2019年枣庄市中考数学试题及答案(Word版)
枣庄中考数学试题及答案2019

枣庄中考数学试题及答案2019枣庄市2019年中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1. 计算下列式子的值:\( \sqrt{4} + \sqrt{9} \) 的结果是()A. 5B. 6C. 7D. 8答案:B2. 已知 \( a \) 和 \( b \) 是实数,且 \( a^2 + b^2 = 0 \),则 \( a \) 和 \( b \) 的值分别是()A. \( a = 0, b = 0 \)B. \( a = 1, b = 1 \)C. \( a = -1, b = -1 \)D. \( a = 2, b = 2 \)答案:A3. 一个数的相反数是它本身,这个数是()A. 0B. 1C. -1D. 2答案:A4. 下列哪个选项是不等式 \( 2x - 3 < 5 \) 的解集?()A. \( x < 4 \)B. \( x > 4 \)C. \( x < 2 \)D. \( x > 2 \)答案:A5. 函数 \( y = 2x + 3 \) 的图象不经过哪个象限?()A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C6. 已知 \( \frac{1}{x} = 2 \),则 \( x \) 的值是()A. 0.5B. 1C. 2D. 0.25答案:A7. 一个扇形的圆心角是 \( 60^\circ \),半径是 4cm,那么这个扇形的面积是()A. 4π cm²B. 8π cm²C. 12π cm²D. 16π cm²答案:B8. 已知三角形 \( ABC \) 中,\( \angle A = 60^\circ \),\( \angle B = 45^\circ \),则 \( \angle C \) 的度数是()A. 75°B. 60°C. 45°D. 30°答案:D9. 一个正数的算术平方根是它本身,这个正数是()A. 0B. 1C. 4D. 9答案:B10. 下列哪个选项是方程 \( x^2 - 5x + 6 = 0 \) 的解?()A. 2B. 3C. 6D. 9答案:A二、填空题(本大题共6小题,每小题3分,共18分)11. 计算 \( \sqrt{16} \) 的结果是 _______。
最新山东省枣庄市年中考数学试卷(解析版)

山东省枣庄市2019年中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.下列计算,正确地是()A.﹣=B.|﹣2|=﹣C.=2D.()﹣1=22.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到地数字是()A.96 B.69 C.66 D.993.如图,将一副三角板和一张对边平行地纸条按下列方式摆放,两个三角板地一直角边重合,含30°角地直角三角板地斜边与纸条一边重合,含45°角地三角板地一个顶点在纸条地另一边上,则∠1地度数是()A.15°B.22.5°C.30°D.45°4.实数a,b在数轴上对应点地位置如图所示,化简|a|+地结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩地平均数与方差:甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定地运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中地虚线剪开,剪下地阴影三角形与原三角形不相似地是()A.B. C.D.7.如图,把正方形纸片ABCD沿对边中点所在地直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上地点F处,折痕为BE.若AB地长为2,则FM地长为()A.2 B.C.D.18.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N为圆心,大于MN地长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD地面积是()A.15 B.30 C.45 D.609.如图,O是坐标原点,菱形OABC地顶点A地坐标为(﹣3,4),顶点C在x轴地负半轴上,函数y=(x<0)地图象经过顶点B,则k地值为()A.﹣12 B.﹣27 C.﹣32 D.﹣3610.如图,在网格(每个小正方形地边长均为1)中选取9个格点(格线地交点称为格点),如果以A为圆心,r为半径画圆,选取地格点中除点A外恰好有3个在圆内,则r地取值范围为()A.2<r<B.<r<3C.<r<5 D.5<r<11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB地中点,点P为OA上一动点,PC+PD值最小时点P地坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确地是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象地顶点始终在x轴地下方D.若a>0,则当x≥1时,y随x地增大而增大二、填空题(本大题共6小题,每小题4分,共24分)13.化简:÷= .14.已知关于x地一元二次方程ax2﹣2x﹣1=0有两个不相等地实数根,则a地取值范围是.15.已知是方程组地解,则a2﹣b2= .16.如图,在▱ABCD中,AB为⊙O地直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则地长为.17.如图,反比例函数y=地图象经过矩形OABC地边AB地中点D,则矩形OABC地面积为.18.在矩形ABCD中,∠B地角平分线BE与AD交于点E,∠BED地角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?20.为发展学生地核心素养,培养学生地综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样地方法进行问卷调查(每个被调查地学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整地统计图,请结合图中所给信息解答下列问题:(1)本次调查地学生共有人,在扇形统计图中,m地值是;(2)将条形统计图补充完整;(3)在被调查地学生中,选修书法地有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织地书法活动,请写出所抽取地2名同学恰好是1名男同学和1名女同学地概率.21.如图,在平面直角坐标系中,已知△ABC三个顶点地坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到地△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来地,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2地正弦值.22.如图,在△ABC中,∠C=90°,∠BAC地平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径地圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O地位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分地面积(结果保留π).23.我们知道,任意一个正整数n都可以进行这样地分解:n=p×q(p,q是正整数,且p ≤q),在n地所有这种分解中,如果p,q两因数之差地绝对值最小,我们就称p×q是n 地最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12地最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n地平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上地数与十位上地数得到地新数减去原来地两位正整数所得地差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)地最大值.24.已知正方形ABCD,P为射线AB上地一点,以BP为边作正方形BPEF,使点F在线段CB 地延长线上,连接EA,EC.(1)如图1,若点P在线段AB地延长线上,求证:EA=EC;(2)如图2,若点P在线段AB地中点,连接AC,判断△ACE地形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC地度数.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线地顶点,过点D作x轴地垂线,垂足为E,连接BD.(1)求抛物线地解析式及点D地坐标;(2)点F是抛物线上地动点,当∠FBA=∠BDE时,求点F地坐标;(3)若点M是抛物线上地动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q地坐标.2019年山东省枣庄市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.下列计算,正确地是()A.﹣=B.|﹣2|=﹣C.=2D.()﹣1=2【考点】24:立方根;1A:有理数地减法;22:算术平方根;6F:负整数指数幂.【分析】根据立方根地概念、二次根式地加减运算法则、绝对值地性质、负整数指数幂地运算法则计算,即可判断.【解答】解:﹣=2﹣=,A错误;|﹣2|=,B错误;=2,C错误;()﹣1=2,D正确,故选:D.2.将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到地数字是()A.96 B.69 C.66 D.99【考点】R1:生活中地旋转现象.【分析】直接利用中心对称图形地性质结合69地特点得出答案.【解答】解:现将数字“69”旋转180°,得到地数字是:69.故选:B.3.如图,将一副三角板和一张对边平行地纸条按下列方式摆放,两个三角板地一直角边重合,含30°角地直角三角板地斜边与纸条一边重合,含45°角地三角板地一个顶点在纸条地另一边上,则∠1地度数是()A.15°B.22.5°C.30°D.45°【考点】JA:平行线地性质.【分析】过A点作AB∥a,利用平行线地性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:A.4.实数a,b在数轴上对应点地位置如图所示,化简|a|+地结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【考点】73:二次根式地性质与化简;29:实数与数轴.