数 x 的平方等于 a, 即 x2 = a,那么这个正数 x 叫做 a 的算术平
从
100 10
从
大 到
49 7 64 8
大 到
小
小
0.0001 0.1
被开方数越大,对应的算术平方根也越大.
若a b 0,则 a __>___ b.
对应训练
【选自教材P41练习 第1题】
1. 求下列各数的算术平方根: (1)0.0025;(2)81;(3)32.
算术平方根课件

思考
算术平方根有多种应用,以及与其他数学概念的联 系。我们还可以继续深入探究它们在物理、统计学 和工程学中的应用。
2
用幂运算估算
对于一个数字 x,其平方根可以通过 2^b(其中 b = log2(x) ⁄ 2)的方式来近似计 算。
3
牛顿-拉夫逊法
这个方法是通过反复运用平均数来逐步逼近平方根的。它比较适合用计算机来实 现。
算术平方根与代数平方根的比较
定义
代数平方根是指可以通过求 解方程 x²= a 来得到的数。算 术平方根是一个数的正平方 根。
反复操作,知道余数为0。此 时的答案即为平方根的结果。
78,538.24 8
853 -64 =789, 下一组为2。我 们将2并上789得到目前的余数 7892。 4
88.6
算术平方根的应用
博物馆展览
建筑行业
数学数值经常在展览中被展示, 并且算术平方根是计算这些数字 的一种方式。例如,一个人体重 的平方根可能会被用来计算药量。
建筑师和工程师经常需要测量物 体并计算其大小。平方根是计算 斜率或坡度的一种简单方法。
数据分析
平方根和其他数学概念被广泛用 于数据分析和统计学。它们可以 用来计算方差、标准差和协方差 等统计量。
总结和思考
总结
我们探讨了算术平方根的定义、符号和性质、估算 平方根的方法、算术平方根与代数平方根的比较、 计算平方根的步骤和示例、算术平方根的应用,并 总结了这一主题的要点。
算术平方根ppt课件
在这个课件中,我们将探索算术平方根的定义、符号和性质、估算平方根的 方法、算术平方根与代数平方根的比较、计算平方根的步骤和示例、算术平 方根的应用,并进行总结和思考。
算术平方根的定义