人教版七年级数学上册第三章之《3.1从算式到方程》练习题

合集下载

3.1 从算式到方程人教版数学七年级上册同步练习1(解析版)

3.1 从算式到方程人教版数学七年级上册同步练习1(解析版)

人教版数学七年级上册第3章3.1从算式到方程同步练习一、选择题1.下列方程中,是一元一次方程的是( )A.3x +6y =1B.y 2-3y -4=0C.12x ―1=1xD.3x -2=4x +12.在下列方程中①x 2+2x =1,②1x -3x =9,③12x =0,④3-13=223,⑤y ―23=y +13是一元一次方程的有( )个.A.1B.2C.3D.43.x =3是方程( )的解.A.3x =6B.(x -3)(x -2)=0C.x (x -2)=4D.x +3=04.关于x 的方程2x +4=3m 和x -1=m 有相同的解,则m 的值是( )A.6B.5C.52D.-235.方程(m +1)x |m |+1=0是关于x 的一元一次方程,则m ( )A.m =±1B.m =1C.m =-1D.m ≠-16.方程(a +2)x 2+5x m -3-2=3是关于x 的一元一方程,则a 和m 分别为( )A.2和4B.-2和4C.-2和-4D.-2和-47.已知3是关于x 的方程5x -a =3的解,则a 的值是( )A.-14B.12C.14D.-138.下列各式中,是方程的是( )A.7x -4=3xB.4x -6C.4+3=7D.2x <5二、填空题9.x =-4是方程ax 2-6x -1=-9的一个解,则a = ______ .10.若(m -1)x |m |-4=5是一元一次方程,则m 的值为 ______ .11.若x =3是方程2x -10=4a 的解,则a = ______ .12.满足方程|x +2|+|x -3|=5的x 的取值范围是 ______ .13.小强在解方程时,不小心把一个数字用墨水污染成了x =1-x ―●5,他翻阅了答案知道这个方程的解为x =1,于是他判断●应该是 ______ .三、解答题14.已知关于x 的方程4x +3k =2x +2和方程2x +k =5x +2.5的解相同,求k 的值.15.已知关于y的方程4y+2n=3y+2和方程3y+2n=6y-1的解相同,求n的值.人教版数学七年级上册第3章3.1从算式到方程同步练习答案和解析【答案】1.D2.B3.B4.A5.B6.B7.B8.A9.-210.-111.-112.-2≤x ≤313.114.解:方程4x +3k =2x +2的根为:x =1-1.5k ,方程2x +k =5x +2.5的根为:x =k ―2.53, ∵两方程同根,∴1-1.5k =k ―2.53, 解得:k =1.故当关于x 的方程4x +3k =2x +2和方程2x +k =5x +2.5的解相同时k 的值为1. 15.解:关于y 的方程4y +2n =3y +2和方程3y +2n =6y -1的解相同, 得4y +2n =3y +23y +2n =6y ―1,化简,得,①×3-②得8n =4,解得n =12. 【解析】1. 解:A 、3x +6y =1含有2个未知数,则不是一元一次方程,故选项不符合题意;B 、y 2-3y -4=0最高项的次数不是一次,则不是一元一次方程,故选项不符合题意;C 、12x -1=1x 不是整式方程,则不是一元一次方程,故选项不符合题意;D 、3x -2=4x +1是一元一次方程,选项符合题意.故选D .根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程,即可作出判断.本题考查了一元一次方程的概念,通常形式是ax +b =0(a ,b 为常数,且a ≠0).一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.我们将ax +b =0(其中x 是未知数,a 、b 是已知数,并且a ≠0)叫一元一次方程的标准形式.这里a 是未知数的系数,b 是常数,x 的次数必须是1.2. 解:①x 2+2x =1,是一元二次方程;②1x -3x =9,是分式方程;③12x =0,是一元一次方程;④3-13=223,是等式;⑤y ―23=y +13是一元一次方程; 一元一次方程的有2个,故选:B .根据一元一次方程的定义,即可解答.本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.3. 解:将x =3代入方程(x -3)(x -2)=0的左边得:(3-3)(3-2)=0,右边=0,∴左边=右边,即x =3是方程的解.故选B .将x =3代入各项中方程检验即可得到结果.此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值. 4. 解:由题意,得x =m +1,2(m +1)+4=3m ,解得m =6,故选:A .根据同解方程,可得关于m 的方程,根据解方程,可得答案.本题考查了同解方程,利用同解方程得出关于m 的方程是解题关键. 5. 解:由一元一次方程的特点得|m|=1m +1≠0,解得:m =1.故选B.若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的等式,继而求出m的值.解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.6. 解:根据题意得:a+2=0,且m-3=1,解得:a=-2,m=4.故选B.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.7. 解:把x=3代入方程,得:15-a=3,解得:a=12.故选B.根据方程解的定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.8. 解:A、7x-4=3x是方程;B、4x-6不是等式,不是方程;C、4+3=7没有未知数,不是方程;D、2x<5不是等式,不是方程;故选:A.根据方程的定义:含有未知数的等式叫方程解答即可.本题主要考查方程的定义,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数是解题的关键.9. 解:把x=-4代入方程ax2-6x-1=-9得:16a+24-1=-9,解得:a=-2.故答案为:-2.把x=-4代入已知方程,通过解方程来求a的值.本题考查了一元一次方程的解的定义.解决本题的关键是熟记使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.10. 解:由题意,得|m|=1且m-1≠0,解得m=-1,故答案为:-1.根据一元一次方程的定义,即可解答.本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.11. 解:把x=3代入方程得到:6-10=4a解得:a=-1.故填:-1.方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.把x=3代入方程,就得到关于a的方程,就可求出a的值.本题主要考查了方程解的定义,已知x=3是方程的解,实际就是得到了一个关于a的方程,认真计算即可.12. 解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x-3=5,解得:x=3;第二种:当-2<x<3时,原方程就可化简为:x+2-x+3=5,恒成立;第三种:当x≤-2时,原方程就可化简为:-x-2+3-x=5,解得:x=-2;所以x的取值范围是:-2≤x≤3.分别讨论①x≥3,②-2<x<3,③x≤-2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.解一元一次方程,注意最后的解可以联合起来,难度很大.13. 解:●用a表示,把x=1代入方程得1=1-1―a,5解得:a=1.故答案是:1.●用a表示,把x=1代入方程得到一个关于a的方程,解方程求得a的值.本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.14.两方程同根,用含有k的算式将根表示出来,再根据根相等可得出结果.本题考查同解方程的问题,解题的关键是用k将两方程根表示出来,再根据同根解方程即可.15.根据方程的解相同,可得关于y、n的二元一次方程组,根据解方程组,可得n的值.本题考查了同解方程,利用同解方程得出方程组是解题关键.。

