110kV智能变电站关键技术的研究
浅析智能电网中110kV智能变电站的相关技术

对 关键设备的运 行状况进 行实时监控 , 然后把获得 的数据通 过 网 络 系 统 进 行 收集 、 合 , 后 通 过 对 数据 的 分 析 、 掘 , 到 整 最 挖 达 对 整个 电力 系 统 运 行 的优 化 管 理 。
1 l0 V智能 变 电站 中智能化设 备 的特点 . k 2 1
10 V 智 能 变 电站 中智 能 化 设 备 是 附 加 了智 能 组 件 的 高 1k 压 设 备 , 能 组件 通 过 状 态 感 知 和 指 令 执 行 元 件 , 现 状 态 的 智 实 可 视 化 、 制 的 网 络 化 和 自动 化 , 智 能 化 变 电 站 提 供 最 基 础 控 为 的 功 能 支撑 。 中 1O V智 能 变 电站 中 智 能化 设 备 具有 思 维 判 其 k l 断、 有效执行 、 息交换和准确感知等特 点。另外还具有信息互 信
化 设 备 在 10 V智 能 变 电站 中 的 应用 主要 体现 在 变 压器 、 1k 电抗 器、 断路 器 、 I、 力 电缆 、 压 套 管 等 一 些 设 备 , 些 设 备 要 GS 电 高 这 么故障率相对较高, 要么故障影响较大 , 具有 自检测 的需求 。 另 方 面, 于这些设 备, 对 可用 的 自检 测 技 术 已有 一 定 的 研 究 基 础 和 应 用 经 验 , 备 进 行 智 能 化 应用 的基 本 条 件 。 具
指 导 运 行 和 维 护 , 少 运 行 维 护 人 员 的 工 作 量 , 低 运 行 管 理 减 降 成本 。
1 智 能化设 备在 1 0 V 能变 电站 中的应 用 - 3 1k 智
设 备 在 电 网 中 的重 要 性 、 障 影 响 及 其 发 生 几 率 、 障 是 故 故
110kV智能变电站技术方案研究

110kV智能变电站技术方案研究作者:郭瑛来源:《城市建设理论研究》2014年第08期摘要:智能变电站是智能电网的基础,是连接发电和用电的枢纽。
以某110KV变电站为模型,研究智能变电站系统配置方案,主要包括主站系统配置方案、间隔层设备配置方案、过程层设备配置方案以及对时系统方案。
本文的研究可为变电站智能化改造以智能变电站的运行维护提供技术支撑。
关键词:110kV智能变电站;技术方案;配置中图分类号: TM411 文献标识码: A1引言智能变电站是智能电网的重要基础和支撑。
设备智能化、通信网络化、模型和通信协议统一化以及运行管理自动化是智能变电站的基本特征。
本文研究的技术方案是以国家电网公司的《智能变电站技术导则》、《智能变电站继电保护技术规范》、《IEC 61850工程应用模型》等标准为设计依据。
根据智能电网功能需求、结合通用设计和“两型一化”标准化建设成果,以信息交互数字化、通信平台网络化和信息共享标准化为基础,严格遵循安全可靠、技术先进、资源节约、造价低廉的原则,实现信息化、自动化、互动化的智能变电站综合自动化系统。
本文以某110KV变电站实际工程为模型研究智能变电站的系统配置方案,该变电站总体工程概况如下:主变:两卷变,本期2台。
电气主接线:110kV户内GIS布置,内桥接线;10kV单母分段接线,开关柜安装。
110kV进线3回,PT间隔2个,分段间隔1个。
10kV出线20回,电容器组4台,所用变2台。
2整体技术方案站控层与间隔层保护测控等设备采用通信协议;间隔层与过程层合并单元通讯规约采用通信协议;间隔层与过程层智能终端采用GOOSE通信协议。
站控层设备、线路、内桥及主变间隔保护和过程层设备采用对时,间隔层常规保护设备采用码对时。
过程层与站控层的独立组网:站控层主要采用双星型100MB电以太网,各小室间交换机通过光纤进行级联;过程层采用单星型光以太网来传输信息。
信息的传输模式:保护装置的跳合闸信号采用光纤点对点方式直接接入就地智能终端;测控装置的开出信息、逻辑互锁信息、断路器机构位置和告警信息以及保护间的闭锁,启动失灵通过GOOSE网络进行传输。
