人教版八年级上册完全平方公式的综合应用(习题及答案)

合集下载

八年级数学上册《完全平方公式》练习题及答案解析

八年级数学上册《完全平方公式》练习题及答案解析

八年级数学上册《完全平方公式》练习题及答案解析学校:___________姓名:___________班级:____________一、单选题1.下列计算正确的是( )A .236a a a ⋅=B .()32639a a =C .2225420a a a ⋅=D .444235a a a +=2.若多项式294x mx -+是一个完全平方式,则m 的值为( )A .12B .12±C .6D .6±3.我们经常利用完全平方公式以及变形公式进行代数式变形.已知关于a 的代数式2A a a =+,请结合你所学知识,判断下列说法正确的有( )个①当2a =-时,2A =;①存在实数a ,使得104A +<; ①若10A -=,则2213a a +=;①已知代数式A 、B 、C 满足A B -=B C -=22218A B C AB AC BC ++---=.A .4B .3C .2D .14.阅读材料:我们把形如2ax bx c ++的二次三项式(或其中一部分)配成完全平方式的方法叫做配方法.配方法的基本形式就是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2(1)3x -+,2(2)2x x -+,2213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方.则下列说法正确的个数是( ) ①2(2)2x x +-和2(31)x ++都是224x x ++不同形式的配方①22(1)4x k x --+是完全平方式,则k 的值为3 ①23534b b +-有最小值,最小值为2 A .0 B .1 C .2 D .35.小亮想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2m ,当他把绳子的下端拉开8m 后,下端刚好接触到地面,则学校旗杆的高度为( )A .10mB .12mC .15mD .18m6.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是( )A .1B .3C .4D .8二、填空题7.若m ,n 是关于x 的方程x 2-3x -3=0的两根,则代数式m 2+n 2-2mn =_____.8.若x =3是关于x 的一元一次方程mx ﹣n =3的解,则代数式10﹣3m +n 的值是___.9.如果用公式222()2a b a ab b +=++计算2()a b c ++,那么第一步应该写成2()a b c ++=________.三、解答题10.已知xy (1)求代数式2x 2+2y 2﹣ x y 的值;(2)2x y 的值.11.先阅读理解下面的例题,再按要求解答下列问题.例题:求代数式248y y ++的最小值.解:22248444(2)4y y y y y ++=+++=++①()220y +≥①()2244y ++≥①代数式248y y ++的最小值为4.(1)求代数式222x x --的最小值.(2)若269|1|0a a b -+++=,则b a =_________.(3)某居民小区要在一块一边靠墙(墙长15m )的空地上建一个长方形花园ABCD ,花园一边靠墙,另三边用总长为20m 的栅栏围成.如图,设()m AB x =,请问:当x 取何值时,花园的面积最大?最大面积是多少?12.图a 是由4个长为m ,宽为n 的长方形拼成的,图b 是由这四个长方形拼成的正方形,中间的空隙,恰好是一个小正方形.(1)用m 、n 表示图b 中小正方形的边长为 .(2)用两种不同方法表示出图b 中阴影部分的面积;(3)观察图b ,利用(2)中的结论,写出下列三个代数式之间的等量关系,代数式2()m n +,2()m n -,mn ;(4)根据(3)中的等量关系,解决如下问题:已知7a b +=,5ab =,求2()a b -的值.参考答案:1.D【分析】运用同底数幂的乘法,积的乘方,单项式乘单项式,合并同类项的运算法则分别对各项进行运算,即可得出结果【详解】解:A 、235a a a ⋅=,故A 不符合题意;B 、()326327a a =,故B 不符合题意; C 、2245420a a a =,故C 不符合题意;D 、444235a a a +=,故D 符合题意.故选:D .【点睛】本题主要考查同底数幂的乘法,积的乘方,单项式乘单项式,合并同类项,解答的关键是对这些知识点的运算法则的掌握与应用.2.B【分析】利用完全平方公式的结构特征解答即可.【详解】解:①9x 2-mx +4是一个完全平方式,①-m =±12,①m =±12.故选:B .【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.3.B【分析】利用代数式的值可判断①,利用完全平方公式可判断①,利用公式变形,整体代入求值可判断①,根据A B -=B C -=A C -=222A B C AB AC BC ++---配方得出(222111222++,然后代入求值可判断①. 【详解】解①当2a =-时,()2222A =--=,故①正确; ①存在实数a ,使得221110442A a a a ⎛⎫+=++=+≥ ⎪⎝⎭,故①不正确; ①若10A -=,①21a a +=,当0,01a =≠,①0a ≠, ①11a a-=-, 则2221123a a a a ⎛⎫+=-+= ⎪⎝⎭; 故①正确;①已知代数式A 、B 、C 满足A B -=B C -=①()()A C A B B C -=-+-=则222A B C AB AC BC ++--- =()22212222222A B C AB AC BC ++---=()()()222111222A B B C A C -+-+-=(222111222++ =18;故①正确,①正确的个数有3个,故选B .【点睛】本题考查代数式求值,完全平方公式性质,二次根式的混合运算,掌握完全平方公式及其变形公式,和代数式求值方法是解题关键.4.C【分析】①各式化简得到结果,比较即可作出判断;①利用完全平方公式的结构特征判断即可;①原式配方后,求出最小值,即可作出判断.【详解】解:①①(x +2)2-2x= x 2+2x +4,(x +1)2+3= x 2+2x +4,①(x +2)2-2x 和(x +1)2+3都是x 2+2x +4不同形式的配方,符合题意;①x 2-2(k -1)x +4是完全平方式,则k -1=2或k -1=-2,即k =3或-1,不符合题意;①原式=34(b 2-4b +4)+2=34(b -2)2+2,当b =2时,取得最小值,最小值为2,符合题意. 故选:C .【点睛】此题考查了配方法的应用,以及偶次方的非负性,熟练掌握完全平方公式是解本题的关键.5.C【分析】根据题意设旗杆的高AB 为x m ,则绳子AC 的长为(x +2)m ,再利用勾股定理即可求得AB 的长,即旗杆的高.【详解】解:根据题意画出图形如下所示:则BC =8m ,设旗杆的高AB 为x m ,则绳子AC 的长为(x +2)m ,在Rt①ABC 中,AB 2+BC 2=AC 2,即x 2+82=(x +2)2,解得x =15,故AB =15m ,即旗杆的高为15m .故选:C .【点睛】此题考查了学生利用勾股定理解决实际问题的能力,在应用勾股定理解决实际问题时,勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.6.C【分析】根据运算程序代值求解得到输出结果的规律求解即可.【详解】解:把x =2代入得:2÷2=1,把x =1代入得:1+5=6,把x =6代入得:6÷2=3,把x =3代入得:3+5=8,把x =8代入得:8÷2=4,把x =4代入得:4÷2=2,把x =2代入得:2÷2=1,……以此类推,可知每6个一循环,且输入次数与输出结果的对应规律是:61n +对应1;62n +对应6;63n +对应3;64n +对应8;65n +对应4;6n +6对应2;①202163365=⨯+,①经过2021次输出的结果是4.故选:C .【点睛】本题考查运算程序背景下的数字规律,根据运算程序算出输出结果,然后找到输出结果的规律是解决问题的关键.7.21【分析】先根据根与系数的关系得到m +n =3,m n =﹣3,再根据完全平方公式变形得到m 2+n 2﹣2mn =(m +n )2﹣4mn ,然后利用整体代入的方法计算.【详解】解:①m ,n 是关于x 的方程x 2-3x -3=0的两根,①m +n =3,m n =﹣3,①m 2+n 2﹣2mn =(m +n )2﹣4mn =32﹣4×(﹣3)=21.故答案为:21.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2b a =-,x 1x 2c a =. 8.7【分析】根据题意得到﹣3m +n =﹣3,然后代入代数式10﹣3m +n 求解即可.【详解】解:由题意得:3m ﹣n =3,①﹣3m +n =﹣3,①原式=10﹣3=7.故答案为:7.【点睛】此题考查了一元一次方程的解的含义以及解一元一次方程,解题的关键是熟练掌握一元一次方程的解的含义.9.22()2()a b c a b c ++++【分析】利用完全平方公式即可得.【详解】[]2222()()()2()a b c a b c a b c a b c ++=++=++++,故答案为:22()2()a b c a b c ++++.【点睛】本题考查了完全平方公式,熟记公式是解题关键.10.(1)27;(2)【分析】(1)求得x +y 和x y 的值,再利用完全平方公式变形求值即可;(2)根据x <1,先分母开方,约分,再代入求值即可;(1)解:原式=2x 2+4xy +2y 2﹣5xy =2(x +y )2﹣5xy ,①2x =2y ==,①x +y =24,(221xy ==,①原式=2×42﹣5×1=2×16﹣5=27;(2)解:①x =21,①x yx yx y =x y=1 =﹣1= 【点睛】本题考查了二次根式的性质,二次根式的混合运算,完全平方公式,掌握相关运算法则是解题关键.11.(1)−3; (2)13; (3)当x 取5时,花园的面积最大,最大面积是50m 2.【分析】(1)根据阅读材料将所求的式子变形为()213x --,再根据非负数的性质得出最小值; (2)根据阅读材料将所求的式子变形为()23|1|0a b -++=,再根据非负数的性质求出a 、b ,代入b a 计算即可;(3)先根据矩形的面积公式列出式子,再根据阅读材料将式子变形,求出最值即可.(1)解:()222213x x x --=--,①()210x -≥,①()2133x --≥-,①代数式222x x --的最小值为−3;(2)①()2269|1|3|1|0a a b a b -+++=-++=,①a −3=0,b +1=0,①a =3,b =−1, ①1133b a -==, 故答案为:13; (3)设()m AB x =,由题意可得,花园的面积为:()()()2222022202102550x x x x x x x -=-+=--=--+, ①()2250x --≤,①当x =5时,花园的面积取得最大值,此时花园的面积是50,BC 的长是20−2×5=10<15,答:当x 取5时,花园的面积最大,最大面积是50m 2.【点睛】本题考查了完全平方公式的变形及应用,非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.12.(1)m n -;(2)方法①:2()()()m n m n m n --=-,方法①:2()4m n mn +-;(3)22()()4m n m n mn -=+-;(4)29.【分析】(1)根据图形即可得出图b 中小正方形的边长为m n -;(2)直接利用正方形的面积公式得到图中阴影部分的面积为2()m n -;也可以用大正方形的面积减去4个长方形的面积得到图中阴影部分的面积为2()4m n mn +-;(3)根据图中阴影部分的面积是定值得到等量关系式;(4)利用(3)中的公式得到22()()4a b a b ab -=+-.【详解】解:(1)图b 中小正方形的边长为m n -.故答案为m n -;(2)方法①:2()()()m n m n m n --=-;方法①:2()4m n mn +-;(3)因为图中阴影部分的面积不变,所以22()()4m n m n mn -=+-;(4)由(3)得:22()()4a b a b ab -=+-,7a b +=,5ab =,2()a b ∴-222a ab b =-+2()4a b ab =+-2745=-⨯4920=-29=.【点睛】本题考查了完全平方公式的几何背景,列代数式,可以根据题中的已知数量利用代数式表示其他相关的量.。

