拉伸法测弹性模量实验报告
拉伸法测钢丝的弹性模量实验报告

拉伸法测钢丝的弹性模量实验报告拉伸法测钢丝的弹性模量实验报告引言:弹性模量是描述材料抵抗变形能力的重要指标之一。
在工程中,了解材料的弹性模量对于设计和计算结构的稳定性和可靠性至关重要。
本实验旨在通过拉伸法测定钢丝的弹性模量,并探讨实验结果的可靠性和误差来源。
实验原理:拉伸法是一种常用的测定材料弹性模量的方法。
根据胡克定律,当材料受到拉伸力时,其应变与应力呈线性关系。
应变可以通过测量材料的长度变化来计算,而应力则可以通过施加的拉力除以截面积来计算。
根据胡克定律的线性关系,可以得到材料的弹性模量。
实验步骤:1. 准备工作:清洁实验台、准备所需的钢丝样品和测量工具。
2. 测量钢丝的直径:使用卡尺或显微镜测量钢丝的直径,并记录下来。
为了提高测量的准确性,可以多次测量并取平均值。
3. 量取钢丝的长度:使用卡尺或显微镜测量钢丝的初始长度,并记录下来。
4. 固定钢丝样品:将钢丝样品固定在拉伸装置上,并确保样品的两端平整且垂直于拉伸方向。
5. 施加拉力:通过拉伸装置施加逐渐增加的拉力,同时记录下拉力和相应的伸长量。
6. 计算应变和应力:根据实验数据计算钢丝的应变和应力,并绘制应力-应变曲线。
7. 计算弹性模量:根据应力-应变曲线的斜率计算钢丝的弹性模量。
实验结果:根据实验数据计算得到的钢丝的弹性模量为XXX。
通过绘制应力-应变曲线可以看出,在小应力范围内,钢丝的应变与应力呈线性关系,符合胡克定律。
然而,在较大应力范围内,应变开始出现非线性变化,这可能是由于材料的屈服点或断裂点的影响。
实验讨论:在实验过程中,可能存在一些误差来源。
首先,测量钢丝直径的准确性会影响到应力的计算。
如果直径测量不准确,将导致应力的计算结果有一定的偏差。
其次,钢丝的固定和拉力的施加也可能引入误差。
如果钢丝没有完全固定或拉力施加不均匀,将导致实验结果的不准确性。
此外,钢丝在拉伸过程中可能发生局部塑性变形,也会对实验结果产生影响。
为了提高实验结果的准确性,可以采取一些改进措施。
拉伸法测弹性模量实验报告

拉伸法测弹性模量实验报告一、实验目的1、掌握拉伸法测量金属丝弹性模量的基本原理和方法。
2、学会使用光杠杆法测量微小长度变化。
3、学会使用游标卡尺、螺旋测微器等测量工具,提高实验操作技能。
4、学习数据处理和误差分析的方法,培养科学严谨的实验态度。
二、实验原理弹性模量是描述材料抵抗弹性变形能力的物理量。
对于一根长度为$L$、横截面积为$S$ 的金属丝,在受到沿其长度方向的拉力$F$ 作用时,金属丝会伸长$\Delta L$。
根据胡克定律,在弹性限度内,应力与应变成正比,即$F/S = E \cdot \Delta L/L$,其中$E$ 为弹性模量。
将上式变形可得:$E = FL/(S\Delta L)$由于金属丝的横截面积$S =\pi d^2/4$(其中$d$ 为金属丝的直径),且伸长量$\Delta L$ 通常很小,难以直接测量。
本实验采用光杠杆法来测量微小伸长量$\Delta L$。
光杠杆原理:光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的固定槽内,后尖足置于圆柱体小砝码上。
当金属丝伸长时,光杠杆后尖足随之下降,从而带动平面镜转动一个微小角度$\theta$。
通过望远镜和标尺,可以测量出平面镜转动前后标尺的读数变化$\Delta n$。
根据几何关系,有:$\Delta L = b\Delta n/2D$ (其中$b$ 为光杠杆常数,即前两尖足到后尖足的垂直距离;$D$ 为望远镜到平面镜的距离)将其代入弹性模量的表达式,可得:$E = 8FLD/(\pi d^2b\Delta n)$三、实验仪器1、杨氏模量测定仪:包括立柱、底座、金属丝、砝码托盘等。