探讨110kV智能变电站建设运行维护管理

探讨110kV智能变电站建设运行维护管理随着我国电力行业的不断发展,智能化建设已经成为电力行业的必然趋势。
在电力行业中,智能变电站是一个重要的组成部分。
110kV智能变电站建设运行维护管理,是现代电力行业的重点发展方向之一。
一、110kV智能变电站的优势1.高可靠性。
110kV智能变电站采用技术先进,设备先进的智能化控制系统,能够实现设备状态的实时监测和管理,避免了因设备故障而造成的停电现象。
2.节能减排。
110kV智能变电站通过自动化控制系统,实现设备的精细化控制,减少了电力系统的损耗,达到了节能减排的目的。
同时采用更加环保的技术和设备,实现了可持续发展。
3.智能化运营。
110kV智能变电站采用智能化控制系统,实现了设备的在线运营和管理,节省了人力资源的需求,提高了设备的运营效率和系统的可管理性。
110kV智能变电站建设需要从技术和设备两方面考虑:1.技术建设:建设技术含量高、自动化程度高的智能化控制系统,实现设备的在线监测和管理,提高设备的运行效率和可靠性。
2.设备建设:选择设备先进、技术成熟、质量可靠的电力设备,实现设备的精细化控制和减少电力系统的损耗。
110kV智能变电站建设的过程需要考虑到工程实施的问题,包括施工期、设备接口、材料选型等问题。
同时要考虑到成本的问题,从技术、设备和管理等方面提高建设的效率和成本控制。
110kV智能变电站在运行过程中需要做好以下工作:1.设备养护。
定期对设备进行检查、维护和养护,确保设备的性能稳定和可靠性。
2.设备故障处理。
及时处理设备故障,避免因设备故障而导致的线路停电。
3.运行参数监测。
定期对运行参数进行监测和分析,发现问题及时处理。
1.实行经济、高效、科学的管理制度和管理模式,确保设备的正常运作和管理效率的提高。
2.建立科学的数据分析和评估系统,对设备运行情况进行综合评估,提出改进意见和方案。
3.开展人员培训和技术支持,提高设备运维人员的技术水平,确保设备的安全、可靠、稳定运行。
智能变电站及技术特点分析

智能变电站及技术特点分析摘要:随着科技的进步和电力工业的发展,智能变电站已经成为了未来智能电网建设的重要组成部分,在全国范围内出现了建设和升级改造的热潮。
文章主要结合具体智能变电站改造项目进行分析一些关键技术特点,具有一定的借鉴价值。
关键词:智能变电站;关键技术;特点智能变电站与常规变电站相比,具有稳定性能和多样功能等特征,然而这些能够体现智能变电站特征的实现必然需要一些关键技术的支持,这也是目前智能变电站建设过程中所要面临的现实技术问题。
文章中对110kv智能变电站关键技术的特点进行了介绍分析。
1、智能设备与顺序控制实现智能化的高压设备操作宜采用顺序控制,满足无人值班及区域监控中心站管理模式的要求;可接收执行监控中心、调度中心和当地后台系统发出的控制指令,经安全校核正确后自动完成符合相关运行方式变化要求的设备控制,即应能自动生成不同的主接线和不同的运行方式下的典型操作票;自动投退保护软压板;当设备出现紧急缺陷时,具备急停功能;配备直观的图形图像界面,可以实现在站内和远端的可视化操作。
2、电气主接线电气主接线是变电站电气设计的首要部分,也是智能变电站建设的关键技术,在选择和应用时,简单地说主要考虑可靠性、灵活性、经济性、扩展性及先进性这几项要求。
常用的电气主接线方式主要包括单母线分段接线和桥式接线两种。
该变电站原110kV主接线为单母线分段接线方式(刀闸分段),35kV/lOkV为单母线分段接线方式。
虽然单母线分段接线方式(刀闸分段)清晰、简单、易扩建,且可对母线和母线隔离开关实施分段检修,能够很好地控制母线故障停电影响范围。
但用隔离开关进行分段,总体可靠性不高。
桥式接线突出的优点是断路器使用数量较少,4个回路只需3台断路器,是所有接线中断路器用量最少的,结构简单,投资较小,在110kV电气主接线中的使用较为广泛。
