《高等数学》期末试卷1(同济六版上)及参考答案[2]
高等数学期末试题(含答案)

高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
同济大学 第六版 高数练习册答案 上册

高等数学习题解答第一章(7-11) 第六节 极限存在准则 两个重要极限1.0;1;1;0;2;2/32. 1-e ;1432;0;;;--e e e e3. 证明:{n x }显然单调递增,1x 3≤,若31≤-n x ,则n x ≤33+≤3∴ {n x }单调有界,∴{n x }收敛,不妨设∞→n lim n x =a , 则有 a =3+a ,解得,a =(1+13)/2,2)131(-=a∴2)131(lim +=∞→n n x4. 解:1)12111(22222+≤++++++≤+n n nn n n n n n11limlim22=+=+∞→∞→n nn n n n n∴1)12111(lim 222=++++++∞→nn n n n第七节 无穷小的比较1.(B )2. (A )3. 证明: 令t x sin = , 1sin lim arcsin lim00==→→ttx x t x∴当0→x 时,x x ~arcsin 。
4. 解:(1)0lim →x x x 25tan =0lim →x x x 25=25(2)0lim →x ())cos 1(arcsin 2x x x -=0lim →x 222x x x =∞(3)0lim →x x x )sin 21ln(-=0lim→x 2sin 2-=-xx(4)0lim →x =-+1)21ln(3x e x 3232lim 0=→x x x(5)0lim→x x x x 3sin sin tan -=0lim →x =-xx x x cos )cos 1(sin 30lim →x 322xx x=1/2(6)0lim →x ⎪⎭⎫ ⎝⎛-x x tan 1sin 1=0lim →x x x sin cos 1-=0lim →x 022=x x (7)431)3tan arctan (lim 220=+=+++→nn n n n a n n第八节 函数的连续性与间断点1. 0 ;2. 充要;3. 2;4. D5. B6. C7. 解:12121lim 1212lim )(lim0=+-=+-=--+∞→+∞→→+t tt t t t x x f1)(lim 0-=-→x f x ∴ )(x f 在x=0 不连续,且x=0 为函数)(x f 的第一类间断点。
同济大学版高等数学期末考试试卷

《高数》试卷1 (上)(A) y =x —1 (B ) y=_(x 1) (C ) y = I n X -1x -1 ( D ) y = x4•设函数f x =|x|,则函数在点x=0处( )5 .点x = 0是函数y = x 4的( )16.曲线y的渐近线情况是( ).|x|(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.f — _2dx 的结果是().l x /Xf 1 Lf 1 L CLf 1 L (A ) f 一丄 C(B ) —f -丄 C (C ) f 1 C (D ) 一 f - CI X 丿 I X 丿 l x 丿J x 丿dx& 匚出的结果是().e e(A ) arctane x C (B ) arctane" C (C ) e xC (D ) ln(e x e^) C9.下列定积分为零的是().1.下列各组函数中 ,是相同的函数的是 ( ).(A ) f (x ) = lnx 2 和 g (x ) = 2lnX(B )f( x ) =| x|和g (x )=J?(C ) f (X )=X和 g (x ) = (T X )(D )f (X )=|x|和Xg (x )“Jsinx+4 -2x 式02.函数 f (X )= *In (1 +x )在X = 0处连续,则 a =( )ax = 0(A ) 0( B 1 - (C ) 1(D ) 243•曲线y = xln x 的平行于直线x - y T = 0的切线方程为()(A )连续且可导 (B )连续且可微(C )连续不可导(D )不连续不可微(A )驻点但非极值点(B )拐点 (C )驻点且是拐点(D )驻点且是极值点「•选择题(将答案代号填入括号内,每题 3分,共30分)10.设f x 为连续函数,则 o f ' 2x dx 等于(1 _ 1(A )f 2-f 0(B )^-f 11 -f 0 (C )p 二•填空题(每题 4分,共20 分)dx②.罟予a 0JI(A )]学買弘(B ) txarcsinxdx (C )1 x 21e x■ e■_1_xdx 2x sin x dx1.设函数f x 二 x^0在x =0处连续, x = 02. 已知曲线y = f x 在x =2处的切线的倾斜角为3.4.Xy =— 的垂直渐近线有x -1 dx 5.x 1 In 2xi ,ix sin x cosx dx =~2"三.计算(每小题 5分,共30分) 求极限 (1+x ¥x迎CT 丿1.2. 