人教版八年级上册数学 14.2.2完全平方公式 同步习题(含解析)

人教版八年级上册数学 14.2.2完全平方公式 同步习题(含解析)

14.2.2完全平方公式同步习题一.选择题(共10小题)1.计算:(2x﹣y)2=()A.4x2﹣4xy+y2B.4x2﹣2xy+y2C.4x2﹣y2D.4x2+y22.若a﹣b=5,ab=﹣6,则a2﹣3ab+b2的值为()A.13B.19C.25D.313.若x2+y2=(x+y)2+A=(x﹣y)2﹣B,则A、B的数量关系为()A.相等B.互为相反数C.互为倒数D.无法确定4.若x+y=6,x2+y2=20,求x﹣y的值是()A.4B.﹣4C.2D.±25.计算(x+3y)2﹣(x﹣3y)2的结果是()A.12xy B.﹣12xy C.6xy D.﹣6xy6.若(ax+3y)2=4x2+12xy+by2,则a,b的值分别为()A.a=4,b=3B.a=2,b=3C.a=4,b=9D.a=2,b=9 7.小淇将(2019x+2020)2展开后得到a1x2+b1x+c1;小尧将(2020x﹣2019)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则a1﹣a2的值为()A.﹣1B.﹣4039C.4039D.18.下列等式成立的是()A.(a+1)2=(a﹣1)2B.(﹣a﹣1)2=(a+1)2C.(﹣a+1)2=(a+1)2D.(﹣a﹣1)2=(a﹣1)29.设m=xy,n=x+y,p=x2+y2,q=x2﹣y2,其中,①当n=3时,q=6.②当p=时,m=.则下列正确的是()A.①正确②错误B.①正确②正确C.①错误②正确D.①错误②错误10.如果(x+3)2=x2+ax+9,那么a的值为()A.3B.±3C.6D.±6二.填空题(共5小题)11.已知a,b满足a﹣b=1,ab=2,则a+b=.12.计算(a﹣2b)2﹣2a(3a﹣4b)的结果是.13.已知(2020+x)(2018+x)=55,则(2020+x)2+(2018+x)2=.14.用简便方法计算:10.12﹣2×10.1×0.1+0.01=.15.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出如图,此表揭示了(a+b)n (n为非负整数)展开式的各项系数的规律,例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1;…根据以上规律,(a+b)5展开式共有六项,系数分别为.拓展应用:(a﹣b)4=.三.解答题(共3小题)16.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.17.利用整式乘法公式计算:(1)2012;(2)19992﹣1998×2000.18.同学们知道,完全平方公式是:(a+b)2=a2+b2+2ab,(a﹣b)2=a2+b2﹣2ab,由此公式我们可以得出下列结论:ab=[a+b)2﹣(a2+b2)]①(a﹣b)2=(a+b)2﹣4ab②利用公式①和②解决下列问题:已知m满足(3m﹣2020)2+(2019﹣3m)2=5,(1)求(3m﹣2020)(2019﹣3m)的值;(2)求(6m﹣4039)2的值.参考答案1.解:(2x﹣y)2=4x2﹣4xy+y2,故选:A.2.解:∵a﹣b=5,ab=﹣6,∴a2﹣3ab+b2=(a﹣b)2﹣ab=52﹣(﹣6)=31,故选:D.3.解:∵x2+y2=(x+y)2+(﹣2xy)=(x﹣y)2﹣(﹣2xy),∴A=﹣2xy,B=﹣2xy,∴A=B.故选:A.4.解:∵x+y=6,x2+y2=(x+y)2﹣2xy=20,∴2xy=62﹣20=16,∴xy=8,∴(x﹣y)2=x2+y2﹣2xy=20﹣2×8=4,∴x﹣y=±2,故选:D.5.解:原式=x2+6xy+9y2﹣(x2﹣6xy+9y2)=x2+6xy+9y2﹣x2+6xy﹣9y2=12xy.故选:A.6.解:(ax+3y)2=4x2+12xy+by2,则a2x2+6axy+9y2=4x2+12xy+by2,故a2=4且6a=12,b=9,解得:a=2,b=9.故选:D.7.解:∵(2019x+2020)2展开后得到a1x2+b1x+c1;∴a1=20192,∵(2020x﹣2019)2展开后得到a2x2+b2x+c2,∴a2=20202,∴a1﹣a2=20192﹣20202=(2019+2020)(2019﹣2020)=﹣4039,故选:B.8.解:A、(a+1)2≠(a﹣1)2,原等式不成立,故此选项不符合题意;B、(﹣a﹣1)2=(a+1)2,原等式成立,故此选项符合题意;C、(﹣a+1)2≠(a+1)2,原等式不成立,故此选项不符合题意;D、(﹣a﹣1)2≠(a﹣1)2,原等式不成立,故此选项不符合题意;故选:B.9.解:当n=3时,即x+y=3,由可得,x﹣y=2,因此,x=,y=,∴q=x2﹣y2═﹣==6,因此①正确;当p=时,即x2+y2=,又∴x﹣y=2,∴x2﹣2xy+y2=4,∴﹣2xy=4,∴m=xy=,因此②正确;故选:B.10.解:∵(x+3)2=x2+6x+9,∴a=6.故选:C.11.解:因为a﹣b=1,ab=2,所以a2+b2=(a﹣b)2+2ab=12+2×2=1+4=5,所以(a+b)2=a2+b2+2ab=5+2×2=9,所以a+b=±3.故答案为:±3.12.解:(a﹣2b)2﹣2a(3a﹣4b)=a2﹣4ab+4b2﹣6a2+8ab=﹣5a2+4ab+4b2,故答案为:﹣5a2+4ab+4b2.13.解:∵(2020+x)(2018+x)=55,∴(2020+x)2+(2018+x)2=[(2020+x)﹣(2018+x)]2+2(2020+x)(2018+x)=22+2×55=114.故答案为114.14.解:原式=(10.1﹣0.1)2=102=100.故答案是:100.15.解:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5.(a﹣b)4=a4﹣4a3b+6a2b2﹣4ab3+b4.故答案为:1 5 10 10 5 1,a4﹣4a3b+6a2b2﹣4ab3+b4.16.解:①∵x+y=5,xy=3,∴x2+5xy+y2=(x+y)2+3xy=52+3×3=34;②∵x+y=5,xy=3,∴x2+y2=(x+y)2﹣2xy=52﹣2×3=19,∴x4+y4=(x2+y2)2﹣2x2y2=192﹣2×32=343.17.解:(1)原式=(200+1)2=2002+2×200×1+12=40401;(2)原式=19992﹣(1999﹣1)(1999+1)=19992﹣19992+1=1.18.解:(1)设3m﹣2020=x,2019﹣3m=y,∴x2+y2=5且x+y=﹣1,∴(3m﹣2020)(2019﹣3m)=xy=[(x+y)2﹣(x2+y2)]=﹣2;(2)(6m﹣4039)2=[(3m﹣2020)﹣(2019﹣3m)]2=(3m﹣2020)2+(2019﹣3m)2﹣2(2019﹣3m)(3m﹣2020)=x2+y2﹣2xy=5+4=9.。

人教版八年级数学上册完全平方公式(1)

人教版八年级数学上册完全平方公式(1)

3.已知
求下列式子的值:
1、完全平方公式:(a+b)2= a2 +2ab+b2 (a-b)2= a2 - 2ab+b2
2、注意:项数、符号、字母及其指数;
3、公式的逆向使用;a2 +2ab+b2 = (a+b)2 4、解题时常用结论:a2 - 2ab+b2= (a-b)2
(-a-b)2 =(a+b)2
= [ (a+b) +c ]2 = (a+b)2 +2 (a+b)c +c2 = a2+2ab +b2 +2ac +2bc +c2 = a2+b2+c2 +2ab+2bc +2ac.
2.运用乘法公式计算:
(1) (a + 2b – 1 ) 2 ;
(2) (2x +y +z ) (2x – y – z )
5、已知:a+b=5,ab=-6,求下列各式的值
(1)(a+b)2
(2)a2+b2
深入探索----算一算
1. 计算:4x(x-1)2+x(2x+5)·(5-2x) 2. 当x=2,y=-1时。求代数式 (x+y)(x-y)+(x-y)2-(x2-3xy)的值。
3.用简便的方法计算:
1.23452+0.76552+2.469×0.7655
八年级 数学
第十五章 整式的乘法
例1 运用完全平方公式计算:
感受新知----看一看
(1)(x+2y)2 解: (x+2y)2= x2 +2•x •2y +(2y)2 =x2 +4xy +4y2