2、光杠杆及望远镜尺组:用于测量微小长度变化。
3、游标卡尺:测量金属丝的长度。
4、螺旋测微器:测量金属丝的直径。
5、砝码若干:提供拉力。
四、实验步骤1、调节仪器调节杨氏模量测定仪的底座水平,使立柱垂直于底座。
将光杠杆放置在平台上,使其前两尖足位于固定槽内,后尖足置于圆柱体小砝码上,并调整光杠杆平面镜与平台垂直。
弹性模量的测定实验报告

弹性模量的测定实验报告弹性模量的测定实验报告引言:弹性模量是材料力学性质的一个重要参数,用于描述材料在受力后的变形程度。
本实验旨在通过测定金属材料的拉伸变形,计算其弹性模量,并探讨不同因素对弹性模量的影响。
实验装置与方法:实验中使用的装置主要包括拉伸试验机、测量仪器和金属试样。
首先,选择一根长度为L、直径为d的金属试样,并对其进行表面处理以确保试样表面光滑。
然后,在拉伸试验机上夹住试样的两端,使其处于拉伸状态。
通过加载装置施加拉力,同时使用测量仪器记录试样的变形程度。
实验步骤:1. 准备工作:清洁金属试样表面,确保试样无明显缺陷。
2. 安装试样:将试样放入拉伸试验机夹具中,调整夹具使试样两端固定。
3. 测量初始长度:使用游标卡尺等测量工具测量试样的初始长度L0。
4. 施加拉力:通过加载装置施加逐渐增加的拉力,同时记录下相应的拉伸变形量。
5. 测量最终长度:当试样断裂时,使用测量工具测量试样的最终长度L1。
6. 数据处理:根据测得的拉伸变形量和试样的几何参数,计算弹性模量。
结果与讨论:根据实验数据,我们计算得到了金属试样的弹性模量。
在本实验中,我们选择了不同材料的试样进行测试,包括铜、铝和钢等。
通过对比不同材料的弹性模量,我们可以发现不同材料具有不同的弹性特性。
此外,我们还探究了温度和应变速率对弹性模量的影响。
实验结果表明,随着温度的升高,金属材料的弹性模量会发生变化。
这是因为温度的变化会导致材料内部晶格结构的改变,进而影响材料的弹性性质。
另外,应变速率也会对弹性模量产生影响。
较高的应变速率会导致材料内部的位错运动增加,从而使材料的弹性模量降低。
结论:通过本实验,我们成功测定了金属材料的弹性模量,并探究了不同因素对弹性模量的影响。
实验结果表明,不同材料具有不同的弹性特性,且温度和应变速率对弹性模量有一定的影响。
这对于材料科学和工程应用具有重要的意义,可为材料选择和设计提供参考依据。
总结:本实验通过测定金属材料的拉伸变形,计算其弹性模量,并探讨了不同因素对弹性模量的影响。
拉伸法测弹性模量实验报告评分标准

较清晰
合格
不合格
15~13分
12~11分
10~6分
5~0
3.测量
正确利用测量仪器准确地测量出钢丝的直径D;分四步给分。
正确
较正确
合格
不合格
5分
4分
3分
2~0
正确测量出钢丝的原长L;分四步给分。
正确
较正确
合格
不合格
5分
4分
3分
2~0
③正确地来回添加砝码,并能从目镜中的标尺上正确读数;分四步给分。
正确
正确
较正确
合格
不合格
10~9分
8~7分
6~5分
4~0
《拉伸法测弹性模量》实验报告评分标准
一实验预习(20分)
学生进入实验室前应预习实验,并书写实验预习报告。预习报告应包括:①实验目的,②实验原理,③实验仪器,④实验步骤⑤实验数据记录表等五部分。以各项表述是否清楚、完整,版面是否整洁分三段给分。
好
较好
合格
20~18分
17~15分
14~12分
预习报告不合格者,不允许进行实验。该实验应重新预约,待实验室安排时间后进行实验(实验前还应预习实验)。
一实验操作部分(70分)
第一步:正确调整底座上的水平仪,正确放置砝码以及光杠杆平面镜。分四步给分。
准确
较准确
合格
不合格
10~9分
8~6分
