鲁教版初二数学《不等式试题》2

合集下载

初二不等式组练习题及答案

初二不等式组练习题及答案

初二不等式组练习题及答案不等式是数学中重要的概念之一,对于初中学生来说,掌握不等式的性质和解不等式的方法是十分关键的。

为了帮助大家巩固和提高对不等式的理解和应用能力,以下是一些初二不等式组的练习题及答案,希望对大家的学习有所帮助。

题目一:解下列不等式组,并将解的结果表示在数轴上。

1. {x < 3, x ≥ -2}2. {-1 < x ≤ 5, x > 2}3. {x + 3 ≥ 5, x - 2 < 8}4. {-3 < x ≤ 1, x ≥ -4}题目二:解下列不等式组,并用集合的形式表示出来。

1. {x > 3, x < 7}2. {x ≤ 5, x ≥ -3}3. {2 ≤ x < 5, x ≥ 3}4. {x > -1, x < 3, x > 2}题目三:解下列不等式组,并将解的结果表示在坐标平面上。

1. {x > 2, y < 4}2. {x ≤ 3, y ≥ -2}3. {x ≥ -1, y > 1}4. {x > -2, y ≤ 3}题目四:解下列不等式组,并用不等式表示出来。

1. {x < 3, y > 4}2. {x ≤ -3, y < -2}3. {x > 2, y ≤ 1}4. {x ≥ -1, y > 2}解答如下:题目一:1. x < 3 表示实数x小于3,取等号的原因是x可能等于3;x ≥ -2 表示实数x大于等于-2。

将两个不等式合并得到 -2 ≤ x < 3。

在数轴上标记-2和3,用一个实心圆表示-2,一个空心圆表示3,对应的数轴上的点即为-2 ≤ x < 3 的解。

2. -1 < x ≤ 5 表示实数x大于-1,小于等于5;x > 2 表示实数x大于2。

将两个不等式合并得到2 < x ≤ 5。

在数轴上标记2和5,用一个空心圆表示2,一个实心圆表示5,对应的数轴上的点即为2 < x ≤ 5 的解。

鲁教版2018初二数学第十一章 不等式与不等式组专题训练

鲁教版2018初二数学第十一章  不等式与不等式组专题训练

鲁教版2018初二数学第十一章不等式与不等式组专题训练1.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是()A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤232.不等式组的所有整数解是()A.﹣1、0 B.﹣2、﹣1 C.0、1 D.﹣2、﹣1、03.不等式组:的最大整数解为()A.1 B.﹣3 C.0 D.﹣14.若满足不等式20<5﹣2(2+2x)<50的最大整数解为a,最小整数解为b,则a+b 之值为何?()A.﹣15 B.﹣16 C.﹣17 D.﹣185.对于不等式组下列说法正确的是()A.此不等式组无解B.此不等式组有7个整数解C.此不等式组的负整数解是﹣3,﹣2,﹣1D.此不等式组的解集是﹣<x≤26.不等式组的整数解的个数为()A.0个B.2个C.3个D.无数个7.关于x的不等式组,其解集在数轴上表示正确的是()A.B.C.D.8.不等式组的解集在数轴上表示正确的是()A.B.C.D.9.不等式组的解集,在数轴上表示正确的是()A.B.C.D.10.不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤111.不等式组的解集在数轴上表示为()A.B.C.D.12.不等式组的解集在数轴上表示正确的是()A.B.C.D.13.不等式组解集是()A.x>﹣5 B.x<3 C.﹣5<x<3 D.x<514.不等式组的解集表示在数轴上,正确的是()A.B.C.D.15.不等式组的解集是()A.x>3 B.x<3 C.x<2 D.x>216.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.17.不等式组的解集在数轴上表示为()A.B.C.D.18.不等式组的解集是()A.x>﹣2 B.x<1 C.﹣1<x<2 D.﹣2<x<119.不等式组的解集为()A.x≤2 B.x<4 C.2≤x<4 D.x ≥220.不等式组的解集是()A.x≤1 B.x≥2 C.1≤x≤2 D.1<x<2答案:CACCB CDAAA BACAA BCDCC。

鲁教版八年级上册数学期末试卷及答案(2)

鲁教版八年级上册数学期末试卷及答案(2)