桥式接线又分为内外两种,内桥接线适用于线路较长,变压器小于线路故障概率,变压器又无需经常切除的输电线路。
110kV智能综合变电站保护与监控系统概述

110kV智能综合变电站保护与监控系统概述【摘要】本篇文章主要介绍了110kV智能综合变电站保护与监控系统的概述。
首先从系统组成、功能特点、应用范围、技术优势和实际应用案例等方面对该系统进行了详细阐述。
然后探讨了该系统在变电站中的重要性,并展望了未来发展趋势。
通过总结可以得出,110kV智能综合变电站保护与监控系统在电力行业具有重要的意义,未来将更加智能化和高效化。
通过本文的分析,读者可以深入了解这一系统的特点和优势,以及它在电力系统中的应用和前景。
【关键词】110kV、智能综合、变电站、保护、监控系统、系统组成、功能特点、应用范围、技术优势、实际应用案例、重要性、未来发展趋势、总结1. 引言1.1 110kV智能综合变电站保护与监控系统概述110kV智能综合变电站保护与监控系统是一种集保护、控制、监测、通信和辅助功能于一体的综合性电力系统。
随着电力系统的发展和变革,110kV智能综合变电站保护与监控系统的作用日益凸显。
本文将对该系统进行全面介绍和概述,以便读者更好地了解其工作原理和应用场景。
在当今电力系统中,110kV智能综合变电站保护与监控系统扮演着关键的角色,其功能和技术含量越来越丰富和高效。
通过本文的介绍,读者将对该系统的构成、特点、应用范围、技术优势和实际应用案例有更深入的了解,为今后在电力系统中的应用和推广提供参考和指导。
110kV智能综合变电站保护与监控系统的重要性和未来发展趋势也将在本文中进行分析和总结,以便读者更好地把握其发展方向和未来发展空间。
2. 正文2.1 系统组成110kV智能综合变电站保护与监控系统的系统组成是非常重要的,它直接影响到系统的正常运行和保护效果。
该系统的组成通常包括以下几个部分:1. 主控系统:主控系统是整个系统的核心,负责对整个变电站的运行状态进行监控和调度。
它采用先进的控制算法和数据处理技术,实现对各个设备的监控和保护。
2. 保护装置:保护装置是系统中非常关键的一部分,主要负责对电力设备进行实时保护。
智能变电站的关键技术及应用分析

2021.2 EPEM169专业论文Research papers 智能变电站的关键技术及应用分析肇庆市恒信电力物业装饰工程有限公司 刘裔年摘要:对智能变电站的定义与关键技术进行分析,探究其与常规变电站间的区别,突显智能化的优势与特点。
关键词:智能变电站;关键技术;应用措施1 智能变电站定义与相关技术此类变电站采用先进、低碳、可靠性强的智能设备,具有自动采集信息、监测信息、保护信息等功能,可满足全站信息数字化、信息共享标准化、通信平台网络化的要求,还可根据实际需求支持电网智能调节、实时自动控制、协同互动、辅助决策等,属于具备高级功能的变电站。
在以往常规变电站设备通讯中,存在通讯介质不统一、通讯协议不统一、通讯规约局限性等问题,各厂家自行扩充应用功能,无法相互操作,规约数据表达能力限制应用功能发展,且不支持装置间的通讯功能,而智能变电站便可有效克服上述问题。
智能变电站包含三层两网,同时也是二次设备网络化的主要体现,即站控层、间隔层与过程层。
其中,前两者以IEC61850标准的互联互操作为重心,实现数据共享;后者以稳定可靠为设计原则,屏柜内使用跳线,相同一小室内的平柜之间使用尾缆,跨小室使用光缆。
多模光纤主要是指可以传输多个光传导模,在局域网中应用广泛,接续简单,成本低廉。
在变电站中,适用于过程层组网、直连与光B码对时等;单模光纤只可传输基模,不存在模间时延差,宽带大于多模光纤,造价较高,可在大容量、长距离通信中应用。
在变电站中,此类光纤的作用在于线路保护的两侧间通信。
智能变电站的相关技术如下:设备状态可视化。
在不同监测项目中,可将实时监测结果展示出来,与相应项目的在线监测结果相匹配,利用鲜艳的颜色表示超过阀值的项目。