5~3分
2~0
1、调节望远镜能从望远镜目镜中看清标尺读数
①调节目镜,看清十字叉丝;分四步给分。
清晰
较清晰
合格
不合格
5分
4分
3分
2~0
②利用调焦手轮调节望远镜物镜,能从望远镜目镜中看清标尺读数。分四步给分。
用拉伸法测金属丝的弹性模量实验报告

用拉伸法测金属丝的弹性模量实验报告用拉伸法测金属丝的弹性模量实验报告引言:弹性模量是描述材料抵抗形变的能力的物理量,对于金属材料的研究和应用具有重要意义。
本实验旨在通过拉伸法测量金属丝的弹性模量,探究金属丝的力学性质。
实验目的:1. 了解弹性模量的概念和意义;2. 掌握拉伸法测量金属丝弹性模量的实验方法;3. 分析金属丝的力学性质。
实验仪器与材料:1. 弹簧秤:用于测量金属丝的受力;2. 金属丝:选用直径均匀的金属丝,如铜丝、铁丝等;3. 千分尺:用于测量金属丝的长度。
实验原理:拉伸法是一种常用的测量金属丝弹性模量的方法。
当金属丝受到外力拉伸时,会发生形变,即金属丝的长度会发生变化。
根据胡克定律,金属丝的形变与受力之间存在线性关系,即形变量与受力成正比。
通过测量金属丝的形变量和受力,可以计算出金属丝的弹性模量。
实验步骤:1. 准备金属丝和弹簧秤;2. 用千分尺测量金属丝的初始长度,并记录;3. 将金属丝固定在实验台上,并将弹簧秤挂在金属丝上;4. 逐渐增加弹簧秤的负荷,记录每个负荷下金属丝的形变量和弹簧秤的读数;5. 按照一定的负荷间隔重复步骤4,直至金属丝断裂。
实验数据处理:根据实验记录的金属丝形变量和弹簧秤读数,可以绘制出金属丝的受力-形变曲线。
根据胡克定律的线性关系,可以通过线性拟合得到金属丝的弹性模量。
实验结果:通过实验测量和数据处理,得到金属丝的弹性模量为XXX GPa。
根据实验结果,可以得出金属丝具有较高的强度和抗变形能力,适用于承受大荷载的工程应用。
实验讨论:1. 实验误差分析:在实验过程中,由于实验条件和操作技巧等因素的影响,可能会导致实验结果存在一定误差。
例如,金属丝的初始长度测量可能存在一定误差,弹簧秤读数的精度也会影响实验结果的准确性。
2. 实验改进方案:为了提高实验结果的准确性,可以采取以下改进措施:提高测量仪器的精度、增加数据采集的次数、进行多次重复实验并取平均值等。
3. 实验应用展望:金属丝的弹性模量是材料力学性质的重要指标,对于工程设计和材料选择具有重要意义。
拉伸法测弹性模量实验报告

2.1拉伸法测弹性模量一、实验目的:(1)学习用拉伸法测量弹性模量的方法(2)掌握螺旋测微计和读数显微镜的使用(3)练习用逐差法处理数据二、实验原理(1)弹性模量及其测量方法长度为L、截面积为S的均匀细金属丝,沿长度方向受外力F后伸长δL。
单位横截面积上的垂直作用力F/S称为正应力,金属丝的相对伸长δL/L称作线应变。
实验得出,在弹性形变范围内,正应力与线应变成正比,即胡克定律:F S =EδLL式中比例系数E=F/S δL/L称作材料的弹性模量,表征材料本身的性质。
弹性模量越大的材料,要使它发生一定的相对型变所需的单位横截面积上的作用力也越大。
E的单位是Pa。
本实验测量钢丝的弹性模量,设钢丝的直径为D,则弹性模量可进一步表示为:E=4FL πD2δL实验中的测量方法是将钢丝悬挂于支架上,上端固定,下端加砝码对钢丝施力F,测出钢丝相应的伸长量δL,即可求出E。
钢丝长度L用钢尺测量,钢丝直径用螺旋测微计测量,力F由砝码的重力F=mg求出。
δL一般很小,约0.1mm量级,本实验用读数显微镜测量(也可用光杠杆等其它方法测量)。
通过多次测量并用逐差法处理数据达到减少随机误差的目的。
(2)逐差法处理数据本实验中测量10组数据,分成前后两组,对应项相减得到5个l i,l i=5δL,则:δL=15×5y i+5−y i5i=1这种方法称为逐差法。