鲁教版八年级上册数学期末试卷及答案(2)解得:x≠3.故选:C.【点评】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键.6.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是( )A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.7.若有意义,则的值是( )A. B.2 C. D.7【考点】二次根式有意义的条件.【分析】根据二次根式中的被开方数必须是非负数求出x的值,根据算术平方根的概念计算即可.【解答】解:由题意得,x≥0,﹣x≥0,∴x=0,则 =2,故选:B.【点评】本题考查的是二次根式有意义的条件以及算术平方根的概念,掌握二次根式中的被开方数必须是非负数是解题的关键.8.已知a﹣b=1且ab=2,则式子a+b的值是( )A.3B.±C.±3D.±4【考点】完全平方公式.【专题】计算题;整式.【分析】把a﹣b=1两边平方,利用完全平方公式化简,将ab=2代入求出a2+b2的值,再利用完全平方公式求出所求式子的值即可.【解答】解:把a﹣b=1两边平方得:(a﹣b)2=a2+b2﹣2ab=1,将ab=2代入得:a2+b2=5,∴(a+b)2=a2+b2+2ab=5+4=9,则a+b=±3,故选C【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.9.如图所示,平行四边形ABCD的周长为4a,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长是( )A.aB.2aC.3aD.4a【考点】平行四边形的性质.【分析】由▱ABCD的周长为4a,可得AD+CD=2a,OA=OC,又由OE⊥AC,根据线段垂直平分线的性质,可证得AE=CE,继而求得△DCE的周长=AD+CD.【解答】解:∵▱ABCD的周长为4a,∴AD+CD=2a,OA=OC,∵OE⊥AC,∴AE=CE,∴△DCE的周长为:CD+DE+CE=CD+DE+AE=CD+AD=2a.故选:B.【点评】此题考查了平行四边形的性质以及线段垂直平分线的性质.注意得到△DCE的周长=AD+CD是关键.10.已知xy<0,化简二次根式y 的正确结果为( )A. B. C. D.【考点】二次根式的性质与化简.【分析】先求出x、y的范围,再根据二次根式的性质化简即可.【解答】解:∵要使有意义,必须≥0,解得:x≥0,∵xy<0,∴y<0,∴y =y• =﹣,故选A.【点评】本题考查了二次根式的性质的应用,能正确根据二次根式的性质进行化简是解此题的关键.11.如图,小将同学将一个直角三角形的纸片折叠,A与B重合,折痕为DE,若已知AC=4,BC=3,∠C=90°,则EC的长为( )A. B. C.2 D.【考点】翻折变换(折叠问题).【分析】DE是边AB的垂直平分线,则AE=BE,设AE=x,在直角△BCE中利用勾股定理即可列方程求得x的值,进而求得EC的长.【解答】解:∵DE垂直平分AB,∴AE=BE,设AE=x,则BE=x,EC=4﹣x.在直角△BCE中,BE2=EC2+BC2,则x2=(4﹣x)2+9,解得:x= ,则EC=AC﹣AE=4﹣ = .故选B.【点评】本题考查了图形的折叠的性质以及勾股定理,正确理解DE是AB的垂直平分线是本题的关键.12.若关于x的分式方程无解,则常数m的值为( )A.1B.2C.﹣1D.﹣2【考点】分式方程的解;解一元一次方程.【专题】计算题;转化思想;一次方程(组)及应用;分式方程及应用.【分析】将分式方程去分母化为整式方程,由分式方程无解得到x=3,代入整式方程可得m的值.【解答】解:将方程两边都乘以最简公分母(x﹣3),得:1=2(x﹣3)﹣m,∵当x=3时,原分式方程无解,∴1=﹣m,即m=﹣1;故选C.【点评】本题主要考查分式方程的解,对分式方程无解这一概念的理解是此题关键.二、填空题:本大题共4小题,共16分,只要求填写最后结果,每小题填对得4分.13.将xy﹣x+y﹣1因式分解,其结果是(y﹣1)(x+1) .【考点】因式分解-分组分解法.【分析】首先重新分组,进而利用提取公因式法分解因式得出答案.【解答】解:xy﹣x+y﹣1=x(y﹣1)+y﹣1=(y﹣1)(x+1).故答案为:(y﹣1)(x+1).【点评】此题主要考查了分组分解法分解因式,正确分组是解题关键.14.腰长为5,一条高为3的等腰三角形的底边长为8或或3 .【考点】等腰三角形的性质;三角形三边关系.【分析】根据不同边上的高为3分类讨论,利用勾股定理即可得到本题的答案.【解答】解:①如图1.当AB=AC=5,AD=3,则BD=CD=4,所以底边长为8;②如图2.当AB=AC=5,CD=3时,则AD=4,所以BD=1,则BC= = ,即此时底边长为 ;③如图3.当AB=AC=5,CD=3时,则AD=4,所以BD=9,则BC= =3 ,即此时底边长为3 .故答案为:8或或3 .【点评】本题考查了等腰三角形的性质,勾股定理,解题的关键是分三种情况分类讨论.15.若x2﹣4x+4+ =0,则xy的值等于 6 .【考点】解二元一次方程组;非负数的性质:偶次方;非负数的性质:算术平方根;配方法的应用.【专题】计算题;一次方程(组)及应用.【分析】已知等式变形后,利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出xy的值.【解答】解:∵x2﹣4x+4+ =(x﹣2)2+ =0,∴ ,解得:,则xy=6.故答案为:6【点评】此题考查了解二元一次方程组,配方法的应用,以及非负数的性质,熟练掌握运算法则是解本题的关键.16.如图,在四边形ABCD中,AB=20,BC=15,CD=7,AD=24,∠B=90°,则∠A+∠C=180 度.【考点】勾股定理的逆定理;勾股定理.【分析】勾股定理的逆定理是判定直角三角形的方法之一.【解答】解:连接AC,根据勾股定理得AC= =25,∵AD2+DC2=AC2即72+242=252,∴根据勾股定理的逆定理,△ADC也是直角三角形,∠D=90°,故∠A+∠C=∠D+∠B=180°,故填180.【点评】本题考查了勾股定理和勾股定理的逆定理,两条定理在同一题目考查,是比较好的题目.三、解答题:本大题共6小题,共64分。

初二数学不等式习题(精华版)

初二数学不等式习题(精华版)
A.6折B.7折C.8折D.9折
6.如图是一个运行程序,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序进行了三次才停止,那么x的取值 范围是()
A.x≥11 B.11≤x<23 C.11<x≤23 D.x≤23
7.若x>y,则下列式子中错误的是( )
A. > B.x-3>y-3C. > D.-3x>-3y
初二不等式习题精华
1.下列说法不一定成立的是()
A.若a>b,则a+c>b+cB.若a+c>b+c,则a>b
C.若a>b,则ac2>bc2D.若ac2>bc2,则a>b
2.不等式 -3≥2(x-3)的非负整数解有()
A.4个B.3个C.2个D.1个
3.若关于x的不等式组 的解集为x<3,则a的取值范围是()
A.a>3 B.a≥3 C.a<3 D.a≤3
4.如果不等 式组 只有一个整数解,那么a的取值范围是()
A.3<a≤4 B.3≤a<4 C.4≤a<5 D.4<a≤5
5.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打()
8.若a,b是有理数,下列说法成立的是()
A.若a>b,则a2>b2B.若a2>b2,则a>bC.若a≠b,则|a|≠|b|D.若|a|≠|b|,则a≠b
9.若关于x的ቤተ መጻሕፍቲ ባይዱ等式组 有解,则a的取值范围是( )
A.a≤3 B.a<3 C.a<2 D.a≤2
10.若干学生分宿舍,每间4人余20人,每间8人有一间不空也不满,则宿舍有( )

【鲁教版】初二数学上期末模拟试题附答案(2)

【鲁教版】初二数学上期末模拟试题附答案(2)