人教版八年级数学上册14.2.2《完全平方公式》同步训练习题

人教版八年级数学上册14.2.2《完全平方公式》同步训练习题

人教版八年级数学上册14.2.2《完全平方公式》同步训练习题(学生版)一.选择题(共8 小题)1.(2015•遵义)下列运算正确的是()A.4a﹣a=3 B.2(2a﹣b)=4a﹣b C.(a+b)2=a2+b2 D.(a+2)(a﹣2)=a2﹣4 2.(2015•诏安县校级模拟)若x2+ax+9=(x+3)2,则a 的值为()A.3 B.±3 C.6 D.±63.(2015•邵阳)已知a+b=3,ab=2,则a2+b2 的值为()A.3 B.4 C.5 D.64.(2015 春•灵璧县校级期末)设(5a+3b)2=(5a﹣3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab5.(2015 春•澧县期末)若a﹣b=1,ab=2,则(a+b)2 的值为()A.﹣9 B.9 C.±9 D.36.(2015 春•栾城县期末)小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结果为4a2■ab+9b2,则中间一项的系数是()A.12 B.﹣12 C.12 或﹣12 D.367.(2015•永州模拟)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac 的值为()A.0 B.1 C.2 D.38.(2015•黄冈中学自主招生)已知实数x、y、z 满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+ (2z﹣x)2 的最大值是()A.12 B.20 C.28 D.36二.填空题(共6 小题)9.(2015•太原一模)计算(a﹣2)2 的结果是.10.(2015•南充一模)若x﹣= ,则x2﹣= .11.(2015•东营模拟)已知(x﹣1)2=ax2+bx+c,则a+b+c 的值为.12.(2015 春•江都市期末)若m=2n+3,则m2﹣4mn+4n2 的值是.13.(2015 春•扬州校级期末)已知a>b,ab=2 且a2+b2=5,则a﹣b= .14.(2015 春•金堂县期末)在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3 这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a+b)5= ,并说出第7 排的第三个数是.三.解答题(共4 小题)15.(2015 春•江都市期末)已知:x+y=3,xy=﹣8,求:(1)x2+y2(2)(x2﹣1)(y2﹣1).16.(2015 春•乐平市期中)思考:“两个相邻整数的平均数的平方”与“两个相邻整数的平方数的平均数”是否相等?如果不相等,那么他们又相差多少呢?17.(2014 秋•蓟县期末)已知a,b 是有理数,试说明a2+b2﹣2a﹣4b+8 的值是正数.18.(2015 春•苏州期末)小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm,它们的面积的差为40cm2,则这两个正方形的边长差为.探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为x m,宽为y m,(1)用含x、y 的代数式表示正方形的边长为;(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.人教版八年级数学上册14.2.2《完全平方公式》同步训练习题(教师版)一.选择题(共8 小题)1.(2015•遵义)下列运算正确的是()A.4a﹣a=3 B.2(2a﹣b)=4a﹣b C.(a+b)2=a2+b2 D.(a+2)(a﹣2)=a2﹣4选D2.(2015•诏安县校级模拟)若x2+ax+9=(x+3)2,则a 的值为()A.3 B.±3 C.6 D.±6考点:完全平方公式.专题:计算题.分析:根据题意可知:将(x+3)2 展开,再根据对应项系数相等求解.解答:解:∵x2+ax+9=(x+3)2,而(x+3)2=x2+6x+9;即x2+ax+9=x2+6x+9,∴a=6.故选C.点评:本题主要考查完全平方公式的应用,利用对应项系数相等求解是解题的关键.3.(2015•邵阳)已知a+b=3,ab=2,则a2+b2 的值为()A.3 B.4 C.5 D.6考点:完全平方公式.分析:根据完全平方公式得出a2+b2=(a+b)2﹣2ab,代入求出即可.解答:解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选C点评:本题考查了完全平方公式的应用,注意:a2+b2=(a+b)2﹣2ab.4.(2015 春•灵璧县校级期末)设(5a+3b)2=(5a﹣3b)2+A,则A=()A.30ab B.60ab C.15ab D.12ab考点:完全平方公式.专题:计算题.分析:已知等式两边利用完全平方公式展开,移项合并即可确定出A.解答:解:∵(5a+3b)2=(5a﹣3b)2+A∴A=(5a+3b)2﹣(5a﹣3b)2=(5a+3b+5a﹣3b)(5a+3b﹣5a+3b)=60ab.故选B点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.5.(2015 春•澧县期末)若a﹣b=1,ab=2,则(a+b)2 的值为()A.﹣9 B.9 C.±9 D.3考点:完全平方公式.专题:计算题.分析:先根据完全平方公式得到(a+b)2=(a﹣b)2+4ab,然后利用整体代入的方法进行计算.解答:解:∵a﹣b=1,ab=2,∴(a+b)2=(a﹣b)2+4ab=12+4×2=9.故选B.点评:本题考查了完全平方公式:(a±b)2=a2±2ab+b2.6.(2015 春•栾城县期末)小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把中间一项的系数染黑了,得到正确的结果为4a2■ab+9b2,则中间一项的系数是()A.12 B.﹣12 C.12 或﹣12 D.36考点:完全平方公式.分析:运用完全平方公式求出(2a±3b)2 对照求解即可.解答:解:由(2a±3b)2=4a2±12ab+9b2,∴染黑的部分为±12.故选:C.点评:本题主要考查完全平方公式,熟记完全平方公式是解题的关键.7.(2015•永州模拟)已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac 的值为()A.0 B.1 C.2 D.3考点:完全平方公式.专题:计算题.分析:观察知可先把多项式转化为完全平方形式,再代入值求解.解答:解:由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选D.点评:本题考查了完全平方公式,属于基础题,关键在于灵活思维,对多项式扩大2 倍是利用完全平方公式的关键.8.