其优点是充分利用了所测数据,可以减少测量的随机误差,也可以减少测量仪器带来的误差。
三、实验仪器支架:用以悬挂被测钢丝;读数显微镜:用以较准确的测量微小位移。
由物镜和测微目镜构成。
测微目镜鼓轮上有100分格,鼓轮转动一圈,叉丝移动1mm。
故分度值为0.01mm;底座:用以调节钢丝铅直;钢尺、螺旋测微计:测量钢丝的长度和直径。
四、实验步骤(1)调整钢丝竖直:钢丝下夹具上应先挂砝码钩,用以拉直钢丝。
调节底座螺钉使夹具不与周围支架碰蹭。
(2)调节读数显微镜:粗调显微镜高度,使之与钢丝下夹具的标记线同高,再细调读数显微镜。
用拉伸法测量金属丝的杨氏弹性模量实验报告

用拉伸法测量金属丝的杨氏弹性模量实验报告拉伸法测量金属丝的杨氏弹性模量实验报告
实验原理:
拉伸实验是指将弹性样品整体承受一直拉力F,而其同时受轴向拉力T的拉伸实验,
通过测量拉伸实验的样品的拉伸变形量,推知其伸长量与轴向荷载(T)之比,这一比值
就是杨氏弹性模量。
实验仪器和装置:
本实验使用的仪器和装置是:电子称、压迫力传感器、拉伸脉冲式扭矩传感器、电动
改变中心距、实验平台以及拉伸测量系统。
实验环境:
实验环境稳定,温度、湿度均在20℃时,室温保持在25℃以下,湿度保持在50%以下;光照明亮,可使测量精度更高。
实验方法:
1.选取合格的金属丝样品,将金属丝在两个支点上受上力,其中间部分悬空放置,应
用拉伸传感器,将力传感器的正负极接线联接到拉伸测量系统,以便测量拉伸时的变形量;
2.调节力传感器的拉伸力,测量金属丝在拉伸情况时的杨氏弹性模量;
3.如果所测量金属丝中受力跨度较短,可以适当增加测量力的大小,控制其变形量,
以测得最终结果;
4.在做精度处理时,应按试验标准及要求的容差,采取逐渐迭代的原则做精确的测量,充分检验该样品的杨氏弹性模量;
5.最后,将实验最终结果和测得的参数对比,进行分析,得出金属丝的杨氏弹性模量
大小,从而完成此次实验。
实验结论:
本次实验以拉伸法测量金属丝的杨氏弹性模量,由于采用了拉伸测量仪器和设备,对
金属丝进行严格控制,从而极大提高测量精度,最终杨氏弹性模量结果达到设计要求。
拉伸法测弹性模量 实验报告0204192300

大连理工大学大 学 物 理 实 验 报 告院(系) 材料学院 专业材料物理班级0705姓 名童凌炜学号 200767025 实验台号实验时间 2008 年 11 月 11 日,第12周,星期 二 第 5-6 节实验名称拉伸法测弹性模量教师评语实验目的与要求:1. 用拉伸法测定金属丝的弹性模量。
2. 掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3. 学会处理实验数据的最小二乘法。
主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置), 米尺, 螺旋测微器实验原理和内容: 1. 弹性模量一粗细均匀的金属丝, 长度为l , 截面积为S , 一端固定后竖直悬挂, 下端挂以质量为m 的砝码; 则金属丝在外力F=mg 的作用下伸长Δl 。
单位截面积上所受的作用力F/S 称为应力, 单位长度的伸长量 Δl/l 称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力F/S 和Δl/l 应变成正比, 即ll∆=E S F 其中的比例系数ll SF E //∆=称为该材料的弹性模量。
性质: 弹性模量E 与外力F 、物体的长度l 以及截面积S 无关, 只决定于金属丝的材料。
成绩教师签字实验中测定E , 只需测得F 、S 、l 和即可, 前三者可以用常用方法测得, 而的数量级l ∆l ∆很小, 故使用光杠杆镜尺法来进行较精确的测量。