3. ②lim x )0x -sin xx 2x e -1求曲线y =ln x y 所确定的隐函数的导数 y x .求不定积分 四.应用题(每题 10分,共20分) 1.作出函数y =x 3 -3x 2的图像._f 2 - f 0(D )dxxe^dx《高数》试卷1参考答案一•选择题1. B2. B3. A 4• C 5. D 6. C 7• D 8. A 9• A 10. C二.填空题1. -22.3.24. arcta nln x c5.23三.计算题2 I 11①e ②一2. y x 二 --------------6 x + y_13.①丄ln| 口| C ② In | x2- a2x| C ③-e」x 1 C2 x+3四.应用题1.略2. S =18x - a。
同济大学《高等数学》期末试卷及参考答案

⎰ ⎰⎰⎰⎰⎰⎰ ∞n ⎩x n !同济大学2020年数学系《高等数学》第二学期期末考试试卷一、单选题(共 15 分,每小题 3 分)1.设函数 f (x , y ) 在 P (x 0 , y 0 ) 的两个偏导 f x (x 0 , y 0 ) , f y (x 0 , y 0 )都存在,则 ()A . f (x , y ) 在 P 连续B . f (x , y ) 在 P 可微C . lim f (x , y 0 ) 及x →x 0lim y → y 0f (x 0 , y ) 都存在D .lim ( x , y )→( x 0 , y 0 )f (x , y ) 存在2.若 z = y ln x ,则 dz 等于( ). y ln x ln y y ln x ln y y ln x ln yA . +B .x yxC . y ln xln ydx + y ln x ln y xdy D .y ln x ln y y ln x ln x dx + x ydy 3.设Ω 是圆柱面 x2+ y 2 = 2x 及平面 z = 0, z = 1所围成的区域,则 ⎰⎰⎰ Ωf (x , y , z )dxdydz = ().A.π2d θ2cos θ dr 1f (r cos θ , r sin θ , z )dzB.π2d θ2cos θrdr 1f (r cos θ , r sin θ , z )dz0 π22cos θ1π2cos x1C. -π 2d θ ⎰0rdr ⎰0 f (r cos θ , r sin θ , z )dzD .⎰0 d θ ⎰0rdr ⎰0f (r cos θ , r sin θ , z )dz4.4.若∑a (x -1)n在 x = -1处收敛,则此级数在 x = 2 处().n =1A.条件收敛 B . 绝对收敛 C . 发散 D . 敛散性不能确定⎧x - y + z = 25.曲线⎨ z = x 2 + y 2在点(1,1,2)处的一个切线方向向量为( ).A. (-1,3,4)B.(3,-1,4)C. (-1,0,3)D. (3,0,-1)二、填空题(共 15 分,每小题 3 分)1.设 x + 2 y - 2xyz = 0 ,则 z '(1,1) = .eln x2. 交 换 I =⎰1dx ⎰f (x , y )dy 的积分次序后, I = .3.设u = 2xy - z 2,则u 在点 M (2,-1,1) 处的梯度为 .x∞xn - x4. 已知 e = ∑ ,则 xe n =0 = .5.函数 z = x 3 + y 3 - 3x 2 - 3y 2的极小值点是.三、解答题(共 54 分,每小题 6--7 分)1.(本小题满分 6 分)设 z = y arctan y, 求∂z ,∂z.x∂x ∂y2.(本小题满分 6 分)求椭球面 2x2+ 3y 2 + z 2 = 9 的平行于平面 2x - 3y + 2z +1 = 0 的切平面方程,并求切点处的法线方程.3. (本小题满分 7 分)求函数 z = x 2 + y 2 在点 (1, 2) 处沿向量 l = 1 i + 3j 方向的方向导数。
高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案一、选择题(每题5分,共25分)1. 函数 \( f(x) = \frac{1}{x^2 + 1} \) 的反函数\( f^{-1}(x) \) 的定义域为()A. \( (-\infty, 1) \cup (1, +\infty) \)B. \( [0, +\infty) \)C. \( (-\infty, 0) \cup (0, +\infty) \)D. \( (-1, 1) \)答案:C2. 设函数 \( f(x) = \ln(2x - 1) \),则 \( f'(x) \) 的值为()A. \( \frac{2}{2x - 1} \)B. \( \frac{1}{2x - 1} \)C. \( \frac{2}{x - \frac{1}{2}} \)D. \( \frac{1}{x - \frac{1}{2}} \)答案:A3. 