(2015•黄冈中学自主招生)已知实数x、y、z 满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+ (2z﹣x)2 的最大值是()A.12 B.20 C.28 D.36考点:完全平方公式;代数式求值.专题:计算题.分析:由题意实数x、y、z 满足x2+y2+z2=4,可以将(2x﹣y)2+(2y﹣z)2+(2z﹣x)2,用x2+y2+z2 和(xy+yz+xz)表示出来,然后根据完全平方式的基本性质进行求解.解答:解:∵实数x、y、z 满足x2+y2+z2=4,∴(2x﹣y)2+(2y﹣z)2+(2z﹣x)2=5(x2+y2+z2)﹣4(xy+yz+xz)=20﹣2[(x+y+z)2﹣(x2+y2+z2)]=28﹣2(x+y+z)2≤28∴当x+y+z=0 时(2x﹣y)2+(2y﹣z)2+(2z﹣x)2 的最大值是28.故选C.点评:此题主要考查完全平方式的性质及代数式的求值,要学会拼凑多项式.二.填空题(共6 小题)9.(2015•太原一模)计算(a﹣2)2 的结果是a2﹣4a+4 .考点:完全平方公式.分析:根据完全平方公式计算即可.解答:解:(a﹣2)2=a2﹣4a+4,故答案为:a2﹣4a+4点评:此题考查完全平方公式,关键是完全平方公式的形式计算.10.(2015•南充一模)若x﹣=,则x2﹣= ±.考点:完全平方公式;平方差公式.分析:根据完全平方公式,先将原式两边平方,求出x+,再根据平方差公式把要求的式子进行变形,代入计算即可.点评:本题考查的是完全平方公式和平方差公式的应用,正确把代数式应用完全平方公式和平方差公式进行变形是具体点关键.11.(2015•东营模拟)已知(x﹣1)2=ax2+bx+c,则a+b+c 的值为 0 .考点:完全平方公式.分析:将x=1 代入已知等式中计算即可求出a+b+c 的值.解答:解:将x=1 代入得:(1﹣1)2=a+b+c=0,则a+b+c=0.故答案为:0.点评:此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.(2015 春•江都市期末)若m=2n+3,则m2﹣4mn+4n2 的值是 9 .考点:完全平方公式.专题:计算题.分析:原式利用完全平方公式分解后,把已知等式变形后代入计算即可求出值.解答:解:∵m=2n+3,即m﹣2n=3,∴原式=(m﹣2n)2=9.故答案为:9点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.13.(2015 春•扬州校级期末)已知a>b,ab=2 且a2+b2=5,则a﹣b= 1 .考点:完全平方公式.专题:计算题.分析:由a 大于b,得到a﹣b 大于0,利用完全平方公式化简(a﹣b)2,把各自的值代入计算,开方即可求出值.解答:解:∵a>b,即a﹣b>0,ab=2 且a2+b2=5,∴(a﹣b)2=a2+b2﹣2ab=5﹣4=1,则a﹣b=1,故答案为:1点评:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.14.(2015 春•金堂县期末)在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3 这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a+b)5= a5+5a4b+10a3b2+10a2b3+5ab4+b5 ,并说出第7 排的第三个数是21 .考点:完全平方公式;规律型:数字的变化类.分析:观察图表寻找规律:三角形是一个由数字排列成的三角形数表,它的两条斜边都是数字1 组成,而其余的数则是等于它“肩”上的两个数之和.解答:解:(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;第7 排的第三个数是21,故答案为:a5+5a4b+10a3b2+10a2b3+5ab4+b5;21点评:考查了完全平方公式问题,利用学生解决实际问题的能力和阅读理解能力,找出本题的数字规律是正确解题的关键.三.解答题(共4 小题)15.(2015 春•江都市期末)已知:x+y=3,xy=﹣8,求:(1)x2+y2(2)(x2﹣1)(y2﹣1).考点:完全平方公式.专题:计算题.分析:(1)原式利用完全平方公式变形,将已知等式代入计算即可求出值;(2)原式利用多项式乘以多项式法则计算,整理后将各自的值代入计算即可求出值.解答:解:(1)∵x+y=3,xy=﹣8,∴原式=(x+y)2﹣2xy=9+16=25;(2)∵x+y=3,xy=﹣8,﹣∴原式=x 2y 2﹣(x 2+y 2)+1=64﹣25+1=40.点评: 此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.16.(2015 春•乐平市期中)思考:“两个相邻整数的平均数的平方”与“两个相邻整数的平方 数的平均数”是否相等?如果不相等,那么他们又相差多少呢?考点: 完全平方公式.分析: 设这两个整数分别为 a 、a+1,则依据题意得到代数式,通过作差来比较它们的大 小.解答: 解:设这两个整数分别为 a 、a+1,则( )2﹣[ ]= ]2=﹣ .即它们不相等,且它们又相差﹣ .=﹣[点评: 本题考查了完全平方公式.根据题中的信息列出代数式是解题的关键.17.(2014 秋•蓟县期末)已知 a ,b 是有理数,试说明 a 2+b 2﹣2a ﹣4b+8 的值是正数. 考点: 完全平方公式;非负数的性质:偶次方.分析: 先把常数项 8 拆为 1+4+3,在分组凑成完全平方式,从而判断它的非负性. 解答: 证明:原式=a 2+b 2﹣2a ﹣4b+1+4+3=a 2﹣2a+1+b 2﹣4b+4+3=(a ﹣1)2+(b ﹣2)2+3,∵(a ﹣1)2≥0;(b ﹣2)2≥0;∴(a ﹣1)2+(b ﹣2)2+3≥3.∴a2+b2﹣2a﹣4b+8 的值是正数.点评:主要考查了完全平方式的运用,解题的关键要利用完全平方式的非负性来判断,并通过添项凑完全平方式.18.(2015 春•苏州期末)小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm,它们的面积的差为40cm2,则这两个正方形的边长差为2cm .探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为x m,宽为y m,(1)用含x、y 的代数式表示正方形的边长为;(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.考点:完全平方公式.分析:探究一:根据平方差公式进行解答;探究二:(1)根据正方形周长与边长的关系,即可解答;(2)作差进行比较,即可解答.解答:解:探究1:设两个正方形的边长分别为a,b,则a+b=20,a2﹣b2=40(a+b)(a﹣b)=4020(a﹣﹣b)=40,a﹣b=2(cm),故答案为:2cm.点评:本题考查了平方差公式和完全平分公式,解决本题的关键是熟记公式.。