通过音效、曲线等将设备的综合状态展现出来,这样便可随时根据设备各项波形进行多阶段的功能对比。
智能预警。
针对站内数据、警告信息、故障信息进行全面处理,再根据系统对电网故障进行诊断,提供详细的影响度报告。
提升110kV智能化变电站改造可靠性的技术措施

提升110kV智能化变电站改造可靠性的技术措施摘要:智能化变电站是通过对智能设备的应用,在全站信息数字化以及通信平台网络化等技术的支持之下,所构建的具备自动完成信息采集以及测量等各项功能的变电站。
它能够实现对电网运行实时状态的有效控制和智能调节,可以在线完成分析决策和协同互动等各项操作,可以有效提高变电质量,保证电网的运行安全和稳定性。
为更好地开展智能化变电站改造,保证可靠性技术应用效果,需要明确智能变电自动化系统结构的基本情况。
本文对提升110kV智能化变电站改造可靠性的技术措施进行了简要分析。
关键词:110kV智能化变电站;改造可靠性;技术措施1 10kV智能变电站概述110kV智能变电站是指将信息化、智能化以及数字化技术融入变电设备中,实现对变电站的自动化管理。
在网络化、信息化管理方式的支持下,可保证变电设备自主实现数据收集、环境适应,提升其运行效率与稳定性。
智能变电站实现了传统变电站运行模式的技术升级,为数据共享提供保障,同时110kV智能变电站体现出更多的兼容性,进一步达到提高运行效率、降低运行成本、实现提质增效的目的。
2提升110kV智能化变电站改造可靠性的技术措施2.1更换可靠性低的设备就现阶段国内电子式互感器厂家整体情况来看,部分厂家还存在设计能力有限以及工艺控制没有达到标准要求等方面的问题,在进行检测试验装备过程中存在一定缺陷,导致电子式互感器故障率相对较高。
在该项问题没有得到妥善解决前,需要采用对电子组件和常规互感器设备进行智能化以及可视化处理的模式,通过科学设置变电站主变常规互感器与电子组件配置的方法,对可靠性降低的设备进行更换,保证系统整体运行质量,以便实现降低各种故障发生可能性。
变电站智慧运维管控平台变电站智慧运维管控平台整合变电站环境监控、动力监测、检修辅助、运行辅助、资产全寿命周期管理、智能视频管理等功能,为智慧变电站运行、检修及综合管理提供决策支撑。
变电站智慧运维管控平台有效提升智慧变电站运行、检修及远程综合管理自动化、可视化和互动化水平,实现变电站主动监测预警决策,是保证工厂安全供电的基础。
110kV智能变电站电气设计的特点分析

110kV智能变电站电气设计的特点分析智能变电站是指在传统变电站的基础上引入智能化技术,实现对变电站设备、运行状态和工作过程的智能监控、控制和管理。
110kV智能变电站电气设计具有以下特点:1. 高可靠性:智能变电站电气设计采用了先进的电气设备和网络通信技术,能够实时监测变电设备的工作状态和参数,及时发现故障并进行快速定位和处理,从而提高了变电站的可靠性和可用性。
2. 自动化程度高:智能变电站电气设计实现了对变电站设备的智能自动化控制,可以根据运行要求自动调节设备的运行状态和参数,实现对电网的自动化管理。
通过自动化控制,可以提高变电站的运行效率,降低人工操作的工作量。
3. 智能化监测与管理:智能变电站电气设计配备了大量传感器和监测仪器,能够实时监测变电设备的电流、电压、温度等参数,并将监测数据传输到监控中心进行分析和处理。
通过智能化监测与管理,可以实现对变电站设备的精细化管理,及时预防故障的发生,提高设备运行的安全性和稳定性。
4. 数据集成与共享:智能变电站电气设计采用了统一的数据接口和通信协议,能够实现不同设备之间的数据集成和共享。
通过数据集成与共享,可以实现变电站设备之间的协同工作和信息交换,提高变电站的整体运行效率。
5. 节能环保:智能变电站电气设计采用了节能环保的电气设备和技术,能够降低能源消耗和环境污染。
采用高效率的变压器和光伏发电系统,可以降低能源损耗;采用先进的监测系统和电力负荷管理技术,可以减少电网的负荷波动,提高电网的供电质量。