设 \( f(x) = e^x + e^{-x} \),则 \( f''(x) \) 的值为()A. \( e^x - e^{-x} \)B. \( e^x + e^{-x} \)C. \( 2e^x + 2e^{-x} \)D. \( 2e^x - 2e^{-x} \)答案:D4. 下列函数中,哪一个函数在 \( x = 0 \) 处可导但不可微?()A. \( f(x) = |x| \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:A5. 设 \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2 \),则 \( f'(0) \) 的值为()A. 1B. 2C. 0D. 无法确定答案:B二、填空题(每题5分,共25分)6. 函数 \( f(x) = \ln(x + \sqrt{x^2 + 1}) \) 的导数 \( f'(x) \) 为_________。
第六版同济大学高等数学上下课后答案详解

|sin x | | x | 3 求 ( ) ( ) ( ) (2) 并作出函数 y(x) 8 设 ( x) 4 6 4 | x | 0 3
的图形 解 ( ) |sin | 1 ( ) |sin | 2 ( ) |sin( )| 2 (2) 0 6 6 2 4 4 2 4 4 2 9 试证下列函数在指定区间内的单调性 (1) y x ( 1) 1 x (2)yxln x (0 ) 证明 (1)对于任意的 x1 x2( 1) 有 1x10 1x20 因为当 x1x2 时
对于映射 g YX 因为对每个 yY 有 g(y)xX 且满足 f(x)f[g(y)]Iy yy 按逆映射的定义 g 是 f 的逆映射 5 设映射 f XY AX 证明 (1)f 1(f(A))A (2)当 f 是单射时 有 f 1(f(A))A 证明 (1)因为 xA f(x)yf(A) f 1(y)xf 1(f(A)) f 1(f(A))A 所以 (2)由(1)知 f 1(f(A))A 另一方面 对于任意的 xf 1(f(A))存在 yf(A) 使 f 1(y)xf(x)y 因为 yf(A)且 f 是单射 所以 xA 这就证明了 f 1(f(A))A 因此 f 1(f(A))A 6 求下列函数的自然定义域 (1) y 3x 2 解 由 3x20 得 x 2 函数的定义域为 [ 2 , ) 3 3 (2) y 1 2 1 x 解 由 1x20 得 x1 函数的定义域为( 1)(1 1)(1 ) (3) y 1 1 x 2 x 解 由 x0 且 1x20 得函数的定义域 D[1 0)(0 1] (4) y
y1 y2
x1 x x1 x2 2 0 1 x1 1 x2 (1 x1)(1 x2 )
高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析第一章习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式.解 A ⋃B =(-∞, 3)⋃(5, +∞),A ⋂B =[-10, -5),A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B );(2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ),所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射. 又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2. 因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射. 5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A .(2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A . 6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x x y --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2,⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4]. (8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3). (9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞).7. 下列各题中, 函数f (x )和g (x )是否相同?为什么? (1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ; (3)334)(x x x f -=,31)(-=x x x g .