一、选择题1.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9B .10C .13D .14 2.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = 3.分式242x x -+的值为0,则x 的值为( ) A .2- B .2-或2 C .2 D .1或2 4.下列计算正确的是( )A .1112a a a += B .2211()()a b b a +--=0 C .m n a -﹣m n a +=0 D .11a b b a+--=0 5.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( )A .41a +B .43a +C .63a +D .2+1a 6.如果多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,则a 的值为( ) A .52- B .52 C .5 D .-57.已知: 13m m +=, 则: 331m m +的值为( ) A .15 B .18C .21D .9 8.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34 B .54- C .12- D .549.如图,已知等腰ABC 的底角15C ︒∠=,顶点B 到边AC 的距离是3cm ,则AC 的长为( )A .3cmB .4cmC .5cmD .6cm10.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 11.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4 12.已知长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,则x 的值不可能是( )A .2.4B .3C .5D .8.5二、填空题13.化简23x x+=____. 14.如果分式126x x --的值为零,那么x =________ . 15.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 16.对于2(34)x y --的计算,追风学习小组进行了激烈的讨论,①小杰说只能用公式()2222a b a ab b -=-+;②小聪说可以看成普通的多项式乘以多项式即(34)(34)x y x y ----;③小懿说可以用公式222()2a b a ab b +=++但要看准谁是a 谁是b ;④小王说口算就是22916x y +;⑤小亮说可以转化计算2(34)x y +,你认为谁的说法正确请写出序号____.17.如图,点CD 在线段AB 的同侧,CA =6,AB =14,BD =12,M 为AB 中点,∠CMD =120°.则CD 的最大值为____.18.如图,在平面直角坐标系xOy 中,点B 的坐标为(2,0),若点A 在第一象限内,且AB =OB ,∠A =60°,则点A 到y 轴的距离为______.19.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.20.如图,△ABC 的面积为1,分别倍长(延长一倍)AB ,BC ,CA 得到△A 1B 1C 1,再分别倍长A 1B 1,B 1C 1,C 1A 1得到△A 2B 2C 2.…按此规律,倍长2020次后得到的△A 2020B 2020C 2020的面积为_____.三、解答题21.新冠肺炎疫情暴发后,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂工作,为了应对疫情,在每个工人每小时完成的工作量不变的前提下,已复工的工人加班生产,每天的工作时间由原来8个小时增加到10个小时.该公司原来每天能生产防护服800套,现在每天能生产防护服650套.(1)求该公司原来生产防护服的工人有多少人?(2)复工10天后,未到的7名工人到岗且同时加入了生产,每天生产时间仍然为10小时.为了支援灾区,公司复工后决定生产15500套防护服,问至少还需要多少天才能完成任务?22.先化简,再求值:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中a 与2,3构成ABC 的三边长,且a 为整数.23.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.24.如图,在平面直角坐标系中,每个小方格的边长为1,ABC 的三个顶点分别为()()4,3,3,()3,1,1A B C -.请在坐标系中标出,,A B C 三点,画出ABC ∆,并画出ABC ∆关于y 轴对称的图形111A B C ∆,写出点111,,A B C 的坐标.25.已知:直线EF 分别与直线AB ,CD 相交于点G ,H ,并且180AGE DHE ∠+∠=︒(1)如图1,求证://AB CD ;(2)如图2,点M 在直线AB ,CD 之间,连接GM ,HM ,求证:M AGM CHM ∠=∠+∠;(3)如图3,在(2)的条件下,射线GH 是BGM ∠的平分线,在MH 的延长线上取点N ,连接GN ,若N AGM ∠=∠,12M N FGN ∠=∠+∠,求MHG ∠的度数. 26.如图,已知:点P 是ABC ∆内一点.(1)求证:BPC A ∠>∠;(2)若PB 平分ABC ∠,PC 平分ACB ∠,40A ︒∠=,求P ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y ,∴32y m =-, ∵m≥1,分式方程13122my y y y --+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 2.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.3.C解析:C【分析】分式的值为零时,分子等于零,分母不等于零.【详解】解:依题意,得x 2-4=0,且x+2≠0,所以x 2=4,且x≠-2,解得,x=2.故选:C .【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.D解析:D【分析】直接根据分母不变,分子相加运算出结果即可.【详解】解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误; C 、原式=m n m n a ---=﹣2n a ,故错误; D 、原式=11a b a b ---=0,故正确. 故选D .【点睛】本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单. 5.C解析:C【分析】根据题意列出关系式,化简即可得到结果;【详解】根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C .【点睛】 本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.6.B解析:B【分析】把多项式的乘积展开,合并同类项,令含y 的一次项的系数为0,可求出a 的值.【详解】()2y a +()5y -=5y-y 2+10a-2ay=-y 2+(5-2a)y+10a ,∵多项式()2y a +与多项式()5y -的乘积中不含y 的一次项,∴5-2a=0,∴a=52.故选B .【点睛】本题考查了多项式乘多项式,解答本题的关键在于将多项式的乘积展开,令含y 的一次项的系数为0,得到关于a 的方程.7.B解析:B【分析】 把13m m +=两边平方得出221m m +的值,再把331m m+变形代入即可得出答案 【详解】 解:∵13m m+=, ∴219⎛⎫+= ⎪⎝⎭m m , ∴221=7+m m ∴()3232111=m+m 1+=371=18m m ⎛⎫⎛⎫+-⨯- ⎪⎪⎝⎭⎝⎭m m 故选:B【点睛】本题考查了完全平方公式的应用,熟练掌握公式是解题的关键8.B解析:B【分析】直接利用非负数的性质得出x ,y 的值,进而代入得出答案.【详解】∵|x +1|+(y−12)2=0, ∴x +1=0,y−12=0, 解得:x =−1,y =12, ∵2xy−(x +y )2=2xy−x 2−y 2−2xy =−x 2−y 2,∴当x =−1,y =12时, 原式=−(−1)2−(12)2=−1−14=−54. 故选:B .【点睛】 此题主要考查了非负数的性质,和完全平方公式,正确得出x ,y 的值是解题关键.9.D解析:D【分析】根据等腰三角形的性质,可得∠BAD=30°,再利用30度角所对直角边等于斜边的一半,求出AB即可.【详解】解:∵AB=AC,∴∠C=∠ABC=15°,∴∠BAD=30°,∵BD⊥AC,∴∠BDA=90°,∴AB=2BD,点B到边AC的距离是3cm,即BD=3cm,∴AB=2BD=6cm,故选:D.【点睛】本题考查了等腰三角形的性质和含30度角的直角三角形的性质,解题关键是利用等腰三角形的性质把已知的15°角转化为30度角.10.D解析:D【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标.【详解】∵△ABC是等边三角形AB=3-1=2∴点C到x轴的距离为1+⨯=+2212∴C(2,1+由题意可得:第1次变换后点C的坐标变为(2-1,1),即(1,1-,第2次变换后点C的坐标变为(2-21),即(0,1+第3次变换后点C的坐标变为(2-3,1),即(-1,1--第n次变换后点C的坐标变为(2-n,1)(n为奇数)或(2-n,1+为偶数),∴连续经过2021次变换后,等边ABC的顶点C的坐标为(-2019,1-,故选:D.【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规11.B解析:B【分析】先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边.12.D解析:D【分析】先根据三角形的三边之间的关系求解1<x <7,从而可得答案.【详解】 解: 长度分别为3cm ,4cm ,xcm 的三根小棒可以摆成一个三角形,43∴-<x <43+,1∴<x <7,x 的值不可能是8.5.故选:.D【点睛】本题考查的是三角形的三边之间的关系,掌握三角形的三边之间的关系是解题的关键.13.【分析】原式利用同分母分式的加法法则计算即可得到结果【详解】故答案为:【点睛】此题考查了分式的加减法熟练掌握运算法则是解本题的关键 解析:5x. 【分析】 原式利用同分母分式的加法法则计算即可得到结果.【详解】232+3x x x+=5x =. 故答案为:5x【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键. 14.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x -=,解方程即可得.【详解】由题意得:10x -=,解得1x =,分式的分母不能为零,260x ∴-≠,解得3x ≠,1x ∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键. 15.