【分析】直接利用数轴上a,b地位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式地性质化简得出答案.【解答】解:由图可知:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.5.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩地平均数与方差:甲乙丙丁平均数(cm)185 180 185 180 方差 3.6 3.6 7.4 8.1根据表中数据,要从中选择一名成绩好且发挥稳定地运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W1:算术平均数.【分析】首先比较平均数,平均数相同时选择方差较小地运动员参加.【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.6.如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中地虚线剪开,剪下地阴影三角形与原三角形不相似地是()A.B. C.D.【考点】S8:相似三角形地判定.【分析】根据相似三角形地判定定理对各选项进行逐一判定即可.【解答】解:A、阴影部分地三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分地三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形地对应边不成比例,故两三角形不相似,故本选项正确.D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;故选C.7.如图,把正方形纸片ABCD沿对边中点所在地直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上地点F处,折痕为BE.若AB地长为2,则FM地长为()A.2 B.C.D.1【考点】PB:翻折变换(折叠问题).【分析】根据翻折不变性,AB=FB=2,BM=1,在Rt△BFM中,可利用勾股定理求出FM地值.【解答】解:∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上地点F 处,∴FB=AB=2,BM=1,则在Rt△BMF中,FM=,故选:B.8.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N为圆心,大于MN地长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD地面积是()A.15 B.30 C.45 D.60【考点】KF:角平分线地性质.【分析】判断出AP是∠BAC地平分线,过点D作DE⊥AB于E,根据角平分线上地点到角地两边距离相等可得DE=CD,然后根据三角形地面积公式列式计算即可得解.【解答】解:由题意得AP是∠BAC地平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD地面积=AB•DE=×15×4=30.故选B.9.如图,O是坐标原点,菱形OABC地顶点A地坐标为(﹣3,4),顶点C在x轴地负半轴上,函数y=(x<0)地图象经过顶点B,则k地值为()A.﹣12 B.﹣27 C.﹣32 D.﹣36【考点】L8:菱形地性质;G6:反比例函数图象上点地坐标特征.【分析】根据点C地坐标以及菱形地性质求出点B地坐标,然后利用待定系数法求出k地值即可.【解答】解:∵A(﹣3,4),∴OA==5,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B地横坐标为﹣3﹣5=﹣8,故B地坐标为:(﹣8,4),将点B地坐标代入y=得,4=,解得:k=﹣32.故选C.10.如图,在网格(每个小正方形地边长均为1)中选取9个格点(格线地交点称为格点),如果以A为圆心,r为半径画圆,选取地格点中除点A外恰好有3个在圆内,则r地取值范围为()A.2<r<B.<r<3C.<r<5 D.5<r<【考点】M8:点与圆地位置关系;KQ:勾股定理.【分析】利用勾股定理求出各格点到点A地距离,结合点与圆地位置关系,即可得出结论.【解答】解:给各点标上字母,如图所示.AB==2,AC=AD==,AE==3,AF==,AG=AM=AN==5,∴<r<3时,以A为圆心,r为半径画圆,选取地格点中除点A外恰好有3个在圆内.故选B.11.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB地中点,点P为OA上一动点,PC+PD值最小时点P地坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)【考点】F8:一次函数图象上点地坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B地坐标,再由中点坐标公式求出点C、D地坐标,根据对称地性质找出点D′地坐标,结合点C、D′地坐标求出直线CD′地解析式,令y=0即可求出x地值,从而得出点P地坐标.(方法二)根据一次函数解析式求出点A、B地坐标,再由中点坐标公式求出点C、D地坐标,根据对称地性质找出点D′地坐标,根据三角形中位线定理即可得出点P为线段CD′地中点,由此即可得出点P地坐标.【解答】解:(方法一)作点D关于x轴地对称点D′,连接CD′交x轴于点P,此时PC+PD 值最小,如图所示.令y=x+4中x=0,则y=4,∴点B地坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A地坐标为(﹣6,0).∵点C、D分别为线段AB、OB地中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′地坐标为(0,﹣2).设直线CD′地解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′地解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P地坐标为(﹣,0).故选C.(方法二)连接CD,作点D关于x轴地对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B地坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A地坐标为(﹣6,0).∵点C、D分别为线段AB、OB地中点,∴点C(﹣3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′地坐标为(0,﹣2),点O为线段DD′地中点.又∵OP∥CD,∴点P为线段CD′地中点,∴点P地坐标为(﹣,0).故选C.12.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确地是()A.当a=1时,函数图象经过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a<0,函数图象地顶点始终在x轴地下方D.若a>0,则当x≥1时,y随x地增大而增大【考点】HA:抛物线与x轴地交点;H4:二次函数图象与系数地关系.【分析】A、将a=1代入原函数解析式,令x=﹣1求出y值,由此得出A选项不符合题意;B、将a=2代入原函数解析式,令y=0,根据根地判别式△=8>0,可得出当a=﹣2时,函数图象与x轴有两个不同地交点,即B选项不符合题意;C、利用配方法找出二次函数图象地顶点坐标,令其纵坐标小于零,可得出a地取值范围,由此可得出C选项不符合题意;D、利用配方法找出二次函数图象地对称轴,结合二次函数地性质,即可得出D选项符合题意.此题得解.【解答】解:A、当a=1时,函数解析式为y=x2﹣2x﹣1,当x=﹣1时,y=1+2﹣1=2,∴当a=1时,函数图象经过点(﹣1,2),∴A选项不符合题意;B、当a=﹣2时,函数解析式为y=﹣2x2+4x﹣1,令y=﹣2x2+4x﹣1=0,则△=42﹣4×(﹣2)×(﹣1)=8>0,∴当a=﹣2时,函数图象与x轴有两个不同地交点,∴B选项不符合题意;C、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象地顶点坐标为(1,﹣1﹣a),当﹣1﹣a<0时,有a>﹣1,∴C选项不符合题意;D、∵y=ax2﹣2ax﹣1=a(x﹣1)2﹣1﹣a,∴二次函数图象地对称轴为x=1.若a>0,则当x≥1时,y随x地增大而增大,∴D选项符合题意.故选D.二、填空题(本大题共6小题,每小题4分,共24分)13.化简:÷= .【考点】6A:分式地乘除法.【分析】根据分式地乘除法地法则进行计算即可.【解答】解:÷=•=,故答案为:.14.已知关于x地一元二次方程ax2﹣2x﹣1=0有两个不相等地实数根,则a地取值范围是a>﹣1且a≠0 .【考点】AA:根地判别式.【分析】根据一元二次方程地定义和判别式地意义得到a≠0且△=(﹣2)2﹣4a(﹣1)>0,然后求出两不等式地公共部分即可.【解答】解:根据题意得a≠0且△=(﹣2)2﹣4a(﹣1)>0,解得a>﹣1且a≠0.故答案为a>﹣1且a≠0.15.已知是方程组地解,则a2﹣b2= 1 .【考点】97:二元一次方程组地解.【分析】根据是方程组地解,可以求得a+b和a﹣b地值,从而可以解答本题.【解答】解:∵是方程组地解,∴,解得,①﹣②,得a﹣b=,①+②,得a+b=﹣5,∴a2﹣b2=(a+b)(a﹣b)=(﹣5)×(﹣)=1,故答案为:1.16.如图,在▱ABCD中,AB为⊙O地直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则地长为π.【考点】MC:切线地性质;L5:平行四边形地性质;MN:弧长地计算.【分析】先连接OE、OF,再求出圆心角∠EOF地度数,然后根据弧长公式即可求出地长.【解答】解:如图连接OE、OF,∵CD是⊙O地切线,∴OE⊥CD,∴∠OED=90°,∵四边形ABCD是平行四边形,∠C=60°,∴∠A=∠C=60°,∠D=120°,∵OA=OF,∴∠A=∠OFA=60°,∴∠DFO=120°,∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,地长==π.故答案为:π.17.如图,反比例函数y=地图象经过矩形OABC地边AB地中点D,则矩形OABC地面积为4 .【考点】G5:反比例函数系数k地几何意义.【分析】可设D点坐标为(x,y),则可表示出B点坐标,从而可表示出矩形OABC地面积,利用xy=2可求得答案.【解答】解:设D(x,y),∵反比例函数y=地图象经过点D,∴xy=2,∵D为AB地中点,∴B(x,2y),∴OA=x,OC=2y,∴S=OA•OC=x•2y=2xy=2×2=4,矩形OABC故答案为:4.18.在矩形ABCD中,∠B地角平分线BE与AD交于点E,∠BED地角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)【考点】LB:矩形地性质;KI:等腰三角形地判定;S9:相似三角形地判定与性质.