(4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ.9. 试证下列函数在指定区间内的单调性:(1)xx y -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时,0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的.(2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有 0ln)()ln ()ln (2121221121<+-=+-+=-x x x x x x x x y y , 所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加.11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明: (1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数.(2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ),所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数?(1)y =x 2(1-x 2); (2)y =3x 2-x 3;(3)2211x x y +-=; (4)y =x (x -1)(x +1); (5)y =sin x -cos x +1;(6)2x x a a y -+=. 解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数.(5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数.(6)因为)(22)()()(x f a a a a x f x x x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2);解 是周期函数, 周期为l =2π. (2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin πx ;解 是周期函数, 周期为l =2. (4)y =x cos x ; 解 不是周期函数. (5)y =sin 2x .解 是周期函数, 周期为l =π.14. 求下列函数的反函数:(1)31+=x y 错误!未指定书签。
《高职应用数学》期末试卷1(同济六版上)及参考答案

《高职应用数学》试卷(同济六版上)一、选择题(本题共5小题,每小题3分,共15分) 1、若函数x xx f =)(,则=→)(lim 0x f x ( ). A 、0 B 、1- C 、1 D 、不存在2、下列变量中,是无穷小量的为( ).A 、1ln (0)x x +→B 、ln (1)x x →C 、cos (0)x x →D 、22(2)4x x x -→- 3、满足方程0)(='x f 的x 是函数)(x f y =的( ).A 、极大值点B 、极小值点C 、驻点D 、间断点4、函数)(x f 在0x x =处连续是)(x f 在0x x =处可导的( ).A 、必要但非充分条件B 、充分但非必要条件C 、充分必要条件D 、既非充分又非必要条件5、下列无穷积分收敛的是( ).A 、⎰+∞0sin xdxB 、dx e x ⎰+∞-02C 、dx x ⎰+∞01D 、dx x ⎰+∞01 二、填空题(本题共5小题,每小题3分,共15分)6、当k= 时,2,0(),0x e x f x x k x ⎧≤⎪=⎨+>⎪⎩在0=x 处连续.7、设x x y ln +=,则_______________dx dy=. 8、曲线x e y x -=在点(0,1)处的切线方程是 .9、若⎰+=C x dx x f 2sin )(,C 为常数,则()____________f x =.10、定积分dx x x x ⎰-+554231sin =____________. 三、计算题(本题共6小题,每小题6分,共36分)11、求极限 xx x 2sin 24lim0-+→.12、求极限 2cos 12lim x t x e dt x -→⎰.13、设)1ln(25x x e y +++=,求dy .14、设函数)(x f y =由参数方程⎩⎨⎧=+=ty t x arctan )1ln(2所确定,求dy dx 和22dx y d .15、求不定积分212sin 3dx x x ⎛⎫+ ⎪⎝⎭⎰.16、设,0()1,01x e x f x x x⎧<⎪=⎨≥⎪+⎩,求20(1)f x dx -⎰.四、证明题(本题共2小题,每小题8分,共16分) 17、证明:dx x x n m )1(10-⎰=dx x x m n )1(10-⎰ (N n m ∈,).18、利用拉格朗日中值定理证明不等式:当0a b <<时,ln b a b b a b a a--<<.