2. 光杠杆原理光杠杆的工作原理如下: 初始状态下, 平面镜为竖直状态, 此时标尺读数为n 0。
当金属丝被拉长以l ∆后, 带动平面镜旋转一角度α, 到图中所示M’位置; 此时读得标尺读数为n 1, 得到刻度变化为。
Δn 与呈正比关系, 且根据小量01n n n -=∆l ∆忽略及图中的相似几何关系, 可以得到(b 称为光杠杆常数) n Bbl ∆⋅=∆2将以上关系, 和金属丝截面积计算公式代入弹性模量的计算公式, 可以得到nb D FlBE ∆=28π(式中B 既可以用米尺测量, 也可以用望远镜的视距丝和标尺间接测量; 后者的原理见附录。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大连理工大学大学物理实验报告院(系)材料学院专业材料物理班级0705成绩姓名童凌炜学号200767025实验台号实验时间2008 年11月11日,第 12 周,星期二第5-6节教师签字实验名称拉伸法测弹性模量教师评语实验目的与要求:1.用拉伸法测定金属丝的弹性模量。
2.掌握光杠杆镜尺法测定长度微小变化的原理和方法。
3.学会处理实验数据的最小二乘法。
主要仪器设备:弹性模量拉伸仪(包括钢丝和平面镜、直尺和望远镜所组成的光杠杆装置),米尺,螺旋测微器实验原理和内容:1.弹性模量一粗细均匀的金属丝,长度为 l,截面积为S,一端固定后竖直悬挂,下端挂以质量为m 的砝码;则金属丝在外力F=mg 的作用下伸长l 。
单位截面积上所受的作用力F/S 称为应力,单位长度的伸长量l/l 称为应变。
有胡克定律成立:在物体的弹性形变范围内,应力F/S 和l/l 应变成正比,即F E lS l其中的比例系数F / SEl / l称为该材料的弹性模量。
性质:弹性模量 E 与外力 F、物体的长度l 以及截面积S 无关,只决定于金属丝的材料。
实验中测定E,只需测得 F S l 和l 即可,前三者可以用常用方法测得,而l的数量级、、很小,故使用光杠杆镜尺法来进行较精确的测量。
2.光杠杆原理光杠杆的工作原理如下:初始状态下,平面镜为竖直状态,此时标尺读数为n0。
当金属丝被拉长l 以后,带动平面镜旋转一角度α ,到图中所示M ’位置;此时读得标尺读数为 n1,得到刻度变化为n n1 n0。
n 与l 呈正比关系,且根据小量忽略及图中的相似几何关系,可以得到lb( b 称为光杠杆常数)n2B将以上关系,和金属丝截面积计算公式代入弹性模量的计算公式,可以得到E 8FlB D 2b n(式中 B 既可以用米尺测量,也可以用望远镜的视距丝和标尺间接测量;后者的原理见附录。
)根据上式转换,当金属丝受力F i时,对应标尺读数为n i,则有8lBn i D 2bE Fi n0可见 F 和 n 成线性关系,测量多组数据后,线性回归得到其斜率,即可计算出弹性模量 E。
P.S. 用望远镜和标尺测量间距 B :已知量:分划板视距丝间距p,望远镜焦距f、转轴常数δ用望远镜的一对视距丝读出标尺上的两个读数N1 、N2 ,读数差为N 。
在几何关系上忽略数量级差别大的量后,可以得到x f1fN ,(f)。
N ,又在仪器关系上,有 x=2B,则Bp100p2p由上可以得到平面镜到标尺的距离 B 。
步骤与操作方法:1.组装、调整实验仪器调整平面镜的安放位置和俯仰角度以确保其能够正常工作。
调整望远镜的未知,使其光轴与平面镜的中心法线同高且使望远镜上方的照门、准星及平面镜位于同一直线上。
调节标尺,使其处于竖直位置。
通过望远镜的照门和准星直接观察平面镜,其中是否课件标尺的像来确定望远镜与平面镜的准直关系,以保证实验能够顺利进行。
调节望远镜,使其能够看清十字叉丝和平面镜中所反射的标尺的像,同时注意消除视差。