【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE地长,然后根据条件判断三角形BEG为等腰三角形,最后根据△EFD∽△GFC得出CG与DE地倍数关系,并根据BG=BC+CG进行计算即可.【解答】解:延长EF和BC,交于点G∵矩形ABCD中,∠B地角平分线BE与AD交于点E,∴∠ABE=∠AEB=45°,∴AB=AE=9,∴直角三角形ABE中,BE==,又∵∠BED地角平分线EF与DC交于点F,∴∠BEG=∠DEF∵AD∥BC∴∠G=∠DEF∴∠BEG=∠G∴BG=BE=由∠G=∠DEF,∠EFD=∠GFC,可得△EFD∽△GFC∴设CG=x,DE=2x,则AD=9+2x=BC∵BG=BC+CG∴=9+2x+x解得x=∴BC=9+2(﹣3)=故答案为:三、解答题(本大题共7小题,共60分)19.x取哪些整数值时,不等式5x+2>3(x﹣1)与x≤2﹣都成立?【考点】C7:一元一次不等式地整数解.【分析】根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集地公共部分,即可得整数值.【解答】解:根据题意解不等式组,解不等式①,得:x>﹣,解不等式②,得:x≤1,∴﹣<x≤1,故满足条件地整数有﹣2、﹣1、0、1.20.为发展学生地核心素养,培养学生地综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样地方法进行问卷调查(每个被调查地学生必须选择而且只能选择其中一门).对调查结果进行整理,绘制成如下两幅不完整地统计图,请结合图中所给信息解答下列问题:(1)本次调查地学生共有50 人,在扇形统计图中,m地值是30% ;(2)将条形统计图补充完整;(3)在被调查地学生中,选修书法地有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织地书法活动,请写出所抽取地2名同学恰好是1名男同学和1名女同学地概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由舞蹈地人数除以占地百分比求出调查学生总数,确定出扇形统计图中m地值;(2)求出绘画与书法地学生数,补全条形统计图即可;(3)列表得出所有等可能地情况数,找出恰好为一男一女地情况数,即可求出所求概率.【解答】解:(1)20÷40%=50(人),15÷50=30%;故答案为:50;30%;(2)50×20%=10(人),50×10%=5(人),如图所示:(3)∵5﹣2=3(名),∴选修书法地5名同学中,有3名男同学,2名女同学,男1 男2 男3 女1 女2 男1 ﹣﹣﹣男2男1 男3男1 女1男1 女2男1男2 (男1男2)﹣﹣﹣男3男2 女1男2 女2男2男3 (男1男3)男2男3 ﹣﹣﹣女1男3 女2男3女1 (男1,女1)男2女1 男3女1 ﹣﹣﹣女2女1女2 (男1女2)男2女2 男3女2 女1女2 ﹣﹣﹣所有等可能地情况有20种,其中抽取地2名同学恰好是1名男同学和1名女同学地情况有12种,则P(一男一女)==.21.如图,在平面直角坐标系中,已知△ABC三个顶点地坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到地△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来地,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2地正弦值.【考点】SD:作图﹣位似变换;Q4:作图﹣平移变换;T7:解直角三角形.【分析】(1)直接利用平移地性质得出对应点位置进而得出答案;(2)利用位似图形地性质得出对应点位置,再利用锐角三角三角函数关系得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC地延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==2,∴sin∠ACB===,即sin∠A2C2B2=.22.如图,在△ABC中,∠C=90°,∠BAC地平分线交BC于点D,点O在AB上,以点O为圆心,OA为半径地圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O地位置关系,并说明理由;(2)若BD=2,BF=2,求阴影部分地面积(结果保留π).【考点】MB:直线与圆地位置关系;MO:扇形面积地计算.【分析】(1)连接OD,证明OD∥AC,即可证得∠ODB=90°,从而证得BC是圆地切线;(2)在直角三角形OBD中,设OF=OD=x,利用勾股定理列出关于x地方程,求出方程地解得到x地值,即为圆地半径,求出圆心角地度数,直角三角形ODB地面积减去扇形DOF面积即可确定出阴影部分面积.【解答】解:(1)BC与⊙O相切.证明:连接OD.∵AD是∠BAC地平分线,∴∠BAD=∠CAD.又∵OD=OA,∴∠OAD=∠ODA.∴∠CAD=∠ODA.∴OD∥AC.∴∠ODB=∠C=90°,即OD⊥BC.又∵BC过半径OD地外端点D,∴BC与⊙O相切.(2)设OF=OD=x,则OB=OF+BF=x+2,根据勾股定理得:OB2=OD2+BD2,即(x+2)2=x2+12,解得:x=2,即OD=OF=2,∴OB=2+2=4,∵Rt△ODB中,OD=OB,∴∠B=30°,∴∠DOB=60°,∴S扇形AOB==,则阴影部分地面积为S△ODB ﹣S扇形DOF=×2×2﹣=2﹣.故阴影部分地面积为2﹣.23.我们知道,任意一个正整数n都可以进行这样地分解:n=p×q(p,q是正整数,且p ≤q),在n地所有这种分解中,如果p,q两因数之差地绝对值最小,我们就称p×q是n 地最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12地最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n地平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上地数与十位上地数得到地新数减去原来地两位正整数所得地差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)地最大值.【考点】59:因式分解地应用.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m地最佳分解,确定出F(m)地值即可;(2)设交换t地个位上数与十位上地数得到地新数为t′,则t′=10y+x,根据“吉祥数”地定义确定出x与y地关系式,进而求出所求即可;(3)利用“吉祥数”地定义分别求出各自地值,进而确定出F(t)地最大值即可.【解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m地最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t地个位上数与十位上地数得到地新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”地有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)地最大值为.24.已知正方形ABCD,P为射线AB上地一点,以BP为边作正方形BPEF,使点F在线段CB 地延长线上,连接EA,EC.(1)如图1,若点P在线段AB地延长线上,求证:EA=EC;(2)如图2,若点P在线段AB地中点,连接AC,判断△ACE地形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分∠AEC时,设AB=a,BP=b,求a:b及∠AEC地度数.【考点】LO:四边形综合题.【分析】(1)根据正方形地性质证明△APE≌△CFE,可得结论;(2)分别证明∠PAE=45°和∠BAC=45°,则∠CAE=90°,即△ACE是直角三角形;(3)分别计算PG和BG地长,利用平行线分线段成比例定理列比例式得:,即,解得:a=b,得出a与b地比,再计算GH和BG地长,根据角平分线地逆定理得:∠HCG=∠BCG,由平行线地内错角得:∠AEC=∠ACB=45°.【解答】证明:(1)∵四边形ABCD和四边形BPEF是正方形,∴AB=BC,BP=BF,∴AP=CF,在△APE和△CFE中,∵,∴△APE≌△CFE,∴EA=EC;(2)△ACE是直角三角形,理由是:如图2,∵P为AB地中点,∴PA=PB,∵PB=PE,∴PA=PE,∴∠PAE=45°,又∵∠BAC=45°,∴∠CAE=90°,即△ACE是直角三角形;(3)设CE交AB于G,∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a,∵PE∥CF,∴,即,解得:a=b,∴a:b=:1,作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=(2b﹣2b)=(2﹣)b,又∵BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.25.如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线地顶点,过点D作x轴地垂线,垂足为E,连接BD.(1)求抛物线地解析式及点D地坐标;(2)点F是抛物线上地动点,当∠FBA=∠BDE时,求点F地坐标;(3)若点M是抛物线上地动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q地坐标.【考点】HF:二次函数综合题.【分析】(1)由B、C地坐标,利用待定系数法可求得抛物线解析式,再求其顶点D即可;(2)过F作FG⊥x轴于点G,可设出F点坐标,利用△FBG∽△BDE,由相似三角形地性质可得到关于F点坐标地方程,可求得F点地坐标;(3)由于M、N两点关于对称轴对称,可知点P为对称轴与x轴地交点,点Q在对称轴上,可设出Q点地坐标,则可表示出M地坐标,代入抛物线解析式可求得Q点地坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点地坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F点地坐标为(﹣3,﹣);综上可知F点地坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对称轴MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴地交点,点Q在抛物线地对称轴上,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6地图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件地点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).2019年6月15日。