【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可.解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯ =1120. 故答案为:1120. 【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.16.①②③⑤【分析】根据多项式乘以多项式和完全平方公式计算即可【详解】①正确;②正确;③正确;④错误;⑤正确;故答案为:①②③⑤【点睛】此题考查了多项式乘以多项式和完全平方公式计算熟练掌握运算法则是解答解析:①②③⑤【分析】根据多项式乘以多项式和完全平方公式计算即可.【详解】①22222(34)(3)2(3)4(4)92416x y x x y y x xy y --=--⋅-⋅+=++,正确;②22222(34)(34)(34)(3)3443(4)92416x y x y x y x x y y x y x xy y --=----=-+⋅+⋅+=++,正确;③22222(34)(3)2(3)(4)(4)92416x y x x y y x xy y --=-+⋅-⋅-+-=++,正确; ④错误;⑤222222(34)(34)(3)234(4)92416x y x y x x y y x xy y --=+=+⋅⋅+=++,正确; 故答案为:①②③⑤【点睛】此题考查了多项式乘以多项式和完全平方公式计算,熟练掌握运算法则是解答此题的关键. 17.25【分析】作点A 关于CM 的对称点A 作点B 关于DM 的对称点B 证明△AMB 为等边三角形在根据两点之间线段最短即可解决问题【详解】解:作点A 关于CM 的对称点A 作点B 关于DM 的对称点B 如下图所示:∴∠1= 解析:25作点A关于CM的对称点A’,作点B关于DM的对称点B’,证明△A’MB’为等边三角形,在根据两点之间线段最短即可解决问题.【详解】解:作点A关于CM的对称点A’,作点B关于DM的对称点B’,如下图所示:∴∠1=∠2,∠3=∠4,∵∠CMD=120°,∴∠2+∠3=60°,即∠A’MB’=120°-60°=60°,又M为AB的中点,∴AM=MA’=MB’=MB,∴△A’MB’为等边三角形,∴A’B’=AM=7,由两点之间线段最短可知:CD≤CA’+A’B’+B’D=CA+AM+BD=6+7+12=25,故答案为:25.【点睛】本题主要考查了几何变换之折叠,等边三角形的判定和性质,两点之间线段最短等知识点,解题的关键是作点A关于CM的对称点A’,作点B关于DM的对称点B’,学会利用两点之间线段最短解决最值问题.18.1【分析】过A作AC⊥OB首先证明△AOB是等边三角形再求出OC的长即可【详解】解过A作AC⊥OB于点C∵AB=OB∠A=60°∴∠AOB=60°且△AOB是等边三角形∵点B的坐标为(20)∴OB=解析:1【分析】过A作AC⊥OB,首先证明△AOB是等边三角形,再求出OC的长即可.【详解】解,过A作AC⊥OB于点C,∵AB=OB ,∠A=60°∴∠AOB=60°且△AOB 是等边三角形,∵点B 的坐标为(2,0)∴OB=2∵AC ⊥OB ∴112122OC OB ==⨯= 故答案为:1.【点睛】 此题主要考查了坐标与图形的性质,掌握等边三角形的性质是解答此题的关键. 19.25°【分析】利用三角形内角和定理得出∠BAC 的度数进而得出∠ADC 的度数再利用三角形内角和定理和外角性质得出即可【详解】解:∵∠B=35°∠ACB=85°∴∠BAC=60°∵AD 平分∠BAC ∴∠B解析:25°【分析】利用三角形内角和定理得出∠BAC 的度数,进而得出∠ADC 的度数,再利用三角形内角和定理和外角性质得出即可.【详解】解:∵∠B=35°,∠ACB=85°,∴∠BAC=60°,∵AD 平分∠BAC ,∴∠BAD=30°,∴∠ADC=35°+30°=65°,∵∠EPD=90°,∴∠E 的度数为:90°-65°=25°.故答案为:25°.【点睛】此题主要考查了三角形内角和定理以及角平分线的性质和三角形外角的性质,根据已知得出∠BAD 度数是解题关键.20.72020【分析】连接AB1BC1CA1根据等底等高的三角形面积相等可得=7S △ABC 由此即可解题【详解】连接AB1BC1CA1根据等底等高的三角形面积相等△A1BC △A1B1C △AB1C △AB1C解析:72020【分析】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,可得111A B C S △=7S △ABC ,由此即可解题.【详解】连接AB 1、BC 1、CA 1,根据等底等高的三角形面积相等,△A 1BC 、△A 1B 1C 、△AB 1C 、△AB 1C 1、△ABC 1、△A 1BC 1、△ABC 的面积都相等, 所以,111A B C S △=7S △ABC ,同理222A B C S △=7111A B C S △=72S △ABC ,依此类推,△A 2020B 2020C 2020的面积为=72020S △ABC ,∵△ABC 的面积为1,∴202020202020A S B C =72020.故答案为:72020.【点睛】本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.三、解答题21.(1)原来生产防护服的工人有20人;(2)至少还需要生产9天才能完成任务.【分析】(1)设原来生产防护服的工人有x 人,根据每人每小时完成的工作量不变列出关于x 的方程,求解即可;(2)设还需要生产y 天才能完成任务.根据前面10天完成的工作量+后面y 天完成的工作量≥15500列出关于y 的不等式,求解即可.【详解】解:(1)设原来生产防护服的工人有x 人, 由题意得,800650810(7)x x =-, 解得:x=20.经检验,x=20是原方程的解.答:原来生产防护服的工人有20人;(2)设还需要生产y 天才能完成任务.每人每小时生产防护服的数量为:8005820=⨯套, 106502051015500y ⨯+⨯⨯≥,解得x≥9,答:至少还需要生产9天才能完成任务.【点睛】本题考查分式方程的应用,一元一次不等式的应用,分析题意,找到合适的数量关系是解决问题的关键.22.224a a -,6【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出a 的值,代入计算即可求出值.【详解】 解:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭ ()22244422a a a a a a ---=÷-- ()()224224a a a a a --=⋅-- 224a a =-.∵a 与2,3构成ABC 的三边长,∴ 3232a -<<+,即15a <<.∵ a 为整数,∴ a 为2或3或4.当2a =时,分母20a -=(舍去);当4a =时,分母40a -=(舍去).故a 的值只能为3.∴当3a =时,222423436a a -=⨯-⨯=.【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.23.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.24.图见解析;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【分析】先在平面直角坐标系中画出,,A B C 三点,顺次连接即可;再按照轴对称的性质,画出它们的对称点即可.【详解】解:如图所示,111,ABC A B C ∆∆,即为所求;点111,,A B C 的坐标分别为()()–4,3,3,3--,()1,1-【点睛】本题考查了在平面直角坐标系中描点和画轴对称图形,关于y 轴对称点的坐标变化规律,解题关键是正确描点和画对称点.25.(1)见解析;(2)见解析;(3)60°【分析】(1)推出同旁内角互补即可(2)如图,过点M 作//MR AB ,利用平行线性质推出////AB CD MR .得GMR AGM ∠=∠,HMR CHM ∠=∠.利用角的和M GMR HMR ∠=∠+∠代换即可.(3)如图,令2AGM α∠=,CHM β∠=,由N AGM ∠=∠推得2N α∠=,2M αβ∠=+,由射线GH 是BGM ∠的平分线,推得1902FGM BGM α∠=∠=︒-, 则90AGH AGM FGM α∠=∠+∠=︒+,由12M N FGN ∠=∠+∠,求出2FGN β∠=,过点N 作//HT GN ,由平行线的性质22GHM MHT GHT αβ∠=∠+∠=+,求出∠CHG 23αβ=+,利用//AB CD 的性质180AGH CHG ∠+∠=︒,即9023180ααβ︒+++=︒,求出30αβ+=︒,再求()260MHG αβ∠=+=︒即可.【详解】(1)证明:如图,∵180AGE DHE ∠+∠=︒,AGE BGF ∠=∠.∴180BGF DHE ∠+∠=︒,∴//AB CD .(2)证明:如图,过点M 作//MR AB ,又∵//AB CD ,∴////AB CD MR .∴GMR AGM ∠=∠,HMR CHM ∠=∠.∴M GMR HMR AGM CHM ∠=∠+∠=∠+∠;(3)解:如图,令2AGM α∠=,CHM β∠=,∵N AGM ∠=∠则2N α∠=,2M αβ∠=+,∵射线GH 是BGM ∠的平分线, ∴()111809022FGM BGM AGM α∠=∠=︒-∠=︒-, ∴29090AGH AGM FGM ααα∠=∠+∠=+︒-=︒+, ∵12M N FGN ∠=∠+∠, ∴1222FGN αβα+=+∠, ∴2FGN β∠=,过点N 作//HT GN ,则2MHT N α∠=∠=,2GHT FGN β∠=∠=, ∴22GHM MHT GHT αβ∠=∠+∠=+,∴CHG CHM MHT GHT ∠=∠+∠+∠2223βαβαβ=++=+, ∵//AB CD ,∴180AGH CHG ∠+∠=︒,∴9023180ααβ︒+++=︒,∴30αβ+=︒,∴()260MHG αβ∠=+=︒.【点睛】本题主要考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造内错角,和同位角,利用两直线平行,内错角相等,同位角相等来计算是解题关键.26.(1)证明见解析;(2)110°【分析】(1)延长BP交AC于D,根据△PDC外角的性质知∠BPC>∠1;根据△ABD外角的性质知∠1>∠A,所以易证∠BPC>∠A.(2)由三角形内角和定理求出∠ABC+∠ACB=140°,由角平分线和三角形内角和定理即可得出结果.【详解】(1)延长BP交AC于D,如图所示:∵∠BPC是△CDP的一个外角,∠1是△ABD的一个外角,∴∠BPC>∠1,∠1>∠A,∴∠BPC>∠A;(2)在△ABC中,∵∠A=40°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣40°=140°,∵PB平分∠ABC,PC平分∠ACB,∴∠PBC=12∠ABC,∠PCB=12∠ACB,在△PBC中,∠P=180°﹣(∠PBC+∠PCB)=180°﹣(12∠ABC+12∠ACB)=180°﹣12(∠ABC+∠ACB)=180°﹣12×140°=110°.【点睛】此题主要考查了三角形的外角性质、三角形内角和定理、三角形的角平分线定义;熟练掌握三角形的外角性质和三角形内角和定理是解决问题的关键.。