人教版八年级数学上《完全平方公式》拔高练习

人教版八年级数学上《完全平方公式》拔高练习

《完全平方公式》拔高练习一、选择题(本大题共5小题,共25.0分)1.(5分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例,这个三角形给出了(a+b)n(n=1,2,3,4,5,6)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应着(a+b)2=a2+2ab+b2展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着(a+b)4=a4+4a3b+6a2b2+4ab3+b4展开式中各项的系数,等等.有如下三个结论:①当a=1,b=1时,代数式a4+4a3b+6a2b2+4ab3+b4的值是1.②当a=﹣1,b=2时,代数式a4+4a3b+6a2b2+4ab3+b4的值是1③当代数式a4+4×3a3+6×9a2+4×27a+81的值是1时,a的值是﹣2或﹣4.上述结论中,所有正确结论的序号为()A.①②B.②C.③D.②③2.(5分)已知x+y=4,xy=3,则x2+y2的值为()A.22B.16C.10D.43.(5分)已知x+y=﹣4,xy=2,则x2+y2的值()A.10B.11C.12D.134.(5分)若a=2017×2018﹣1,b=20172﹣2017×2018+20182,则下列判断结果正确的是()A.a<b B.a>b C.a=b D.无法判断5.(5分)利用乘法公式计算(3a+b)2等于()A.3a2+b2B.9a2+b2C.9a2+3ab+b2D.9a2+6ab+b2二、填空题(本大题共5小题,共25.0分)6.(5分)已知(x+y)2=25,x2+y2=15,则xy=.7.(5分)已知a+b=6,ab=3,则﹣ab=.8.(5分)若a+b=5,ab=3,则3a2+3b2=.9.(5分)计算1012=.10.(5分)已知(x+y)2=25,(x﹣y)2=9,则x2+y2=.三、解答题(本大题共5小题,共50.0分)11.(10分)已知x2+y2=19,x﹣y=5,求下列各式的值.(1)xy;(2)x+y.12.(10分)阅读:已知a+b=﹣4,ab=3,求a2+b2的值.解:∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.请你根据上述解题思路解答下面问题:(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.(2)已知a﹣c﹣b=﹣10,(a﹣b)•c=﹣12,求(a﹣b)2+c2的值.13.(10分)阅读下列计算过程:99×99+199=992+2×99+1=(99+1)2=1002=104(1)计算:999×999+1999====;9999×9999+19999====(2)猜想9999999999×9999999999+19999999999等于多少?写出计算过程.14.(10分)若x+y=5,xy=4.(1)求x2+y2的值;(2)求x﹣y的值.15.(10分)已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.《完全平方公式》拔高练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”(如图)就是一例,这个三角形给出了(a+b)n(n=1,2,3,4,5,6)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应着(a+b)2=a2+2ab+b2展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着(a+b)4=a4+4a3b+6a2b2+4ab3+b4展开式中各项的系数,等等.有如下三个结论:①当a=1,b=1时,代数式a4+4a3b+6a2b2+4ab3+b4的值是1.②当a=﹣1,b=2时,代数式a4+4a3b+6a2b2+4ab3+b4的值是1③当代数式a4+4×3a3+6×9a2+4×27a+81的值是1时,a的值是﹣2或﹣4.上述结论中,所有正确结论的序号为()A.①②B.②C.③D.②③【分析】依据(a+b)4=a4+4a3b+6a2b2+4ab3+b4,即可代入a,b的值,得到代数式a4+4a3b+6a2b2+4ab3+b4的值.【解答】解:∵(a+b)4=a4+4a3b+6a2b2+4ab3+b4,∴当a=1,b=1时,代数式a4+4a3b+6a2b2+4ab3+b4的值是16,故①错误;当a=﹣1,b=2时,代数式a4+4a3b+6a2b2+4ab3+b4的值是1,故②正确;当代数式a4+4×3a3+6×9a2+4×27a+81的值是1时,(a+3)4=1,∴a的值是﹣2或﹣4,故③正确.故选:D.【点评】本题考查了完全平方公式,(a+b)n展开后各项是按a的降幂排列的,系数依次是从左到右(a+b)n﹣1系数之和,它的两端都是由数字1组成的,而其余的数则是等于它肩上的两个数之和.2.(5分)已知x+y=4,xy=3,则x2+y2的值为()A.22B.16C.10D.4【分析】根据完全平方公式得出x2+y2=(x+y)2﹣2xy,代入求出即可.【解答】解:∵x+y=4,xy=3,∴x2+y2=(x+y)2﹣2xy=42﹣2×3=10.故选:C.【点评】本题考查了完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.3.(5分)已知x+y=﹣4,xy=2,则x2+y2的值()A.10B.11C.12D.13【分析】先根据完全平方公式进行变形,再整体代入求出即可.【解答】解:∵x+y=﹣4,xy=2,∴x2+y2=(x+y)2﹣2xy=(﹣4)2﹣2×2=12,故选:C.【点评】本题考查了对完全平方公式的应用,能正确根据公式进行变形是解此题的关键.4.(5分)若a=2017×2018﹣1,b=20172﹣2017×2018+20182,则下列判断结果正确的是()A.a<b B.a>b C.a=b D.无法判断【分析】根据完全平方公式得到b=20172﹣2017×2018+20182=(2017﹣2018)2+2017×2018=1+2017×2018,再与a=2017×2018﹣1比较大小即可求解.【解答】解:∵a=2017×2018﹣1,b=20172﹣2017×2018+20182=(2017﹣2018)2+2017×2018=1+2017×2018,∴2017×2018﹣1<1+2017×2018,∴a<b.故选:A.【点评】考查了完全平方公式,解决本题的关键是利用完全平方公式计算b得到b=1+2017×2018.5.