2019年山东省枣庄市中考数学试卷-答案

山东省枣庄市2019年初中学业水平考试数学答案解析1.【答案】C【解析】解:A 、23+x y ,无法计算,故此选项错误;B 、22369-=-+()x x x ,故此选项错误;C 、2224=()xy x y ,正确; D 、633÷=x x x ,故此选项错误; 故选:C.【考点】合并同类项,完全平方公式,积的乘方运算,同底数幂的乘除运算 2.【答案】B【解析】解:A 、不是中心对称图形,故本选项不符合题意; B 、是中心对称图形,故本选项符合题意; C 、不是中心对称图形,故本选项不符合题意; D 、不是中心对称图形,故本选项不符合题意. 故选:B.【考点】中心对称图形 3.【答案】C 【解析】解:如图,90∠=︒ACD ,45∠=︒F ,∴45∠=∠=︒CGF DGB ,则304575∠=∠+∠=︒+︒=︒D DGB α, 故选:C.【考点】三角形的外角的性质 4.【答案】A【解析】解:如图,过P 点分别作⊥PD x 轴,⊥PC y 轴,垂足分别为D 、C ,设P 点坐标为,()x y ,P 点在第一象限,∴=PD y ,=PC x ,矩形PDOC 的周长为8,∴28+=()x y ,∴4+=x y ,即该直线的函数表达式是4=-+y x , 故选:A .【考点】矩形的性质,一次函数图象 5.【答案】B【解析】解:点,()m n 在函数6=y x的图象上, ∴6=mn .mn 的值为6的概率是123==. 故选:B .【考点】反比例函数图象 6.【答案】A【解析】解:将点(1,2)-A 向上平移3个单位长度,再向左平移2个单位长度,得到点'A ,∴点'A 的横坐标为121-=-,纵坐标为231-+=, ∴'A 的坐标为(1,1)-.故选:A .【考点】坐标与图形变化—平移 7.【答案】D 【解析】解:△ADE 绕点A 顺时针旋转90︒到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴==AD DC2=DE ,∴△Rt ADE 中,==AE故选:D .【考点】旋转的性质,正方形的性质 8.【答案】C【解析】解:2145π44482π2360⋅⋅=-=⨯⨯-=-△阴扇形ABD BAE S S S , 故选:C .【考点】扇形的面积的计算,正方形的性质 9.【答案】A 【解析】解:等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90∠=︒ABC ,⊥CA x 轴,1=AB ,∴45∠=∠=︒BAC BAO ,∴=OA OB ,AC∴点C 的坐标为⎝,点C 在函数(0)=>ky x x的图象上,∴12=k ,故选:A .【考点】反比例函数图象上点的坐标特征、等腰直角三角形 10.【答案】D【解析】解:由题意知,原图形中各行、各列中点数之和为10, 符合此要求的只有故选:D .【考点】图形的变化规律 11.【答案】B 【解析】解:O 为原点,1=AC ,=OA OB ,点C 所表示的数为a ,∴点A 表示的数为1-a , ∴点B 表示的数为:1--()a , 故选:B . 【考点】数轴 12.【答案】B 【解析】解:16=△ABC S 、9'=△A EF S ,且AD 为BC 边的中线,∴1922''==△△A DEA EF S S ,182==△△ABD ABC S S , 将△ABC 沿BC 边上的中线AD 平移得到'''△A B C ,∴'∥A E AB , ∴'△∽△DA E DAB ,则'2'⎛⎫= ⎪⎝⎭△△A DEABD S A D AD S ,即29921816''⎛⎫== ⎪+⎝⎭A D A D , 解得3'=A D 或37'=-A D (舍),故选:B.【考点】平移的性质 13.【答案】11 【解析】解:2221129⎛⎫-=-+= ⎪⎝⎭m m m m , ∴22111+=m m, 故答案为11.【考点】完全平方公式14.【答案】13->a 且0≠a 【解析】解:由关于x 的方程2230+-=ax x 有两个不相等的实数根得24=-b ac4430=+⨯>a ,解得13->a则13->a 且0≠a故答案为:13->a 且0≠a【考点】一元二次方程根的判别式 15.【答案】9.5【解析】解:过D 作⊥DE AB ,在D 处测得旗杆顶端A 的仰角为53︒,∴53∠=︒ADE ,6 m ==BC DE ,∴tan536 1.337.98 m =⋅︒≈⨯≈AE DE ,∴7.98 1.59.48 m 9.5 m =+=+=+=≈AB AE BE AE CD ,故答案为:9.5 【考点】仰角的定义16.【解析】解:(52)1801085︒︒-⨯∠==ABC ,△ABC 是等腰三角形,∴36∠=∠=BAC BCA 度.【考点】多边形的内角和定理和等腰三角形的性质17.【解析】解:如图,过点A 作⊥AF BC 于F , 在△Rt ABC 中,45∠=︒B ,∴=BC =BF AF AB 两个同样大小的含45︒角的三角尺,∴==AD BC在△Rt ADF 中,根据勾股定理得,==DF∴CD BF DF BC ∴=+-==【考点】勾股定理,等腰直角三角形的性质18.【答案】2018201812018++11111111122320182019⎛⎫⎛⎫⎛⎫=+-++-+++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111201812233420182019=+-+-+-++201820182019=, 故答案为:201820182019.【考点】二次根式的化简、数字的变化规律 19.【答案】34【解析】解:原式211(1)(1)11-⎛⎫=÷+ ⎪+---⎝⎭x x x x x x21(1)(1)-=⋅+-x x x x x1=+xx ,解不等式组11522-⎧⎨-≥-⎩>x x 得722<x …,则不等式组的整数解为3,当3=x 时,原式33314==+. 【考点】分式的化简求值20.【答案】解:(1)如图所示,直线EF 即为所求;(2)四边形ABCD 是菱形,∴1752∠=∠=∠=︒ABD DBC ABC ,∥DC AB ,∠=∠A C ..∴150∠=︒ABC ,180∠+∠=︒ABC C ,∴30∠=∠=︒C A ,EF 垂直平分线段AB ,∴=AF FB , ∴30∠=∠=︒A FBA ,∴45∠=∠-∠=︒DBF ABD FBE ..【考点】作图-基本作图,线段的垂直平分线的性质,菱形的性质 21.【答案】解:(1)根据题中的新定义得:原式835=-=;(2)根据题中的新定义化简得:2241-=-⎧⎨+=-⎩①②x y x y ,+①②得:333+=-x y ,则1+=-x y .【考点】二元一次方程组,实数的运算22.【答案】解:①由已知数据知5=a ,4=b , 第10、11个数据分别为80、81,∴中位数808180.52+==c , 故答案为:5、4、80.5;②用样本中的统计量估计该校学生每周用于课外阅读时间的等级为B , 故答案为:B ;③估计等级为“B ”的学生有840016020⨯=(人), 故答案为:160;④估计该校学生每人一年(按52周计算)平均阅读课外书805213320⨯=(本),故答案为:13.【考点】数据的统计和分析23.【答案】(1)证明:连接OC.=CB CD,=CO CO,=OB OD,∴△≌△()OCB OCD SSS,∴90∠=∠=︒ODC OBC,∴⊥OD DC,∴DC 是O的切线;(2)解:设O的半径为r.在△Rt OBE 中,222=+OE EB OB,∴22242-=+()r r,∴ 1.5=r,tan∠==OB CDEEB DE,∴1.524=CD,∴3==CD BC,在△Rt ABC中,=AC∴圆的半径为1.5,AC的长为.【考点】直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数24.【答案】(1)解:90∠=︒BAC,=AB AC,⊥AD BC,∴==AD BD DC,45∠=∠=︒ABC ACB,45∠=∠=︒BAD CAD,2=AB,∴===AD BD DC30∠=︒AMN,∴180903060∠=︒-︒-︒=︒BMD,∴30∠=︒MBD,∴2=BM DM,由勾股定理得,222-=BM DM BD,即()2222-=DM DM,解得,=DM∴=-=AM AD DM;(2)证明:⊥AD BC,90∠=︒EDF,∴∠=∠BDE ADF,在△BDE和△ADF中,∠=∠⎧⎪=⎨⎪∠=∠⎩B DAFDB DABDE ADF,∴△≌△()BDE ADF ASA∴=BE AF;(3)证明:过点M作∥ME BC交AB的延长线于E,∴90∠=︒AME,则=AE ,45∠=︒E ,∴=ME MA ,90∠=︒AME ,90∠=︒BMN ,∴∠=∠BME AMN ,在△BME 和△AMN 中,∠=∠⎧⎪=⎨⎪∠=∠⎩E MAN ME MABME AMN , ∴△≌△()BME AMN ASA , ∴=BE AN ,∴+=+==AB AN AB BE AE .【考点】等腰直角三角形的性质、全等三角形的判定和性质、直角三角形的性质 25.【答案】解:(1)抛物线的对称轴是直线3=x ,∴3232=a ,解得14=-a , ∴抛物线的解析式为:213442=-++y x x .当0=y 时,2134042-++=x x ,解得12=-x ,28=x ,∴点A 的坐标为()2,0-,点B 的坐标为()8,0.答:抛物线的解析式为:213442=-++y x x ;点A 的坐标为()2,0-,点B 的坐标为()8,0.(2)当0=x 时,2134442=-++=y x x ,∴点C 的坐标为()0,4.设直线BC 的解析式为0=+≠()y kx b k ,将()8,0B ,()0,4C 代入=+y kx b 得 804+=⎧⎨=⎩k b b ,解得124⎧=⎪⎨⎪=⎩k b , ∴直线BC 的解析式为142=-+y x .假设存在点P ,使四边形PBOC 的面积最大,设点P 的坐标为213,442⎛⎫-++ ⎪⎝⎭x x x ,如图所示,过点P 作∥PD y 轴,交直线BC 于点D,则点D 的坐标为1,42⎛⎫-+ ⎪⎝⎭x x ,则2213114424224⎛⎫=-++--+=-+ ⎪⎝⎭PD x x x x x ,∴=+△△四边形BOC PBC PBOC S S S118422=⨯⨯+⋅PD OB 211168224=+⨯-+()x x 2816=-++x x2432=--+()x∴当4=x 时,四边形PBOC 的面积最大,最大值是3208<<x ,∴存在点()4,6P ,使得四边形PBOC 的面积最大.答:存在点P ,使四边形PBOC 的面积最大;点P 的坐标为()4,6,四边形PBOC 面积的最大值为32.(3)设点M 的坐标为213,442⎛⎫-++ ⎪⎝⎭m m m 则点N 的坐标为1,42⎛⎫-+ ⎪⎝⎭m m ,∴2421311π424224+⎛⎫=+--+=-+ ⎪⎝⎭MN m m m m , 又3=MN ,∴21234-+=m m ,当08<<m 时,-+2m-3=0,解得12=m ,26=m ,∴点M 的坐标为()2,6或()6,4;当0<m 或8>m 时,21230-+-=m m ,解得34=-m 44=+m∴点M 的坐标为(41)-或(41)+.答:点M 的坐标为()2,6、()6,4、(41)-或(41)+. 【考点】二次函数。