2.测量打开弹性模量拉伸仪,在金属丝上加载拉力(通过显示屏读数)当拉力达到10.00kg 时,记下望远镜中标尺的刻度值n1,然后以每次 1.00kg 增加拉力并记录数据,直到 25.00kg 止。
用钢尺单次测量钢丝上下夹头之间的距离得到钢丝长度l 。
用卡尺测量或者直接获得光杠杆常数b。
用望远镜的测距丝和标尺值,结合公式计算出尺镜距离B。
用螺旋测微器在不同位置测量钢丝直径8 次(注意螺旋测微器的零点修正)数据记录与处理:以下是实验中测得的原始数据:1. 钢丝的长度L=401.2 mm2.钢丝的直径n12345678 D(mm)0.8000.7990.7990.7960.7950.7940.7960.792(其中螺旋测微器的零点漂移值Δ=-0.01mm已包含)3. 由望远镜测得的差丝读数N1=44.8mm N2=63.8mm4.光杠杆常数(实验室给出) b=( 84.0 ±0.5) mm5.钢丝加载拉力及对应的标尺刻度n12345678 m(kg)10.0111.0012.0013.0114.0215.0016.0117.00 n i(mm)62.363.264.465.166.067.067.968.8 n910111213141516 m(kg)18.0119.0020.0021.0122.0022.9924.0025.01 n i(mm)69.770.771.872.573.474.275.376.1未加载拉力时,标尺读数为n0=53.4mm结果与分析:钢丝长度测量值的不确定度为i=0.5mm,钢丝长度为l=401.2 ±0.5mmn12345678 D(mm)0.8000.7990.7990.7960.7950.7940.7960.792平均值 =0.79638mmD i-D avg=0.003630.002630.00263-0.00037-0.00137-0.00237-0.00037-0.00437( D i)^2= 1.31E-05 6.89E-06 6.89E-06 1.41E-07 1.89E-06 5.64E-06 1.41E-07 1.91E-05 Sum= 5.39E-05n=8v=7Sd_avg=0.000980843平均值的实验标准差t 0.95= 2.36Ua=t0.95 *Sd0.00231479mmUb=0.005mmUD=0.005509832修约后的 U D=0.005mmD 的最终值D= 0.796±0.005mm尺镜距离 BN1=44.8mmN2=63.8mmN =N2-N1=19.0mmi=0.5mmN 的最终值 =19.0±0.5mm1f950.0mmB N =2 pB 的最终值B=950.0± 0.5mm光杠杆常数 b= 84.0±0.5 mm将加载拉力数据和相应的标尺读数转化为F以 N为单位,n i以 m 为单位,得到如下n12345678 F(N)98.098107.800117.600127.498137.396147.000156.898166.600 n i(m)0.06230.06320.06440.06510.06600.06700.06790.0688 n910111213141516 F(N)176.498186.200196.000205.898215.600225.302235.200245.098 n i(m)0.06970.07070.07180.07250.07240.07420.07530.0761对上表数据进行处理,使用 MLSX avg=171.543Y avg=0.069n12345678 X i -X avg-73.445-63.743-53.943-44.045-34.147-24.543-14.645-4.943 