(5分)利用乘法公式计算(3a+b)2等于()A.3a2+b2B.9a2+b2C.9a2+3ab+b2D.9a2+6ab+b2【分析】依据完全平方公式进行计算即可.【解答】解:原式=(3a)2+2•3a•b=b2=9a2+6ab=b2.故选:D.【点评】本题主要考查的是完全平方公式的应用,熟练掌握公式是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)已知(x+y)2=25,x2+y2=15,则xy=5.【分析】把第一个等式左边利用完全平方公式化简,将第二个等式代入计算即可求出所求.【解答】解:把(x+y)2=25,化简得:x2+y2+2xy=25,将x2+y2=15代入得:15+2xy=25,解得:xy=5,故答案为:5【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.(5分)已知a+b=6,ab=3,则﹣ab=12.【分析】先把a+b=6两边乘方,再把ab=3代入即可求解.【解答】解:∵a+b=6,∴(a+b)2=a2+2ab+b2=36,∵ab=3,∴a2+2×3+b2=36,解得a2+b2=36﹣6=30.所以:,故答案为:12.【点评】本题是对完全平方公式的考查,学生经常漏掉乘积二倍项而导致出错.8.(5分)若a+b=5,ab=3,则3a2+3b2=57.【分析】首先根据完全平方公式将a2+b2用(a+b)与ab的代数式表示,然后把a+b,ab 的值整体代入计算.【解答】解:∵a+b=5,ab=3,∴3a2+3b2=3(a+b)2﹣6ab,=3×52+6×3,=57.【点评】本题考查了完全平方公式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.解此题的关键是要了解a2+b2与(a﹣b)2之间的联系.9.(5分)计算1012=10201.【分析】根据完全平方公式解答即可.【解答】解:1012=(100+1)2=10000+200+1=10201,故答案为:10201.【点评】此题考查完全平方公式,关键是根据完全平方公式解答.10.(5分)已知(x+y)2=25,(x﹣y)2=9,则x2+y2=17.【分析】已知等式利用完全平方公式化简,相加即可求出所求.【解答】解:∵(x+y)2=x2+2xy+y2=25①,(x﹣y)2=x2﹣2xy+y2=9②,∴①+②得:2(x2+y2)=34,则x2+y2=17,故答案为:17【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)已知x2+y2=19,x﹣y=5,求下列各式的值.(1)xy;(2)x+y.【分析】(1)根据完全平方公式,即可解答.(2)根据完全平方公式,即可解答.【解答】解:(1)x﹣y=5,(x﹣y)2=52x2﹣2xy+y2=252xy=(x2+y2)﹣252xy=19﹣252xy=﹣6xy=﹣3.(2)(x+y)2=x2+2xy+y2=19+2×(﹣3)=13,x+y=±.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.12.(10分)阅读:已知a+b=﹣4,ab=3,求a2+b2的值.解:∵a+b=﹣4,ab=3,∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.请你根据上述解题思路解答下面问题:(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.(2)已知a﹣c﹣b=﹣10,(a﹣b)•c=﹣12,求(a﹣b)2+c2的值.【分析】(1)由于(a﹣b)2=(a+b)2﹣4ab,故采用整体代入法求解;(2)根据完全平分公式,即可解答.【解答】解:(1)∵a﹣b=﹣3,ab=﹣2,∴(a+b)(a2﹣b2)=(a+b)2(a﹣b)=[(a﹣b)2+4ab](a﹣b)=[(﹣3)2+4×(﹣2)]×(﹣3)=﹣3.(2)(a﹣b)2+c2=[(a﹣b)﹣c]2+2(a﹣b)c=(﹣10)2+2×(﹣12)=76.【点评】本题考查了完全平方公式,关键是要灵活应用完全平方公式及其变形公式.13.(10分)阅读下列计算过程:99×99+199=992+2×99+1=(99+1)2=1002=104(1)计算:999×999+1999=9992+2×999+1==(999+1)2=10002=106;9999×9999+19999=99992+2×9999+1=(9999+1)2=100002=108(2)猜想9999999999×9999999999+19999999999等于多少?写出计算过程.【分析】(1)根据99×99+199=992+2×99+1=(99+1)2=1002=104所示规律,通过变形,将999×999+1999和9999×9999+19999化为完全平方的形式,即可轻松计算;(2)根据(1)总结的规律,列出完全平方式计算.【解答】解:(1)根据99×99+199=992+2×99+1=(99+1)2=1002=104所示规律,得999×999+1999=9992+2×999+1=(999+1)2=10002=106;9999×9999+19999=99992+2×9999+1=(9999+1)2=100002=108.(2)根据(1)中规律,9999999999×9999999999+19999999999=(9999999999+1)2=100000000002=1020.【点评】此题是一道规律探索题,以完全平方公式为依托,展现了探索发现的过程:由特殊问题找到一般规律,再利用规律解题.14.(10分)若x+y=5,xy=4.(1)求x2+y2的值;(2)求x﹣y的值.【分析】(1)先依据完全平方公式得到x2+y2=(x+y)2﹣2xy,然后代入计算即可;(2)先求得(x﹣y)2的值,然后,再利用平方根的定义求解即可.【解答】解:(1)当x+y=5,xy=4时,x2+y2=(x+y)2﹣2xy=52﹣2×4=25﹣8=17.(2)∵(x﹣y)2=x2+y2﹣2xy=17﹣2×4=9,∴x﹣y=±3.【点评】本题主要考查的是完全平方公式的应用,利用完全平方公式对所求代数式进行适当的变形是解题的关键.15.(10分)已知(x+y)2=9,(x﹣y)2=25,分别求x2+y2和xy的值.【分析】直接利用完全平方公式将原式变形,进而得出答案.【解答】解:∵(x+y)2=9,(x﹣y)2=25,∴两式相加,得(x+y)2+(x﹣y)2=2x2+2y2=34,则x2+y2=17;两式相减,得(x+y)2﹣(x﹣y)2=4xy=﹣16,则xy=﹣4.【点评】此题主要考查了完全平方公式的运用,正确将已知条件变形是解题的关键.。