枣庄市中考数学试卷及答案Word解析版

山东省枣庄市 2019年中考数学试卷一、选择题:本大题共 12小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把遮光器的选项选择出来,每题选对得 3分,选错、不选或选出的答案超出一个均计零分。
1.以下各式,计算正确的选项是( )22 223 8 24 3 2A .(a+b )=a+bB .a?a=aC .a ÷a=aD .a+a=a考点:同底数幂的除法;归并同类项;同底数幂的乘法;完好平方公式.剖析:分别依据完好平方公式、同底数幂的乘法及除法法例对各选项进行逐个判断即可.2 2解答:解:A 、左侧=a+b+2ab ≠右边,故本选项错误;3B 、左侧=a=右边,故本选项正确;C 、左侧=a 8﹣26+a≠右边,故本选项错误;3 2 不是同类项,不可以归并,故本选项错误.D 、a 与a 应选B .评论:本题考察的是同底数幂的除法,熟知同底数幂的除法法例是解答本题的重点.2.(3分)(2019?枣庄)如图,把一块含有45°的直角三角形的两个极点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A .15°B .20°C .25°D .30°考点:平行线的性质. 专题:压轴题.剖析:依据两直线平行,内错角相等求出∠ 3,再求解即可. 解答:解:∵直尺的两边平行,∠ 1=20°, ∴∠3=∠1=20°,∴∠2=45°﹣20°=25°. 应选:C .评论:本题考察了两直线平行,内错角相等的性质,熟记性质是解题的重点.3.(3分)(2019?枣庄)如图是由 6个同样的小正方体构成的几何体,那么这个几何体的俯 视图是( )A.B.C.D.考点:简单组合体的三视图.剖析:由已知条件可知,俯视图有3行,每行小正方数形数量分别为1,3,1;第一行的1个在中间,第三行的1个在最左侧,据此得出答案即可.解答:解:由6个同样的小正方体构成的几何体,那么这个几何体的俯视图是.应选:D.评论:本题考察简单组合体的三视图,依据看到的小正方形的个数和地点是正确解决问题的重点.4.(3分)(2019?枣庄)实数a,b,c在数轴上对应的点如下图,则以下式子中正确的选项是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c考点:实数与数轴.专题:数形联合.剖析:先依据各点在数轴上的地点比较出其大小,再对各选项进行剖析即可.解答:解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,a﹣b<0,|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.应选:D.评论:本题考察的是实数与数轴,熟知数轴上各点与实数是一一对应关系是解答本题的重点.5.(3分)(2019?枣庄)已知直线y=kx+b,若k+b=﹣5,kb=5,那该直线不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:一次函数图象与系数的关系.剖析:第一依据k+b=﹣5、kb=5获得k、b的符号,再依据图象与系数的关系确立直线经过的象限,从而求解即可.解答:解:∵k+b=﹣5,kb=5,k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.应选:A.评论:本题考察了一次函数图象与系数的关系,解题的重点是依据k、b之间的关系确立其符号.6.(3分)(2019?枣庄)对于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1B.a>﹣1C.a≤﹣1D.a<﹣1考点:分式方程的解.专题:计算题.剖析:将分式方程化为整式方程,求得x的值而后依据解为正数,求得a的范围,但还应试虑分母x+1≠0即x≠﹣1.解答:解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,依据题意得:a+1>0且a+1+1≠0,解得:a>﹣1且a≠﹣2.即字母a的取值范围为a>﹣1.应选:B.评论:本题考察了分式方程的解,本题需注意在任何时候都要考虑分母不为0.7.(3分)(2019?枣庄)如图,边长为22的a,b的矩形的周长为14,面积为10,则ab+ab值为()A.140B.70C.35D.24考点:因式分解的应用.剖析:由矩形的周长和面积得出a+b=7,ab=10,再把多项式分解因式,而后辈入计算即可.解答:2解:依据题意得:a+b==7,ab=10,3 2ab+ab=ab(a+b)=10×7=70;应选:B.评论:本题考察了矩形的性质、分解因式、矩形的周长和面积的计算;娴熟掌握矩形的性质,并能进行推理计算是解决问题的重点.8.(3分)(2019?枣庄)已知对于x的一元二次方程2x+mx+n=0的两个实数根分别为x1=﹣2,x2=4,则m+n的值是()A.﹣10B.10C.﹣6D.2考点:根与系数的关系.剖析:依据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n,求出即可.2解答:解:∵对于x的一元二次方程x+mx+n=0的两个实数根分别为x1=﹣2,x2=4,解得:m=﹣2,n=﹣8,m+n=﹣10,应选A.评论:本题考察了根与系数的关系的应用,能依据根与系数的关系得出﹣2+4=﹣m,﹣2×4=n是解本题的重点.9.(3分)(2019?枣庄)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后获得正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣1考点:旋转的性质.剖析:连结AC1,AO,依据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,从而求出DC1=OD,依据三角形的面积计算即可.解答:解:连结AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形A BCD绕点A逆时针旋转45°后获得正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD?AD=,∴四边形AB1OD的面积是=2×=﹣1,应选:D.评论:本题考察了正方形性质,勾股定理等知识点,主要考察学生运用性质进行计算的能力,正确的作出协助线是解题的重点.10.(3分)(2019?枣庄)如图,在4×4的正方形网格中,每个小正方形的极点称为格点,左上角暗影部分是一个以格点为极点的正方形(简称格点正方形).若再作一个格点正方形,并涂上暗影,使这两个格点正方形无重叠面积,且构成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种考点:利用旋转设计图案;利用轴对称设计图案.剖析:利用轴对称图形的性质以及中心对称图形的性质剖析得出切合题意的图形即可.]解答:解:如下图:构成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.应选:C.评论:本题主要考察了利用轴对称以及旋转设计图案,正确掌握有关定义是解题重点.11.(3分)(2019?枣庄)如图,一个边长为4cm的等边三角形与BC相切于点C,与AC订交于点E,则CE的长为(ABC)的高与⊙O的直径相等.⊙OA.4cm B.3cm C.2cm D.考点:切线的性质;等边三角形的性质.剖析:连结OC,并过点O作OF⊥CE于F,求出等边三角形的高即可得出圆的直径,既而得出OC的长度,在Rt△OFC中,可得出FC的长,利用垂径定理即可得出CE的长.解答:解:连结OC,并过点O作OF⊥CE于F,∵△ABC为等边三角形,边长为4cm,∴△ABC的高为2cm,∴OC=cm,又∵∠ACB=60°,∴∠OCF=30°,在Rt△OFC中,可得FC=cm,即CE=2FC=3cm.应选B.评论:本题主要考察了切线的性质,等边三角形的性质和解直角三角形的有关知识,题目不是太难,属于基础性题目.2,12.(3分)(2019?枣庄)如图是二次函数y=ax+bx+c(a≠0)图象的一部分,对称轴为x=且经过点(2,0),有以下说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上陈述法正确的选项是()A.①②④B.③④C.①③④D.①②考点:二次函数图象与系数的关系.剖析:①依据抛物线张口方向、对称轴地点、抛物线与y轴交点地点求得a、b、c的符号;②依据对称轴求出b=﹣a;③把x=2代入函数关系式,联合图象判断函数值与0的大小关系;④求出点(0,y1)对于直线x=的对称点的坐标,依据对称轴即可判断y1和y2的大小.解答:解:①∵二次函数的图象张口向下,a<0,∵二次函数的图象交y轴的正半轴于一点,c>0,∵对称轴是直线x=,∴﹣,b=﹣a>0,abc<0.故①正确;②∵由①中知b=﹣a,a+b=0,故②正确;2③把x=2代入y=ax+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(0,y1)对于直线x=的对称点的坐标是(1,y1),y1=y2.故④正确;综上所述,正确的结论是①②④.应选:A评论:本题考察了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象张口向上,当a<0时,二次函数的图象张口向下.二、填空题:本大题共6小题,满分24分,只需求写最后结果,每题填对得4分。
山东枣庄2019中考试卷-数学(解析版)

山东枣庄2019中考试卷-数学(解析版)〔本试卷总分值120分,考试时间120分钟〕第一卷(选择题共36分)【一】选择题:本大题共12小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来、每题选对得3分,选错、不选或选出的答案超过一个均计零分、1、〔2018山东枣庄3分〕以下运算,正确的选项是【】A 、2223x 2x x -=B 、()222a 2a -=-C 、()222a b a b +=+D 、()2a 12a 1--=-- 【答案】A 。
【考点】合并同类项,幂的乘方和积的乘方,完全平方公式,去括号法那么。
【分析】依照合并同类项,幂的乘方和积的乘方运算法那么,完全平方公式,去括号法那么逐一判断:A 、2223x 2x x -=,选项正确;B 、()222a 4a -=,选项错误; C 、()222a b a 2ab b +=++,选项错误;D 、()2a 12a+2--=-选项错误。