x i ^25394.14974063.15412909.83381939.95101166.0091602.3527214.472424.4320 x i*y i-4.575615-4.0285-3.47392-2.867321-2.25369-1.64437-0.994387-0.340069n910111213141516 X i -X avg 4.95514.65724.45734.35544.05753.75963.65773.555 x i ^224.5533214.831598.15101180.27461941.03032890.04354052.22965410.3564 x i*y i0.34537 1.03625 1.75602 2.490746 3.189735 3.988927 4.793381 5.597545 SUM((x i-x avg)*y i)= 3.020057425SUM((x i-x avg)^2)=32625.8246B=9.25665*10-5A=0.0534由以上数据可得:n i9.25665* 105F i-50.0534 ,即k=9.25665*10F 与 ni 的关系图及其二乘法线性回归如下图所示:ni(m)F-ni 关系图y = 9E-05x + 0.05330.07800.07600.07400.07200.07000.06800.06600.06400.06200.060050.000100.000150.000200.000250.000300.000F(N)结合以上有关数据,可以得到E8lB8 * 0.4012 * 0.95 1.9699968 * 1011 PaD 2 bk* (0.000796) 2 * 0.084 * (9.25665 * 10-5 )下面计算 E 的相关不确定度:相关量的值及其不确定度如下:D0.000796UD0.000005 l0.4012Ul0.0005 b0.084Ub0.0005 B0.95UB0.0005又已知UE(U L)2(U B)2(2U D)2(U b)2 E L B D b代入相关已知数据,可以得到 U E=2751552554.69 ,修约后为 U E=3*10 9得到 E 的最终结果为E= (1.97 ±0.03)*1011 Pa讨论、建议与质疑:1.光杠杆的测量原理为以下两个性质的组合:绝对光路可逆原理,几何上的相似三角形性质。
它利用光传播的直线性、可逆性,使人眼通过望远镜观测到的标尺读数(长度)与钢丝的型变量,在几何上通过相似三角形的关系联系起来,另外通过平面镜的反射性质,又再次将型变量在之前的基础上放大至两倍,综上起到放大微小变化量的结果。
放大倍数与光杠杆常数b,尺镜距离 B 有关(可以认为与这两者比例B/b 成正比关系)。
当系统给定的光杠杆常数 b 固定时,在可读数的范围内增加尺镜距离B,可以增大放大倍率从而提高尺镜法测量微小变化量的灵敏度。
2.在实验中测量一个物理量,需要综合考虑测量的方便程度和该物理量所需的精密程度。
在平衡这两者的基础上选择合适的实验仪器,因此在实验中,不同的物理量是用不同的测量仪器来测量的。
实验中测量误差最大的值为钢丝的长度,因为钢尺量程不够,是用两把钢尺重叠的方法测量,在读数时会造成钢尺位移;另外该物理量仅测量一次,都会造成产生较大的误差。
改进建议是是用较大量程的钢尺进行测量。
3.本实验的操作过程并不复杂,但是将微观尺度的化学键作用同宏观的金属丝形变联系起来,体现了物理学上用宏观体现微观性质的一种思想;另外实验中所是用的光杠杆尺镜测量法也提供了一种微小变量的较精确测量方法,值得学习和借鉴。
实验中的感受是,事先预习实验内容,操作时细心、稳当,都是保证实验快速成功的条件。