八年级数学上册完全平方公式同步练习含解析

八年级数学上册完全平方公式同步练习含解析

完全平方公式一、单选题(共12小题)1.已知x+=6,则x2+=()A.38B.36 C。

34 D。

32【答案】C【详解】把x+=6两边平方得:(x+)2=x2++2=36,则x2+=34,故选:C.【名师点睛】本题考查了分式的混合运算以及完全平方公式,熟练掌握运算法则及公式是解本题的关键.2.如果多项式p=a2+2b2+2a+4b+2008,则p的最小值是() A.2005B.2006C.2007D.2008【答案】A【解析】p=a2+2b2+2a+4b+2008,=(a2+2a+1)+(2b2+4b+2)+2005,=(a+1)2+2(b+1)2+2005,当(a+1)2=0,(b+1)2=0时,p有最小值,最小值最小为2005.故选A.3.已知(m-n)2=36,(m+n)2=4000,则m2+n2的值为( )A.2016 B.2017 C.2018 D。

4036【答案】C【解析】∵,∴,∴,∴。

故选C.4.若有理数a,b满足a2+b2=5,(a+b)2=9,则-4ab的值为()A.2B.-2C.8D.-8【答案】D【解析】(a+b)²=9,即a²+b²+2ab=9,又a²+b²=5,则2ab=9—5=4,所以—4ab=4×(—2)=-8.故选:D。

5.将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0。

5+0。

52D.9.52=92+9×0.5+0.52【答案】C【详解】9。

52=(10﹣0.5)2=102﹣2×10×0.5+0.52,或9.52=(9+0。

5)2=92+2×9×0.5+0.52,观察可知只有C选项符合,故选C.【名师点睛】本题考查的是完全平方公式,完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.6.已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±【答案】C【解析】∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a—b)2=a2-2ab+b2=1,∴a—b=±1,故选:C.7.(2019·耒阳市冠湘中学初二月考)已知,则的值是().A.2 B.3 C.4 D.6【答案】C【解析】∵a+b=2,∴a2—b2+4b=(a—b)(a+b)+4b,=2(a-b)+4b,=2a—2b+4b,=2(a+b),=2×2,=4.故选C.本题考查了代数式求值的方法,同时还利用了整体思想.8.若等式x2+ax+19=(x﹣5)2﹣b成立,则a+b的值为()A.16B.﹣16C.4D.﹣4【答案】D【解析】已知等式整理得:x2+ax+19=(x-5)2—b=x2—10x+25-b,可得a=—10,b=6,则a+b=—10+6=-4,故选:D.9.若x+y+3=0,则x(x+4y)-y(2x—y)的值为A.3B.9C.6D.—9【答案】B【详解】∵x+y+3=0,∴x+y=﹣3,∴x(x+4y)﹣y(2x﹣y)=x2+4xy﹣2xy+y2=(x+y)2=9.故选B.【名师点睛】此题主要考查了单项式乘以多项式以及完全平方公式,正确将原式变形是解题关键.10.如图,边长为a,b的长方形的周长为13,面积为10,则a3b+ab3的值为()A。

完全平方公式的综合应用(习题及答案)

完全平方公式的综合应用(习题及答案)