五、应用题(本题共2小题,第19小题8分,第20小题10分,共18分)19、要造一圆柱形油罐,体积为V ,问底半径r 和高h 各等于多少时,才能使表面积最小?20、设曲线2x y =与2y x =所围成的平面图形为A ,求(1)平面图形A 的面积;(2)平面图形A 绕y 轴旋转所产生的旋转体的体积.《高等数学》试卷(同济六版上)答案一.选择题(每小题3分,本题共15分) 1-5 DBCAB二.填空题(每小题3分,本题共15分)6、17、1x x+ 8、1y = 9、2cos2x 10、0 三、计算题(本题共6小题,每小题6分,共36分)11、解:x x x 2sin 24lim 0-+→x →= 3分01128x →== 6分12、解: 2cos 102lim x dte xt x ⎰-→2cos 0sin lim 2xx xe x -→-= 3分12e =- 6分13、解:)111(1122x x x y ++++=' 4分211x += 6分14、解:tt t t dx dy 21121122=++= 3分222232112()241d y t d dydx t dt t dt dx dx t t -+===-+ 6分15、解:212122sin(3)sin(3)(3)23dx d x x x +=-++⎰⎰ 3分12cos(3)2C x =++ 6分16、解:⎰⎰⎰⎰--+==-01101120d )(d )(d )(d )1(x x f x x f x x f x x f 0110d 1x x e dx x -=++⎰⎰3分1010|ln(1)x e x -=++11ln 2e -=-+ 6分四、证明题(本题共2小题,每小题8分,共16分)17、证明:1001(1)(1)m n m nx x dx t t dt -=--⎰⎰ 4分1100(1)(1)m n m n t t dt x x dx=-=-⎰⎰ 8分18、、证明:设f (x )=ln x , [,]x a b ∈,0a b <<显然f (x )在区间[,]a b 上满足拉格朗日中值定理的条件, 根据定理, 有()()'()(),.f b f a f b a a b ξξ-=-<< 4分由于1()f x x'=, 因此上式即为 ln ln b a b a ξ--=. 又由.a b ξ<< b a b a b a b a ξ---∴<< 当0a b <<时,ln b a b b a b a a--<< 8分五、应用题(本题共2小题,第19小题8分,第20小题10分,共18分)19、解:2V r h π=∴表面积2222222222V V S r rh r rr r r ππππππ=+=+=+ 4分 令22'40V S r r π=-= 得r =2h =答:底半径r =2h = 8分 20、解:曲线2x y =与2y x =的交点为(1,1), 2分于是曲线2x y =与2y x =所围成图形的面积A 为31]3132[)(10210232=-=-=⎰x x dx x x A 6分A 绕y 轴旋转所产生的旋转体的体积为:()πππ10352)(10521042=⎥⎦⎤⎢⎣⎡-=-=⎰y y dy y y V 10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高等数学》试卷(同济六版上)
一、选择题(本题共5小题,每小题3分,共15分)
1、若函数x
x x f =)(,则=→)(lim 0
x f x ( ).
A 、0
B 、1-
C 、1
D 、不存在 2、下列变量中,是无穷小量的为( ). A 、1ln
(0)x x +→ B 、ln (1)x x → C 、cos (0)x x → D 、22(2)4
x x x -→- 3、满足方程0)(='x f 的x 是函数)(x f y =的( ).
A 、极大值点
B 、极小值点
C 、驻点
D 、间断点 4、函数)(x f 在0x x =处连续是)(x f 在0x x =处可导的( ).
A 、必要但非充分条件
B 、充分但非必要条件
C 、充分必要条件
D 、既非充分又非必要条件
5、下列无穷积分收敛的是( ).
A 、⎰+∞0
sin xdx B 、dx e x ⎰+∞-0
2 C 、dx x ⎰
+∞
1
D 、dx x
⎰+∞01
二、填空题(本题共5小题,每小题3分,共15分)
6、当k= 时,2
,
0(),
x e x f x x k x ⎧≤⎪=⎨+>⎪⎩在0=x 处连续.
7、设x x y ln +=,则
_______________dx
dy
=. 8、曲线x e y x
-=在点(0,1)处的切线方程是 .
9、若⎰+=C x dx x f 2sin )(,C 为常数,则()____________f x =
10、定积分dx x x
x ⎰-+5
54231
sin =____________.
三、计算题(本题共6小题,每小题6分,共36分)
11、求极限 x
x x 2sin 2
4lim
-+→.
12、求极限 2
cos 1
2
0lim x
t x e dt
x -→⎰
.
13、设)1ln(25x x e y +++=,求dy .