八年级鲁教版数学试卷答案

八年级鲁教版数学试卷答案

一、选择题1. 下列各数中,绝对值最小的是()A. -3B. 2C. -1D. 0答案:D2. 如果a < b,那么下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 > b - 1C. a + 1 > b + 1D. a - 1 < b - 1答案:A3. 已知函数y = 2x - 3,当x = 4时,y的值为()A. 1B. 5C. 7D. 9答案:C4. 在直角坐标系中,点A(2,3)关于x轴的对称点B的坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)答案:A5. 一个长方形的长是12cm,宽是8cm,它的对角线长是()A. 20cmB. 24cmC. 28cmD. 30cm答案:B二、填空题6. 若a = 3,b = -2,则a - b = _______。

答案:57. 若a = -4,b = 5,则a^2 + b^2 = _______。

答案:418. 已知一元二次方程x^2 - 5x + 6 = 0,它的两个根是x1 = _______,x2 = _______。

答案:x1 = 2,x2 = 39. 在△ABC中,∠A = 60°,∠B = 45°,则∠C = _______°。

答案:75°10. 一辆汽车以每小时60公里的速度行驶,行驶了3小时后,它行驶的距离是_______公里。

答案:180公里三、解答题11. 解下列方程:(1)3x - 5 = 2x + 1(2)5(x - 2) = 2(x + 3) - 4答案:(1)x = 6(2)x = 912. 已知二次函数y = ax^2 + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(-1,2),求函数的表达式。