完全平方公式的综合应用(习题) 例题示范例1:已知x = 2,求x2 ^2,x4•丄的值.x x x【思路分析】观察题目特征(已知两数之差和两数之积1x 1,所求为两数的平方和),x判断此类题目为“知二求二”问题;1“x”即为公式中的a,“ - ”即为公式中的b,根据他们之间的关系可得:x2 1x —x1将X-— =2,x 2 2x 丄;xi 1 )=X —x1x - =1代入求解即可;x同理,X4•[二x2x4I即可求解.【过程书写】-2x2•丄,将所求的X2•厶的值及x2 x例2: 若x2 -2x + y2 +6y +10 =0,贝U x= _____ ,y= _______ .【思路分析】此题考查完全平方公式的结构,“首平方,尾平方,二倍乘积放中央”.观察等式左边,x2 -2x以及y2 6y均符合完全平方式结构,只需补全即可,根据“由两边定中间,由中间凑两边”可配成完全平方式,得到(x-1)2• (y • 3)2 = 0 . 根据平方的非负性可知:(x -1)2 =0且(y 3)^0,从而得到x=1,厂-3 .巩固练习1.若(a—2b)2=5,ab =1,则a2+4b2 =________ ,(a + 2b)2= ____ .2.已知x • y =3,xy =2,求x2 y2,x4 y4的值.1 13. 已知a2 -3a •仁0,求a2•盲,a^ —的值.a a4. (1)若x2+mxy + 9y2是完全平方式,则m= _________ .(2)若9x2-kxy+16y2是完全平方式,则k= __________ .5. 多项式4x2 4加上一个单项式后,能使它成为一个整式的平方,则可以加上的单项式共有_______ ,分别是____________2 2 a6. 若a +4b -6a-4b+10 = 0 ,贝U b = _________ .7. 当a为何值时,a2 -8a 14取得最小值,最小值为多少?8. 求x2 4y^4x 4y 8 的最值.思考小结1. 两个整数a,b (a z b)的“平均数的平方”与他们“平方数的平均数”相等吗?若不相等,相差多少?2. 阅读理解题: 若x 满足(210 _x)(x_200) =一204,试求(210 _x)2 (x — 200)2的值. 解:设210-x=a, x-200=b,则ab=- 204,且 a b = (210 _x) (x 一200) =10 ,由(a b)2 = a2 2ab b2得,a2 b2 =(a b)2 -2ab = 102 -2 (-204) =508 ,即(210 -x)2 (x-200)2的值为508.根据以上材料,请解答下题:若x满足(2015 -x)2 (2 013-x)2=4032,贝U (2 015 - x)(2 013 —x) = ____ .【参考答案】例题示范1例 1 .解:•/ x 2x --x丿=4 224 2X 2X 2 =34 1.913 2. 517 3. 747 4. ±i24 5. 52 -4x -4 8x -8x 6. 8 例2: 1 巩固练习 x 4 7. a =4时取得最小值,最小值为-28. 最小值为3思考小结1. (a -b)2 -3=36= 36-222. 2 0144。

八年级数学上册第14章知识专题3_完全平方公式的变形(人教版)

八年级数学上册第14章知识专题3_完全平方公式的变形(人教版)

《小专题完全平方公式的变形》
——教材P112习题T7的变式与应用教材母题:(教材P112习题T7)已知,求的值.
【变式1】(淄博中考)若,则=()
A.2
B.1
C.-2
D.-1
【变式2】(乐山中考)已知实数满足,则=()
A.1
B.-
C.
D.
【变式3】已知,则_________.
【变式4】阅读下列材料并解答后面的问题:利用完全平方公式
,通过配方可对进行适当的变形,如
或.
(1,则的值为_________.
(2)已知,求的值.
针对训练
1.已知都是正数,,则()
A.-3
B.3
C. 3
D.9
2.已知.
(1)求的值.
(2)若,求的值.
3.已知,求的值.
4.(1)请同学们观察用硬纸片拼成的图形(如图),根据图形的面积关系,写出一个代数恒等式:
(2)根据(1)题中的等量关系,解决如下问题:
①若m+n=8,mn=12,求m-n的值:
②已知,请利用上述等式求mn.
参考答案
教材母题
解:即
【变式1】B.
【变式2】C
【变式3】25
【变式4】解:(1)
.
针对训练
1.B
2.解:(1) .
.
3.解:
.
4.解:(2)①m-n=4或-4.②mn= 1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

完全平方公式的综合应用(习题)
➢ 例题示范
例1:已知12x x -
=,求221x x +,441x x +的值. 【思路分析】
① 观察题目特征(已知两数之差和两数之积11x x ⋅
=,所求为两数的平方和),判断此类题目为“知二求二”问题;
② “x ”即为公式中的a ,“
1x ”即为公式中的b ,根据他们之间的关系可得:2
221112x x x x x x
⎛⎫+=-+⋅ ⎪⎝⎭; ③ 将12x x -=,11x x
⋅=代入求解即可; ④ 同理,24224221112x x x x x x
⎛⎫+=+-⋅ ⎪⎝⎭,将所求的221x x +的值及2211x x ⋅=代入即可求解.
【过程书写】
例2:若2226100x x y y -+++=,则x =_______,y =________.
【思路分析】
此题考查完全平方公式的结构,“首平方,尾平方,二倍乘积放中央”.
观察等式左边,22x x -以及26y y +均符合完全平方式结构,只需补全即可,根据“由两边定中间,由中间凑两边”可配成完全平方式,得到22(1)(3)0x y -++=. 根据平方的非负性可知:2(1)0x -=且2(3)0y +=,从而得到1x =,3y =-. ➢ 巩固练习
1. 若2(2)5a b -=,1ab =,则224a b +=____,2(2)a b +=____.
2. 已知3x y +=,2xy =,求22x y +,44x y +的值.
3. 已知2310a a -+=,求221a a +,441a a
+的值.
4. (1)若229x mxy y ++是完全平方式,则m =________.
(2)若22916x kxy y -+是完全平方式,则k =_______.
5. 多项式244x +加上一个单项式后,能使它成为一个整式的平方,则可以加上
的单项式共有_______个,分别是__________
______________________________.
6. 若22464100a b a b +--+=,则a b -=______.
7. 当a 为何值时,2814a a -+取得最小值,最小值为多少?
8. 求224448x y x y +-++的最值.
➢ 思考小结
1. 两个整数a ,b (a ≠b )的“平均数的平方”与他们“平方数的平均数”相等
吗?若不相等,相差多少?
2. 阅读理解题:
若x 满足(210)(200)204x x --=-,试求22(210)(200)x x -+-的值. 解:设210-x =a ,x -200=b ,
则ab =-204,且(210)(200)10a b x x +=-+-=,
由222()2a b a ab b +=++得,
2222()2102(204)508a b a b ab +=+-=-⨯-=, 即22(210)(200)x x -+-的值为508. 根据以上材料,请解答下题:
若x 满足22(2015)(2013)4032x x -+-=, 则(2015)(2013)x x --=______.
【参考答案】
➢ 例题示范
例1.解:12x x -
=∵ 214x x ⎛⎫-= ⎪⎝
⎭∴ 2
221112426x x x x x x ⎛⎫+=-+⋅ ⎪⎝
⎭=+=∴
2
22136x x ⎛⎫+= ⎪⎝
⎭∴ 2422422111236234x x x x x x
⎛⎫+=+-⋅ ⎪⎝⎭=-=∴
例2:1 -3
➢ 巩固练习
1. 9
13 2. 5
17 3. 7 47
4. ±6
±24 5. 5 24x - -4 8x -8x 4x
6. 8
7. 4a =时取得最小值,最小值为-2
8. 最小值为3
➢ 思考小结
1. 不相等,相差2
()4
a b -
2. 2 014。

相关文档
最新文档