110kV智能变电站电气设计具有高可靠性、自动化程度高、智能化监测与管理、数据集成与共享以及节能环保等特点,能够提高变电站设备的运行效率和可靠性,实现对电网的智能化管理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
110kV智能变电站关键技术的研究
在110kV变电站中实现智能化,为我国电网的安全平稳运行创造了有利条件。
现阶段由于我国智能化技术还处于发展阶段,技术相对还不成熟,因此还需找出实际工作中存在的问题,实现技术上的突破。
标签:110kV智能变电站;特点;关键技术
Abstract:The 110KV substation,intelligent,for the security of our grid running smoothly to create a favorable condition. At this stage,given our intelligent technology is still in the development stage,the technology is not mature,it will also need to find out the actual problems in the work to achieve breakthroughs in technology.
Keywords :110kv smart substation; the characteristics of the key technology
一、智能变电站概述
变电站是连接电网的接点,具有多项功能,例如:传送电能、调整电压、和网络相接等。
现如今,我国已经积累了大量关于普通变电站与数字化变电站的经验和教训。
但是,智能变电站主要是以数字变电站为基础,以设备智能化、信息标准化等技术为特征的变电站。
1.1实现一次设备智能化
目前已大量投入使用的数字变电站的数字化表现在两次设备方面,但是,一次设备智能化却非常不明显,通常是将智能终端和断路器配合使用,这样一来,很难达到智能控制的最终目的。
1.2有效解决统一建模的问题
因当前数字变电站缺少规范的标准体系,所以,尽管是建立在IEC61850基础上,但是,不同的厂家对它的理解含义也各不相同,特别是在没有强制要求的情况下,其实现方法有很大差别,这样一来,使得变电站内的设备互联和操作存在巨大障碍。
1.3增强和站外的互动能力
到目前为止,数字变电站统一使用的规约是IEC61850,但是,变电站外通信使用的规约是是DNP3.0,然而,二者衔接问题却直接影响了变电站互动能力的提高。
尽管已进行了多次改进,但都未从根本上解决问题,只有从根本上解决了,才能满足智能变电站的要求,特别是变电站内部和外部通信设备的连接以及互动性的需求。
二、110kV智能变电站特点与网络结构改造
2.1 110kV智能变电站特点
智能变电站的特点表现在以下几个方面:(1)实现一次设备智能化,主要包含电流互感器、合并单元、智能终端和组件、监控设备等;(2)实现二次设备的网络化,这主要是指将整个变电站的设备分为3个等级层,站控层、间隔层以及过程层,与此同时,整个变电站都执行的是IEC61850规约,其中,站控层使用的是MMS网络,而间隔层和过程层都使用的是GOOSE网络与SMV网络,两个网络互补干扰,相互独立;(3)变电站的信息数字化;(4)可以共享信息;(5)实现自动化的运行与控制;(6)应用的互动性等。
通过上述这些特点的描述,整个变电站的信息朝着数字化与标准化的方向快速发展。
除此之外,在站控层中又建立了一个信息平台,通过此平台可以整合变电站的数据信息,进而形成多种应用。
2.2110kV智能变电站网络结构改造
智能变电站的设备层可以完成多个工作,例如:测量、控制、检测等。
然而,此项功能等同于数字变电站过程层与间隔层。
另外,智能变电站具有普通变电站所不具有的功能,例如:信息共享、监测设备状态、报警等,此功能等同于数字变电站的站控层。