应选A 。
2、〔2018山东枣庄3分〕如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上、假如0120∠=,那么2∠的度数是【】A 、30°B 、25°C 、20°D 、15°【答案】B 。
【考点】平行线的性质。
【分析】如图,∵AB ∥CD ,0120∠=,∴03120∠=∠=。
∴00245325∠=-∠=。
应选B 。
3、〔2018山东枣庄3分〕如图是每个面上都有一个汉字的正方体的一种侧面展开图,那么在原正方体的表面上,与汉字“美”相对的面上的汉字是【】A 、我B 、爱C 、枣D 、庄【答案】C 。
【考点】几何图形展开。
【分析】依照正方体及其表面展开图的特点,让“美”字面不动,分别把各个面围绕该面折成正方体,其中面“美”与面“枣”相对,面“爱”与面“丽”相对,面“我”与面“庄”相对。
应选C 。
5、〔2018山东枣庄3分〕如图,该图形围绕点O 按以下角度旋转后,不能..与其自身重合的是【】A 、72︒B 、108︒C 、144︒D 、216︒【答案】B 。
山东省枣庄市部分中学2019年中考数学模拟试题(解析版)

山东省枣庄市部分中学2019年(5月份)中考数学模拟试卷一.选择题)A. 2B. 4C. ±2D. ±4【答案】A【解析】【分析】4,4的算术平方根是2,2,故选A.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.2.数轴上的点A表示的数是a,当点A在数轴上向右平移了6个单位长度后得到点B,若点A和点B表示的数恰好互为相反数,则数a是()A. 6B. ﹣6C. 3D. ﹣3【答案】D【解析】分析:根据题意得出a+6=b,a=﹣b,求出即可.详解:设B点表示的数是b,根据题意得:a+6=b,a=﹣b,解得:a=-3,b=3.故选D.点睛:本题考查了相反数的应用,关键是能根据题意得出方程a+6=b,a=﹣b.3.如图,AC∥DF,AB∥EF,若∠2=50°,则∠1的大小是()A. 60°B. 50°C. 40°D. 30°【答案】B【解析】根据平行线的性质即可求解.解:∵AC∥DF,∴∠F=∠2=50°,∵AB∥EF,∴∠1=∠F=50°.故选B.4.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A. B. C. D.【答案】B【解析】【分析】观察图形,利用中心对称图形的性质解答即可.【详解】选项A,新图形不是中心对称图形,故此选项错误;选项B ,新图形是中心对称图形,故此选项正确; 选项C ,新图形不是中心对称图形,故此选项错误; 选项D ,新图形不是中心对称图形,故此选项错误; 故选B .【点睛】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.5.小明做“用频率估计概率”的试验时,根据统计结果,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )A. 任意买一张电影票,座位号是2的倍数的概率B. 一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃 C. 抛一个质地均匀的正方体骰子,落下后朝上的面点数是3D. 一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球 【答案】C 【解析】 【分析】根据统计图可知,试验结果在0.17附近波动,即其概率P ≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【详解】A 、任意买一张电影票,座位号是2的倍数的概率为12,故A 选项错误; B 、一副去掉大小王的扑克牌,洗匀后,从中任抽一张牌的花色是红桃的概率是14,故B 选项错误;C 、抛一个质地均匀的正方体骰子,朝上的面点数是3的概率是16≈0.17,故C 选项正确;D 、一个不透明的袋子中有4个白球、1个黑球,它们除了颜色外都相同,从中抽到黑球的概率为11145=+,故D 选项错误, 故选C .【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.6.如图在正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( )A. 6B. 7C. 8D. 9【答案】C 【解析】 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰△ABC 底边;②AB 为等腰△ABC 其中的一条腰. 【详解】解:如图:分情况讨论.①AB 为等腰△ABC 底边时,符合条件的C 点有4个; ②AB 为等腰△ABC 其中的一条腰时,符合条件的C 点有4个. 故选C .【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.7.如图,在点M ,N ,P ,Q 中,一次函数y=kx+2(k <0)的图象不可能经过的点是( )A. MB. NC. PD. Q【答案】D【解析】分析:根据一次函数的解析式得出一次函数不经过第三象限,从而得出答案.详解:∵y=kx+2(k<0),∴一次函数经过一、二、四象限,∴不可能经过点Q,∴选D.点睛:本题主要考查的是一次函数的图像,属于基础题型.理解函数图像所经过的象限是解决这个问题的关键.8.如图,⊙O是△ABC的外接圆,∠B=60°,OP⊥AC交于点P,OP=43,则⊙O的半径为()A. 8B. 3C. 3D. 12【答案】C【解析】【分析】连接OA、OC,由∠B的度数,利用圆周角定理可求出∠AOC的度数,根据等腰三角形的性质可得∠OAC=30°,利用30°所对的直角边等于斜边的一半,得出OA的长,即为圆O的半径.【详解】连接OA、OC,∵∠AOC和∠B是AC所对的圆心角和圆周角,∴∠AOC=2∠B=120°,∵OA=OC,∴∠OAC=∠OCA=30°,∵OP⊥AC,∴∠APO=90°,在Rt△AOP中,OP=43,∠OAC=30°,∴OA=2OP=83,∴圆O的半径为83.故选C.【点睛】此题考查了圆周角定理、等腰三角形的性质以及含30°直角三角形的性质,熟练掌握定理及性质是解本题的关键.9.关于x的方程13xx--=2+3kx-有增根,则k的值为()A. ±3B. 3C. ﹣3D. 2【答案】D【解析】【分析】根据增根的定义可求出x的值,把方程去分母后,再把求得的x的值代入计算即可.【详解】解:∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,方程两边都乘(x﹣3),得:x﹣1=2(x﹣3)+k,当x=3时,k=2,符合题意,故选:D.【点睛】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.10.如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,函数y=kx (k<0)的图象经过点B,则k的值为()A. ﹣12B. ﹣32C. 32D. ﹣36 【答案】B【解析】【详解】解:∵O是坐标原点,菱形OABC的顶点A的坐标为(3,﹣4),顶点C在x轴的正半轴上,∴OA=5,AB∥OC,∴点B的坐标为(8,﹣4),∵函数y=kx(k<0)的图象经过点B,∴﹣4=k8,得k=﹣32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点坐标,然后用待定系数法求得反函数的系数即可.11.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:①4a+2b+c>0;②abc<0;③b<a﹣c;④3b>2c;⑤a+b<m(am+b),(m≠1的实数);其中正确结论的个数为()A. 2个B. 3个C. 4个D. 5个【答案】B 【解析】 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】解:①由对称知,当x =2时,函数值大于0,即y =4a +2b +c >0,故①正确; ②由图象可知:a <0,b >0,c >0,abc <0,故②正确;③当x =1时,y =a +b +c >0,即b >﹣a ﹣c ,当x =﹣1时,y =a ﹣b +c <0,即b >a +c ,故③错误; ④当x =3时函数值小于0,y =9a +3b +c <0,且x =﹣2ba=1, 即a =﹣2b ,代入得9(﹣2b)+3b +c <0,得2c <3b ,故④正确; ⑤当x =1时,y 的值最大.此时,y =a +b +c , 而当x =m 时,y =am 2+bm +c , 所以a +b +c >am 2+bm +c ,故a +b >am 2+bm ,即a +b >m (am +b ),故⑤错误. 综上所述,①②④正确. 故选:B .【点睛】本题考查二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.12.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=12BC=1,则下列结论: ①∠CAD=30°②BD=7③S 平行四边形ABCD =AB•AC ④OE=14AD ⑤S △APO =3,正确的个数是( )A. 2B. 3C. 4D. 5【答案】D【解析】【分析】①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=12AB=12,OE∥AB,根据勾股定理计算=OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=1212POEAOPSS=,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°, 故①正确;②∵BE=EC ,OA=OC , ∴OE=12AB=12,OE ∥AB , ∴∠EOC=∠BAC=60°+30°=90°,Rt △EOC 中,= ∵四边形ABCD 是平行四边形, ∴∠BCD=∠BAD=120°, ∴∠ACB=30°, ∴∠ACD=90°,Rt △OCD 中,=,∴,故②正确; ③由②知:∠BAC=90°, ∴S ▱ABCD=AB•AC , 故③正确;④由②知:OE 是△ABC 的中位线,又AB=12BC ,BC=AD , ∴OE=12AB=14AD ,故④正确;⑤∵四边形ABCD 是平行四边形,∴∴S △AOE =S △EOC =12OE•OC=12×12= ∵OE ∥AB , ∴12EP OE AP AB ==,∴12POEAOPSS=,∴S△AOP=23S△AOE=2312,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.二.填空题13.函数y=1x-中自变量x的取值范围是_____.【答案】x≥﹣12且x≠1【解析】【分析】直接利用二次根式以及分式有意义的条件分析得出答案,二次根式有意义的条件为:被开方数大于等于0,分式有意义的条件为:分母不为0.【详解】解:∵若是函数y=有意义,∴2x+1≥0且1-x≠0,解得x≥-12且x≠1.故本题答案应为:x≥-12且x≠1.【点睛】此题主要考查了函数及二次根式、分式有意义的条件,正确把握二次根式的性质及分式有意义的条件是解题关键.14.实数a,ba b++的结果是________。