答案:y = x^2 + 2x + 113. 在△ABC中,AB = 5cm,BC = 8cm,AC = 10cm,求△ABC的面积。

2018鲁教版初二数学第十一章一元一次不等式(组)课堂检测题

2018鲁教版初二数学第十一章一元一次不等式(组)课堂检测题

2018鲁教版初二数学第十一章一元一次不等式(组)课堂检测题1. 不等式组1321x x x+<⎧⎨->⎩的解集是【 】A. 1x >B. 2x <C. 12x ≤≤D. 12x <<2. 解不等式21x x ≥-,并把解集在数轴上表示【 】A. B. C. D.3. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】 A. 2a ≥ B. 2a ≤ C. 2a > D. 2a <4. 使不等式12x -≥与37<8x -同时成立的x 的整数值是【 】A. 3,4B. 4,5C. 3,4,5D. 不存在5. 已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.6. 已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组103<0x x -≥⎧⎨-⎩,且x 为整数时,求A 的值.7. 已知反比例函数7m y x-=的图象的一支位于第一象限. (1)判断该函数图象的另一支所在的象限,并求m 的取值范围; (2)如图,O 为坐标原点,点A 在该反比例函数位于第一象限的图象上,点B与点A 关于x 轴对称,若OAB ∆的面积为6,求m 的值.8. 某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?9. 已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.答案:1. 不等式组1321x x x+<⎧⎨->⎩的解集是【 】A. 1x >B. 2x <C. 12x ≤≤D. 12x <<【答案】D.【考点】解一元一次不等式组.【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).因此,13212211x x x x x x +<<⎧⎧⇒⇒<<⎨⎨->>⎩⎩. 故选D.2. 解不等式21x x ≥-,并把解集在数轴上表示【 】A.B. C. D. 【答案】B.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】由21x x ≥-解得1x ≥-. 不等式的解集在数轴上表示的方法:>,≥向右画;<,≤向左画,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示. 因此不等式1x ≥-在数轴上表示正确的是B. 故选B.3. 若关于x 的方程2904x x a +-+=有两个不相等的实数根,则实数a 的取值范围是【 】 A. 2a ≥ B. 2a ≤ C. 2a > D. 2a <【答案】C.【考点】一元二次方程根的判别式;解一元一次不等式.【分析】∵关于x 的方程2904+-+=x x a 有两个不相等的实数根, ∴291404⎛⎫∆=-+> ⎪⎝⎭-a ,即1+4a -9>0,解得2>a . 故选C.4. 使不等式12x -≥与37<8x -同时成立的x 的整数值是【 】A. 3,4B. 4,5C. 3,4,5D. 不存在【答案】A.【考点】二元一次不等式组的整数解.【分析】∵1233<537<8<5x x x x x -≥≥⎧⎧⇒⇒≤⎨⎨-⎩⎩,∴使不等式12x -≥与37<8x -同时成立的x 的整数值是3,4.故选A.5. 已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.【答案】解:(1)∵关于x 的方程2220x x a ++-=有两个不相等的实数根,∴()2242>0a ∆=--,解得,<3a . (2)∵该方程的一个根为1,∴1220a ++-=,解得,1a =-.∴原方程为2230x x +-=,解得121,3x x ==- .∴1a =-,方程的另一根为3-.【考点】一元二次方程的根和根的判别式;解一元二次方程和一元一次不等级式.【分析】(1)由方程有两个不相等的实数根,根据根的判别式大于0得到关于a 的不等级式,解之即可.(2)当该方程的一个根为1时,代入方程即可求得a 的值,从而得到方程,解之即得另一根.6. 已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组103<0x x -≥⎧⎨-⎩,且x 为整数时,求A 的值. 【答案】解:(1)()()()2221211111111111x x x x x x x A x x x x x x x x ++++=-=-=-=--+-----. (2)解10x -≥得1x ≥;解3<0x -得<3x ,∴103<0x x -≥⎧⎨-⎩的解为1<3x ≤. ∵x 为整数,∴1,2x = .当1x =时,分式无意义;当2x =时,1121A ==-. 【考点】分式的化简求值;解一元一次不等式组;分式有意义的条件;分类思想的应用.【分析】(1)被减式分了分母因式分解后约分,进行同分母的减法即可.(2)解一元一次不等式组,求出整数解,根据分式分母不为0的条件选择恰当的x 值代入求A 的值.7. 已知反比例函数7m y x-=的图象的一支位于第一象限. (1)判断该函数图象的另一支所在的象限,并求m 的取值范围; (2)如图,O 为坐标原点,点A 在该反比例函数位于第一象限的图象上,点B 与点A 关于x 轴对称,若OAB ∆的面积为6,求m 的值.【答案】解:(1)∵反比例函数7m y x-=的图象的一支位于第一象限, ∴该函数图象的另一支位于第三象限.∴7>0m -,解得>7m .∴m 的取值范围为>7m .(2)设7,m A a a -⎛⎫ ⎪⎝⎭, ∵点B 与点A 关于x 轴对称,∴()27m AB a-=. ∵OAB ∆的面积为6,∴()27162m a a-⋅⋅=,解得13m =. 【考点】反比例函数综合题;解一元一次不等式;轴对称点的性质.【分析】(1)根据反比例函数()0k y k x=≠的性质:当0k >时,图象分别位于第一、三象限;当0k <时,图象分别位于第二、四象限.由反比例函数7m y x-=的图象的一支位于第一象限,得另一支位于第三象限,得到7>0m -,解之即可.(2)设7,m A a a -⎛⎫ ⎪⎝⎭,根据“关于x 轴对称的点的坐标特征是横坐标相同,纵坐标互为相反数”得到AB 的长,根据OAB ∆的面积为6列方程求解即可.8. 某电器商场销售A ,B 两种型号计算器,两种计算器的进货价格分别为每台30元,40元. 商场销售5 台A 型号和1台B 型号计算器,可获利润76元;销售6台A 型号和3台B 型号计算器,可获利润120元.(1)求商场销售A ,B 两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A ,B 两种型号计算器共70台,问最少需要购进A 型号的计算器多少台?【答案】解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y . 答:A ,B 两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A 型号的计算a 台,得3040(70)2500+-≥a a ,解得30≥a .答:最少需要购进A 型号的计算器30台.【考点】二元一次方程组和一元一次不等式的应用(销售问题).【分析】(1)要列方程(组),首先要根据题意找出存在的等量关系,本题设A ,B 型号的计算器的销售价格分别是x 元,y 元,等量关系为:“销售5 台A 型号和1台B 型号计算器的利润76元”和“销售6台A 型号和3台B 型号计算器的利润120元”.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题设最少需要购进A 型号的计算a 台,不等量关系为:“购进A ,B 两种型号计算器共70台的资金不多于2500元”.9. 已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a 的值及方程的另一根.【答案】解:(1)∵关于x 的方程2220x x a ++-=有两个不相等的实数根,∴()2242>0a ∆=--,解得,<3a . (2)∵该方程的一个根为1,∴1220a ++-=,解得,1a =-.∴原方程为2230x x +-=,解得121,3x x ==- .∴1a =-,方程的另一根为3-.【考点】一元二次方程的根和根的判别式;解一元二次方程和一元一次不等级式.【分析】(1)由方程有两个不相等的实数根,根据根的判别式大于0得到关于a 的不等级式,解之即可.(2)当该方程的一个根为1时,代入方程即可求得a 的值,从而得到方程,解之即得另一根.。