14、设函数)(x f y =由参数方程⎩
⎨⎧=+=t y t x arctan )1ln(2所确定,求dy dx 和22dx y d .
15、求不定积分212sin 3dx x x ⎛⎫+ ⎪⎝⎭
⎰.
16、设,0
()1,01x e x f x x x ⎧<⎪
=⎨≥⎪+⎩,求20
(1)f x dx -⎰.
四、证明题(本题共2小题,每小题8分,共16分)
17、证明:dx x x n
m )1(1
-⎰=dx x x m n )1(1
-⎰ (N n m ∈,).
18、利用拉格朗日中值定理证明不等式:当0a b <<时,ln b a b b a
b a a
--<<.
五、应用题(本题共2小题,第19小题8分,第20小题10分,共18分)
19、要造一圆柱形油罐,体积为V ,问底半径r 和高h 各等于多少时,才能使表面积最小? 20、设曲线2x y =与2y x =所围成的平面图形为A ,求 (1)平面图形A 的面积;
(2)平面图形A 绕y 轴旋转所产生的旋转体的体积.
《高等数学》试卷(同济六版上)答案
一.选择题(每小题3分,本题共15分) 1-5 DBCAB 二.填空题(每小题3分,本题共15分)
6、1
7、
1x
x
+ 8、1y = 9、2cos 2x 10、0 三、计算题(本题共6小题,每小题6分,共36分)
11、解:x x x 2sin 2
4lim
-+
→x →= 3分
01128
x →== 6分
12、解:
2
cos 1
2
lim
x
dt
e
x
t x ⎰-→2
cos
0sin lim 2x
x xe x
-→-= 3分
1
2e
=-
6分 13、解:
)
111(112
2
x
x
x y ++
++=
' 4分
211
x +=
6分
14、解:t t t t dx dy 211211
22=
++= 3分
2
22
2
321
12()241d y t d dy dx
t dt
t dt dx dx
t t -
+==
=-+ 6分
15、解:212122
sin(3)sin(3)(3)23
dx d x x x +=-++⎰
⎰ 3分
12
cos(3)2C x
=++ 6分 16、解:
⎰⎰
⎰⎰--+==-01
1
1
1
20
d )(d )(d )(d )1(x x f x x f x x f x x f 01
10
d 1x
x
e dx x -=++⎰⎰ 3分
1
010
|ln(1)x e x -=++
11ln 2e -=-+ 6分
四、证明题(本题共2小题,每小题8分,共16分) 17、证明:1
1
(1)(1)m n m n x x dx t t dt -=--⎰⎰ 4分
1
1
(1)(1)m n
m n
t t dt x x dx
=-=-⎰⎰ 8分
18、、证明:设f (x )=ln x , [,]x a b ∈,0a b <<
显然f (x )在区间[,]a b 上满足拉格朗日中值定理的条件, 根据定理, 有
()()'()(),.f b f a f b a a b ξξ-=-<< 4分
由于1()f x x '=
, 因此上式即为 l n l n b a
b a ξ
--=.
又由.a b ξ<< b a b a b a
b a
ξ---∴
<< 当0a b <<时,
ln b a b b a b a a
--<< 8分
五、应用题(本题共2小题,第19小题8分,第20小题10分,共18分) 19、解:2V r h π=
∴表面积222
2
222222V V S r rh r r r r r
ππππππ=+=+=+ 4分 令2
2'40V
S r r π=-
=
得 r =
2h =
答:底半径r =
2h =,才能使表面积最小。
8分
20、解:曲线2x y =与2
y x =的交点为(1,1), 2分
于是曲线2x y =与2y x =所围成图形的面积A 为
31]3132[)(10
210
23
2
=-=-=⎰x x dx x x A 6分
A 绕y 轴旋转所产生的旋转体的体积为:
()
π
ππ10352)(1
0521
04
2=⎥⎦⎤⎢⎣⎡-=-=⎰y y dy y y V 10分。