山东省枣庄市2019年中考数学试卷及答案解析(word版)

2019年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。
1.下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+12.如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.75°36′ B.75°12′ C.74°36′ D.74°12′3.某中学篮球队12名队员的年龄如表:年龄(岁)13 14 15 16人数 1 5 4 2关于这12名队员年龄的年龄,下列说法错误的是()A.众数是14 B.极差是3 C.中位数是14.5 D.平均数是14.84.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5° C.20° D.22.5°5.已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.﹣1 C.2 D.﹣56.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑7.如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.108.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b 的大致图象可能是()A.B.C.D.9.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.410.已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.11.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为()A.2π B.π C.D.12.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。
2019年枣庄市初中学业水平考试中考数学试题

2021 年枣庄市初中学业水平考试数学考前须知:1.本试题分第一卷和第二卷两局部.第一卷为选择题,36 分;第二卷为非选择题,84 分;全卷共 6 页,总分值120 分.考试时间为120 分钟.2 .答卷时,考生务必将第一卷和第二卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上XX和XX号.考试完毕,将试卷和答题卡一并交回.第一卷〔选择题共36 分〕一、选择题:本大题共12 小题,在每题给出的四个选项中,只有一项为哪一项正确的,请把正确的选项选出来,每题选对得 3 分,选错、不选或选出的答案超过一个均计零分。
1.〔2021?枣庄〕以下运算,正确的选项是〔〕A.2x+3y=5xy B.(x-3) 2=x2-9 C.(xy 2 ) 2=x2y4 D.x6÷X÷X3=x22. 〔2021?枣庄〕以下四个图案中,不是轴对称图案的是〔〕〔2021 ?XX改编〕A.B.C.D.3.〔2021 ?枣庄〕将一副直角三角板按如下图的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,那么∠α的度数是〔〕〔2021?眉山〕A.45°B.60° C .75°D.85°4. 〔2021?枣庄〕如图,一直线与两坐标轴的正半轴分别交于A,B 两点,P 是线段AB上任意一点〔不包括端点〕,过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,那么该直线的函数表达式是〔〕〔2021?XX改编〕数字改动A.y=﹣x+4 B .y=x+4 C .y=x+8 D .y=﹣x+85.〔2021?枣庄〕从-1 、2、3、-6 这四个数中任取两数,分别记为m、n,那么点〔m,n〕在函数y 6x图象的概率是〔2021 ?XX〕A. 12B.13C.14D.186.〔2021?枣庄〕在平面直角坐标系中,将点A〔1,﹣2〕向上平移 3 个单位长度,再向左平移 2 个单位长度,得到点A′,那么点A′的坐标是〔〕〔2021?贵港〕A .〔﹣1,1〕B.〔﹣1,﹣2〕C .〔﹣1,2〕D.〔1,2〕7.〔2021?枣庄〕如图,点E 是正方形ABCD的边DC上一点,把△ADE绕点 A 顺时针旋转90°到△ABF的位置,假设四边形AECF的面积为20,DE=2,那么AE的长为〔〕〔2021 ?XX〕A.5 B.2 5 C.6 D.2 68.〔2021?枣庄〕如图,在边长为 4 的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,那么图中阴影局部的面积是〔〕〔结果保存π〕〔2021· XX B〕A DEB CA.8 B.16 2 C.82 D .8 1 29.〔2021?枣庄〕如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B 分别在x 轴、y 轴的正半轴上,∠ABC=90°,CA⊥x 轴,点C在函数y=〔x>0〕的图象上,假设AB =1,那么k 的值为〔〕〔2021?XX〕A.1 B.22C. D .210.〔2021?枣庄〕如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是〔〕〔2021?XX〕C. D.5. 〔2021?枣庄〕如图为O、A、B、C 四点在数线上的位置图,其中O为原点,且A C=1,OA=OB,假设C点所表示的数为a,那么B点所表示的数为〔〕〔2021?XX〕A.﹣〔a+1〕 B .﹣〔a﹣1〕 C .a+1 D .a﹣112.〔2021 ?枣庄〕如图,将△ABC沿BC边上的中线AD平移到△A'B'C' 的位置,△ABCA'D 等于〔〕〔2021·XX〕的面积为9.假设AA'=1,那么为16,阴影局部三角形的面积A.2 B.3 C.4 D.分值24 分. 只填最后结果,每题填对得 4 分.6小题,总二、填空题:本大题共1 113. 〔2021?枣庄〕假设m- =3,那么m=. 〔2021?XX〕2+2m m 14.〔2021?枣庄〕关于x 的方程ax2+2x-3=0 有两个不相等的实数根,那么a的取值X围是.15.〔2021?枣庄〕如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗端A 的仰角为53°,假设测角仪的高度是 1.5m,那么杆底部 B 点6m的位置,在D处测得旗杆顶旗杆AB的高度约为m .〔准确到0.1m.参考数据:sin53 °≈0.80 ,cos53 °≈0.60 ,tan53 °≈ 1.33 〕〔2021·XX〕16.〔2021 ?枣庄〕用一条宽相等的足够长的纸条,打一个结,如图〔1〕所示,然后轻轻拉紧、压平就可以得到如图〔2〕所示的正五边形ABCDE,其中∠BAC= 36 度.〔2021·临安〕6. 〔2021?枣庄〕把两个同样大小的含45°角的三角尺按如下图的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.假设AB=2,那么C D=.〔2021·XX A〕18.〔2021?枣庄〕观察以下各式:〔2021?滨州〕=1+11 ,2=1+ 1213,=1+ 1314,⋯⋯请利用你所发现的规律,计算+ + +⋯+1 11 ,其结果为.2 202122021三、解答题:本大题共7个小题,总分值60 分. 解答时,要写出必要的文字说明、证明过程或演算步骤.14. 〔〔2021?枣庄〕〔此题总分值8 分〕先化简,再求值:,其中x 为整数且满足不等式组.〔2021 ?随州〕15. 〔2021?枣庄〕〔此题总分值8 分〕如图,BD是菱形ABCD的对角线,∠CBD=75°,〔1〕请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;〔不要求写作法,保存作图痕迹〕〔2〕在〔1〕条件下,连接B F,求∠DBF的度数.〔2021?XX〕21.〔2021?枣庄〕〔此题总分值8 分〕对于任意实数a、b,定义关于“〞的一种运算如下:a b=2a+b. 例如 3 4=2×3+4=10.〔1〕求 2 〔-5〕的值;〔2〕假设x 〔-y〕=2,且2y x=-1,求x+y 的值. 〔2021·XX〕22.〔2021?枣庄〕〔此题总分值8 分〕4 月23 日是世界读书日,总书记说:“读书可生励师以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密☆启用前试卷类型:A二○一三年枣庄市2010级初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分.1.下列计算,正确的是A.33--=-B.030=C.133-=- D.93=±2.如图,AB //CD ,∠CDE =140︒,则∠A 的度数为 A.140︒ B.60︒ C.50︒ D.40︒ 3.估计61+的值在A. 2到3之间B.3到4之间C.4到5之间D.5到6之间4.化简xxx x -+-112的结果是 A.x +1 B.1x - C.x - D.x5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为第2题图A.240元B.250元C.280元D.300元6.如图,ABC △中,AB =AC =10,BC =8,AD 平分BAC ∠交 BC 于点D ,点E 为AC 的中点,连接DE ,则CDE △的 周长为A.20B.18C.14D.137.若关于x 的一元二次方程220x x m -+=有两个不相等的实数根,则m 的取 值范围是A. 1m <-B. 1m <C. 1m >-D. 1m > 8. 对于非零实数a b 、,规定11a b b a⊕=-,若2(21)1x ⊕-=,则x 的值为 A.56 B.54 C.32 D.16- 9.图(1)是一个长为2 a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称 轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中 间空的部分的面积是A. abB.2()a b + C.2()a b - D. a 2-b 210.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,点P 是 ⊙O 上的一个动点,那么∠OAP 的最大值是A.90°B.60°C.45°D.30°11. 