鲁教版2019—2020八年级数学第二章分式与分式方程单元测试题2(附答案详解)

鲁教版2019—2020八年级数学第二章分式与分式方程单元测试题2(附答案详解)

鲁教版2019—2020八年级数学第二章分式与分式方程单元测试题2(附答案详解)1.要使分式的值为0,则x的值为( )A.3或-3 B.3 C.-3 D.22.下列各式中,正确的是()A.-=B.-=C.=D.-=3.某单位向一所希望小学赠送1080件文具,现用A,B两种不同的包装箱进行包装,已知每个B型包装箱比A型包装箱多装15件文具,单独使用B型包装箱比单独使用A型包装箱可少用12个,设B型包装箱每个可以装x件文具,根据题意列方程为( )A.B.C.D.4.化简的结果是()A.B.C.D.5.空气的密度(单位体积内空气的质量)是0.00129g/cm3,用科学记数法表示0.00129为( ) A.1.29×10-3B.0.129×10-3C.0.129×10-2D.1.29×10-26.在,,,中,分式的个数为()A.B.C.D.7.若关于x的方程有增根,则m的值是().A.B.C.D.8.下列等式成立的是( )A.=0 B.=-1 C.-D.=09.计算的结果是()A.B.C.D.10.下列运算正确的是()A.B.C.D.11.计算:________.12.对于实数,b定义一种新运算“”:,例如,.则方程的解是_______.13.若关于x的分式方程有增根,则m的值为___.14.若有增根,则m=______15.计算﹣22×(2018﹣2019)0÷2﹣2的结果是_____.16.计算:﹣(﹣2)+2﹣2=_____.17.某项工程限期完成,甲单独做提前1天完成,乙单独做延期2天完工,现两人合作1天后,余下的工程由乙队单独做,恰好按期完工,求该工程限期___________天.18.关于x的分式方程的解不小于1,则m的取值范围是_____.19.分式的最简公分母是________20.若关于x的方程的解为整数,且不等式组无解,则所有满足条件的非负整数a的和为_____.21.服装厂准备为某中学加工470套运动装,在加工完200套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了17天完成任务,问原计划每天加工服装多少套?22.已知,求代数式的值.23.解下列分式方程:(1)(2).24.先化简,再求值:,其中25.(1)解方程:. (2)求不等式组:.26.计算:2﹣1+|﹣3|﹣(1﹣)027.已知,有一组不为零的数 a ,b ,c ,d ,e ,f ,m ,满足,求解:∵a=bm ,c=md ,e=fm∴利用数学的恒等变形及转化思想,试完成:(1)244,333,422的大小关系是________;(2)已知 a ,b ,c 不相等且不为零,若,求的值.28.先化简,再求值:24511(1)()1a a a a a a -+-÷---,其中a 是不等式组2133211(1)()323x x x x +<+⎧⎪⎨-≤+⎪⎩的一个非负整数解.参考答案1.C【解析】【分析】要使分式为0,需分母不为0,分子为0,故-9=0,-+60.【详解】依题意,得x=3,x2,x3,∴x=-3.【点睛】此题主要考察分式为0的条件.2.D【解析】【分析】根据等式的性质即可一一判断.【详解】A、-=,故本选项不符合题意;B、-=,故本选项不符合题意;C、=,故本选项不符合题意;D、-=,故本选项符合题意;故选:D.【点睛】本题考查等式的性质,解题的关键是记住:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.3.B【解析】【分析】充分理解题意,列出方程,要使列出的方程能充分表达题意.【详解】根据题意,得:=−12,故答案选B.【点睛】本题考查的知识点是由实际问题抽象出分式方程,解题的关键是熟练的掌握由实际问题抽象出分式方程.4.B【解析】【分析】根据分式的运算法则即可求出答案.【详解】解:原式==故选:B.【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.5.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00129这个数用科学记数法可表示为1.29×10-3.故选:A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.B【解析】【分析】利用分式的定义:分母中含有字母,判断即可得到结果.【详解】解:在所列的个代数式中,分式的是和这个,故选:B.【点睛】此题考查了分式的定义,熟练掌握分式的定义是解本题的关键.7.B【解析】【分析】方程两边都乘以最简公分母(x-3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.【详解】方程两边都乘以(x−3)得,2−x−m=2(x−3),∵分式方程有增根,∴x−3=0,解得x=3,∴2−3−m=2(3−3),解得m=−1.故选:B.【点睛】考查分式方程的增根,掌握增根的概念,写出方程的增根是解题的关键.8.B【解析】【分析】根据分式的性质来计算、约分即可.【详解】A. =1,故错误;B. =-1,故正确;C. -,故错误;D. =,故错误;选B.【点睛】此题主要考察分式的运算.9.D【解析】【分析】根据分式的运算法则进行计算即可.【详解】,故选D.【点睛】本题主要考查分式的运算,熟练掌握分式的运算法则是解答的关键.10.C【解析】【分析】根据负整数指数幂,同底数幂的除法,幂的乘方,零指数幂的运算法则计算即可判断.【详解】3-1=,A错误;a5÷a-2=a7,B错误;(a-1)-3=a3,C正确;(-20)0=1,D错误;故选:C.【点睛】本题考查了负整数指数幂,同底数幂的除法,幂的乘方,零指数幂的运算,掌握它们的运算法则是解题的关键.11.【解析】【分析】根据负整数指数幂的意义计算即可.【详解】.故答案为:.【点睛】本题考查了负整数指数幂的运算,任何不等于0的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数,即(a≠0,p是正整数);0的负整数指数幂没有意义.12.x=5【解析】【分析】根据:,把转化为分式方程求解即可.【详解】∵,∴可变为:,解之得x=5.经检验x=5符合题意,∴方程的解是x=5.【点睛】本题考查了新定义运算,熟练掌握分式方程的解法是解答本题的关键,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验. 13.1.【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-3=0,得到x=3,然后代入化为整式方程的方程算出m的值.【详解】方程两边都乘x﹣3,得x﹣3m=2m(x﹣3)∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,当x=3时,m=1故m的值是1,故答案为:1.【点睛】本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.-2【解析】【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出未知字母的值.