由于目前智能变电站存在很多问题,因此,在对智能变电站网络结构加以改造时,必须要非常注意以下2个问题:(1)智能变电站网络结构冗余是非常重要的,通常会用在双星型结构中,运行方式是双网双工,这样一来,大大提高了网络冗余度,可以使网络无缝切换,有效避免了整个网络的同时运行。
(2)由于GOOSE信号与SMV信号不仅能组网,而且也能合并组网,为进一步提高智能变电站运行的可靠性,结合流量以及传输路径把网络结构分成多个子网。
结合以往的经验,使用组网形式,可提高网络运行的可靠性。
三、110kV智能变电站的关键技术探讨
3.1智能高压设备
智能变电站的最主要的特点就是智能高压设备的应用,应用此设备的明显特点不仅可靠性高,而且不需要进行维护,同时这也是智能变电站最主要的技术。
其中,智能高压设备主要由3部分组成,即高压设备、控制器、智能组件。
高压设备和控制器借助智能组件完成连接,这样一来,就具有了多种功能,例如:测量控制、检测、保护等。
技术特征表现在网络控制、状态检测等。
对于智能变电站的状态检修来说,高压设备状态检修大多数都是依靠人工检查、试验来完成的,比如:检查有无异常声音、绝缘试验、色谱检查等,将这些方法统称为人工检测方法或者是离线检测。
然而,这些方法都存在一定的缺陷和漏洞。
因此,在使用智能高压设备过程中,将离线检测转变为在线检测,及时掌握运行状态,如果出现系统故障,那么可以立即发出报警信号。
另外,在智能变电站中的断路器,要求不仅有断路器所有的功能,而且还需要有诊断与检测的功能。
如果有了检测功能,那么智能变电站中的断路器则不需要判断故障性质是瞬时性的还是永久性的,而是依据故障形式直接判断出是否进行再重合。
除此之外,智能高压设备利用了可视化技術,比如:安装移动探头、红外监测技术等。
针对不同的设备通过不同的检测手段进行检验。
3.2統一建模和信息平台的建立
统一建模和信息平台的建立是为改变以往变电站中存在的诸多问题,例如:系统较多、信息孤立等,这样做的目的是为建立一体化的监控系统。
此系统集能量采集、保护与管理信息为一体的功能体系,同时具有倒闸操作、五防闭锁程序化控制等,进而最终实现变电站运行与调度相互统一、监测运行状态等的最佳结合。
3.3网络化备自投的应用
现如今,智能变电站完成改变了传统变电站备自投的模式,广泛应用了网络化备自投,这样一来,可以和备用电源之间进行快速切换。
和传统的备自投装置相比,完全取消专用备自投装置和保护装置的连线,可减少重复采集信息的现象。
通过网络进行信息采集与传输,既能减少大量时间的消耗,又能提高备自投装置动作的准确性。
3.4网络化低频低压减载装置的应用
此技术的应用,是把变电站母线运行的一切信息借助网络进行采集和处理,以便作出准确的判断,通过对信息的整合与减载利用网络再发送到间隔层设备中完成执行操作。
和传统低周低压减载装置相比,能大大减少重复采集信息与定值分散整定的现象,这样一来,使装置动作既准确,又可减少整定交验工作任务。
三、结语
近几年来,我国经济和社会的迅猛发展带动电力事业取得了很大进步。
智能电网是一新技术,并且被列入到“十二五”规划中。
尽管到目前为止国家还没有制定出一套完善的智能电网的调控规划和体系,但是,我国电网总局已颁布了一部分智能电网规范标准。
从当前电网的发展状况来分析,今后电网必将朝着智能电网的方向快速发展,这已经得到国内和国外专家的肯定。
智能电网一不可缺少的部分就是智能变电站,涉及很多个技术领域,例如:自动化、网络通信、计算机等。
与此同时,智能电网的运行也是很重要的环节。
希望本文可以对未来110kV 智能变电站技术深入研究产生积极影响。
参考文献:
[1]冯众文.110kV智能变电站设计及其可靠性分析[J].商品与质量,2016,(26):199.
[2]陈祖宏.110kV智能变电站设计及其可靠性分析[J].通讯世界,2015,(5):149-150.
[3]张博.110kV智能变电站设计及其可靠性分析[J].科学与信息化,2018,(2):68-70.。