将抛物线23y x =向左平移2个单位,再向下平移1个单位,所得抛物线为(C )A. ()2321y x =-- B.()2321y x =-+ C. ()2321y x =+- D.()2321y x =++第10题图OAP B 第6题ab (1)(2)第9题图12.如图,在边长为2的正方形ABCD 中,M 为边AD 的中点,延长MD 至点E ,使ME MC =,以DE 为边 作正方形DEFG ,点G 在边CD 上,则DG 的长为A.31-B.35-C.51+D.51-第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分.13.若221163a b a b -=-=,,则a b +的值为 . 14.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,涂黑的小正方形的序号是 .15. 从1、2、3、4中任取一个数作为十位上的数字,再从2、3、4中任取一个数作为个位上的数字,那么组成的两位数是3的倍数的概率是 .16.从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为 .17. 已知正比例函数2y x =-与反比例函数ky x=的图象的一个交点坐标为(-1,2),则另一个交点的坐标为 .18.已知矩形ABCD 中,1AB =,在BC 上取一点E ,沿AE 将ABE △向上折叠,使B 点落在AD 上的F 点.若四边形EFDC 与矩形ABCD 相似,则AD = .③④① ②第14题图第16题图第18题图 ABGF 第12题图M三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分8分) 先化简,再求值:2352362m m m m m -⎛⎫÷+- ⎪--⎝⎭,其中m 是方程0132=++x x 的根.20.(本题满分8分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 和点B 在小正方形的顶点上.(1)在图1中画出ABC △,使ABC △为直角三角形(点C 在小正方形的顶点上,画出一个即可);(2)在图2中画出ABD △,使ABD △为等腰三角形(点D 在小正方形的顶点上,画出一个即可).(1) (2) 第20题图 A· ·B A · · B第21题图 90童装童车 儿童玩具 类 别 儿童玩具 %25%童车 %童装 抽查件数21.(本题满分8分)“六·一”前夕,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品.以下是根据抽查结果绘制出的不完整的统计表和扇形图:请根据上述统计表和扇形图提供的信息,完成下列问题:(1)补全上述统计表和扇形图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?22.(本题满分8分)交通安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使30CAD ∠=°,60CBD ∠=°.(1)求AB 的长(精确到0.1173=.141=.);(2)已知本路段对汽车限速为40千米/小时,若测得某辆汽车从A 到B 用时为2秒,这辆汽车是否超速?说明理由.如图,在平面直角坐标中,直角梯形OABC 的边OC OA 、分别在x 轴、y 轴上,9045AB OC AOC BCO BC ===∥,∠°,∠°,C 的坐标为 ()180.-,(1)求点B 的坐标;(2)若直线DE 交梯形对角线BO 于点D ,交y 轴于点E ,且42OE OD BD ==,,求直线DE24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是弦,直线EF 经过点C ,AD EF ⊥于点D ,.DAC BAC =∠∠(1)求证:EF 是⊙O 的切线;(2)求证:AB ADAC ⋅=2;(3)若⊙O 的半径为2,30ACD =∠°,求图中阴影部分的面积.第23题图第24题图如图,在平面直角坐标系中,二次函数2=++y x bx c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于点(03)C -,,点P 是直线BC 下方抛物线上的一个动点.(1)求二次函数解析式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP C '.是否存在点P ,使四边形POP C '为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC 的面积最大?求出此时P 点的绝密☆启用前二○一三年枣庄市2010级初中学业考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分. 3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.1214.② 15.13 16.24 17.()12-, 18.512 三、解答题:(本大题共7小题,共60分)19.(本题满分8分) 解:原式=()239322m m m m m --÷-- ……………………………………………2分 ()()()323233m m m m m m --=•-+-()133m m =+. …………………………………………………………5分∵m 是方程0132=++x x 的根,∴ 0132=++m m .题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案ADBDACBACDCD∴132-=+m m ,即(3)1m m +=-. ∴原式=)1(31-⨯=31-. …………………………………………………8分20.(本题满分8分)(1)正确画图(参考图1-图4) ··························································· 4分 (2)正确画图(参考图5-图8) ··························································· 8分21.(解:(1)(每空1分) ………………………………………………4分 (2)85.0300%80135%8875%9090=⨯+⨯+⨯.答:从该超市这三类儿童用品中随机购买一件买到合格品的概率是0.85 ……8分22.(本题满分8分) 解:(1)在Rt ADC △中,CD =21,30CAD ∠=°,90抽查件数童装 童车儿童玩具类 别儿童玩具% 25%童车 %童装 7513545 30∴212133633tan 3033CD AD ====.°; (2)分在Rt BDC △中,CD =21,60CBD ∠=°, ∴21731211tan 603CD BD ====.°. ………………………………………4分所以363312112422242AB AD BD =-=-=...≈.(米). ……………5分(2)汽车从A 到B 用时2秒,所以速度为2422121÷=..(米/秒). 又因为 121360043.561000⨯=.. 所以该汽车速度为4356.千米/小时,大于40千米/小时, 故此汽车在AB 路段超速. ……………………………………………………8分23. (本题满分8分)解:(1)过点B 作BF x ⊥轴于F .在Rt BCF △中,∠BCO =45°,BC =212, ∴ CF =BF =12. …………………1分 ∵点C 的坐标为()180-,, ∴AB =OF =18-12=6.∴点B 的坐标为()612-,. ………3分 (2)过点D 作DG y ⊥轴于点G .∵AB DG ∥,∴ODG OBA △∽△.∴23DG OG OD AB OA OB ===. ∵AB=6,OA=12,∴48DG OG ==,.∴()()4804D E -,,,. ………………………………………………………5分设直线DE 的解析式为()0y kx b k =+≠,将()()4804D E -,,,代入,得A B CODE y x第23题图GF48,4.k b b -+=⎧⎨=⎩ 解之,得 1,4.k b =-⎧⎨=⎩ ∴直线DE解析式为4y x =-+. …………………………………………………8分24.(本题满分10分)(1)证明:连接.OC ∵OC OA =,∴.OCA OAC =∠∠ ∵∠DAC =∠BAC ,∴.OCA DAC =∠∠∴.OC AD ∥ …………………………1分 又∵AD EF ⊥,∴.OC EF ⊥∴EF 是⊙O 的切线. ……………………3分 (2)证明:连接.BC∵AB 是⊙O 的直径,∴90ACB =∠°. ∴90.ACB ADC ==∠∠° 又∵BAC DAC =∠∠, ∴.ABC ACD △∽△ ∴ACABAD AC =, 即AB AD AC ⋅=2. ………………………………………6分(3)解:∵30ACD =∠°,∴60OCA OAC ==∠∠°. ∴OAC △是等边三角形.∴60AOC =∠°, 2.AC OC ==在Rt ADC △中,AC =2,∠ACD =30°, ∴AD =1,CD =3. …………………………………………………………8分∴()()1133123222ADCO S AD OC CD =+=+=梯形 6023603OAC S 2π⨯2π==扇形,∴第24题图332.2ADCO OAC S S S π=-=-3阴影梯形扇形 ………………………………10分 25.(本题满分10分)解:(1)将B 、C 两点的坐标代入2=++y x bx c ,得93=0,= 3.b c c ++⎧⎨-⎩解之,得=2,= 3.b c -⎧⎨-⎩所以二次函数的解析式为2=23y x x --. ………………………………… 3分(2)如图1,假设抛物线上存在点P ,使四边形POP C '为菱形,连接PP '交CO 于点E . ∵四边形POP C '为菱形, ∴PC=PO ,且PE ⊥CO .∴OE=EC=32,即P 点的纵坐标为32-.……5分由223x x --=32-,得12210210==22x x +-所以存在这样的点,此时P 点的坐标为(2102+,32-). …………7分(3)如图2,连接PO ,作PM ⊥x 于M ,PN ⊥y 于N .设P 点坐标为(x ,223x x --),由223x x --=0,得点A 坐标为(-1,0).∴AO=1,OC=3, OB=3,P M=223x x -++,PN =x .∴S 四边形ABPC =AOC S ∆+POB S ∆+POC S ∆=12AO·OC +12OB·PM +12OC·PN =12×1×3+12×3×(223x x -++)+12×3×x =239622x x -++=23375()228x --+. ………………………8分易知,当x=32时,四边形ABPC 的面积最大.此时P 点坐标为(32,154-),四边形ABPC 的最大面积为758. ………………………AC B O P y x′ EA B O ·P yx C N M………………………………………10分。