【详解】方程两边都乘(x-3),得x-2(x-3)=1-m,∵方程有增根,∴最简公分母x-3=0,即增根是x=3,把x=3代入整式方程,得m=-2.故答案是:-2.【点睛】解决增根问题的步骤:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.15.-16【解析】【分析】原式利用零指数幂、负整数指数幂法则计算即可求出值.【详解】原式=﹣4×1÷=﹣16,故答案是:﹣16【点睛】考查了实数的运算,熟练掌握运算法则是解本题的关键.16.214.【解析】【分析】根据有理数的运算法则和负指数幂意义进行分析即可. 【详解】﹣(﹣2)+2﹣2=2+14=214.故答案为:214.【点睛】考核知识点:负指数幂运算.理解运算法则是关键.17.x=4【解析】【分析】设该工期限期天,根据“两队合作1天后,余下的工程由乙队单独做,恰好按期完工”可列出;接下来根据分式方程的解法解分式方程即可得到答案,注意分式方程要验根检验.【详解】设该工期限期天,根据题意得,解得,经检验是原方程的解.故该工期限期4天.故答案为:.【点睛】本题考查了分式方程的应用,熟练掌握分式方程的应用是本题解题的关键.18.m≥5且m≠.【解析】【分析】分式方程去分母转化成整式方程,表示出整式方程的解,根据分式方程的解不小于1结合分式有意义的条件即可求出m的取值范围.【详解】方程两边同时乘以(x+3)(x-2),得:x2﹣2x﹣x2﹣4x﹣3=x﹣2m,解得:x=,由方程的解不小于1,得到≥1且≠2,解得:m≥5且m≠,故答案为:m≥5且m≠.【点睛】本题考查了解分式方程,解一元一次不等式组,正确理解分式方程的解是解题的关键. 19.12x3yz【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】因为三分式中常数项的最小公倍数12,x的最高次幂为3,y、z的最高次幂都为1,所以最简公分母是12x3yz.故答案为:12x3yz.【点睛】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.20.7【解析】【分析】先把a当常数解分式方程,x=,再将a当常数解不等式组,根据不等式组无解得:a≤5,找出当a为非负整数时,x也是整数的值时,确定a的值并相加即可.【详解】解:,去分母,方程两边同时乘以x﹣3,ax=3+a+x,x=,且x≠3,,由①得:x>5,由②得:x<a,∵不等式组无解,∴a≤5,当a=0时,x==﹣3,当a=1时,x=无意义,当a=2时,x==5,当a=3时,x==3分式方程无解,不符合题意,当a=4时,x==,当a=5时,x==2,∵x是整数,a是非负整数,∴a=0,2,5,所有满足条件的非负整数a的和为7,故答案为:7【点睛】考查了解分式方程、一元一次不等式组的解的情况,求出分式方程和不等式组的解是解本题的关键,要注意分式方程有意义,即分母不为0.21.原计划每天加工服装25套【解析】【分析】设原计划每天加工x套,则采用了新技术之后,每天加工1.2x套,根据题中等量关系可列方程.【详解】.解:设原计划每天加工服装x套,根据题意得解得:x=25经检验: x=25是原方程的解并且符合题意.答:原计划每天加工服装25套.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.22.4.【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【详解】,,,,,,∵∴∴原式【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.(1);(2)分式方程无解【解析】【分析】(1)先根据分式的基本性质把分子、分母化整,然后分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)方程整理得:﹣=40,去分母得:40x=30,解得:x=,经检验x=是分式方程的解;(2)去分母得:2+2x=5x+5,移项合并得:3x=﹣3,解得:x=﹣1,经检验x=﹣1是增根,分式方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.24.【解析】【分析】先算括号内的,再算除法,最后把a、b的值代入进行计算即可.【详解】原式=当时,原式=【点睛】本题考查的是分式的化简求值,在解答此类题目时要注意把分式化为最简形式,以简化计算.25.(1)x=1;(2)﹣1≤x<1【解析】【分析】(1)根据解分式方程的步骤解方程即可,注意检验.(2)可先根据一元一次不等式的解法分别解不等式,找出解集的公共部分即可.【详解】解:(1)(x+1)(x-2)+x=x(x-2)解得:x=1;检验:x=1是原方程的根(2)解①x≥﹣1,②x<1,∴原不等式组的解集是﹣1≤x<1.【点睛】考查分式方程的解法以及解一元一次不等式组,掌握它们的解题步骤是解题的关键.26.3【解析】【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质分别化简进而得出答案.【详解】=+3﹣1=4﹣1=3.【点睛】考查了实数运算,正确化简各数是解题关键.27.(1)333>244=422;(2)【解析】【分析】(1)先将各式转化成幂相同的指数式,再来比较大小.(2)根据题意可得a+b=3ab,b+c=4bc,a+c=5ac,即(a+b)c=3abc,(b+c)a=4abc,(a+c)b=5abc,再把三个式子相加、计算即ab+bc+ac=6abc,从而即可得证.【详解】(1)解(1)∵244=(24)11=1611,333=(33)11=2711,422=(42)11=1611,∴2711>1611=1611,即333>244=422.故答案为:333>244=422.(2)解:∵∴a+b=3ab ,b+c=4bc ,a+c=5ac , ∴(a+b )c=3abc ,(b+c )a=4abc ,(a+c )b=5abc ,即ac+bc=3abc ,ab+ac=4abc ,ab+bc=5abc ,∴2(ab+bc+ac )=12abc ,即ab+bc+ac=6abc , ∴.【点睛】本题主要考查了幂的大小比较的方法,以及分式的运算,解题的关键是熟练运用分式的运算法则,一般说来,比较几个幂的大小,或者把它们的底数变得相同,或者把它们的指数变得相同,再分别比较它们的指数或底数.28.a(a ﹣2);3,8或15.【解析】【分析】本题应该分成两个部分来完成,先对分式进行化简,再根据不等式组求出其非负整数解,最后进行代入求值即可.【详解】 24511(1)()1a a a a a a -+-÷--- =(1)(1)451111(1)(1)a a a a a a a a a a ⎡⎤+---⎡⎤-÷-⎢⎥⎢⎥----⎣⎦⎣⎦=a(a ﹣2), 又由不等式组2133211(1)()323x x x x +<+⎧⎪⎨-≤+⎪⎩可得25x x >-⎧⎨≤⎩, 即该不等式组的解集为﹣2<x≤5,∵a 是该不等式组的一个非负整数解,而由上式化简过程可知a≠0,a ﹣1≠0,a ﹣2≠0,∴a≠0,1,2,故在解集﹣2<x≤5中可取a=3,4,5,若a=3,得a(a﹣2)=3×1=3;若a=4,t得a(a﹣2)=4×2=8;若a=5,得a(a﹣2)=5×3=15故上式的值可以是3,8或15.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档