七年级数学上册31从算式到方程同步练习(新版)新人教版.docx

七年级数学上册31从算式到方程同步练习(新版)新人教版.docx

3. 1从算式到方程同步练习选择题关于x 的方程2x + 5a = 3的解与方程2尤+ 2 = 0的解相同,则日的值是()x-y= 4 2 •下列变形正确的是根据等式性质,下列等式变形正确的是() A.若 5 = 3x — 2,贝ij5 —2=3%B.若 5 + 2 = — 3x C.若,贝ij 5= 2(2x-l)D.若 5x=2x,则42己知x-y=0,下列等式不成立的是()己知是方程皿+ 2y = -2的一个解,那么刃为( ) A •专B- "I C. — 4 D.9 1在方程:Qy + 1 = 1:②y=亍(3)y — l = y — li ④5,=2—〉冲,解为%=-的 w O方程()A. 1个B. 2个C. 3个D. 4个把方= 1变形为光=2,其依据是()A.等式的性质1B.等式的性质2C.分式的基本性质D.不等式的性质1关于x 的方程2%+4 = 377iW-l=m 有相同的解,则/〃的值是() c2A. 6B. 5C. -D. --23填空题A. 若ac = bc,贝9a= b B.若a= b,则一=—C. C 若― 0c则a = bD.若 乙 若3 — 4b = 3 — 4a 则 a= b□ b如果关于x 的方程2炉+1= 0是一元一次方程,则〃7的值为( )A. 0B. 1C. — 1D.任何数 A. 1 B. 4C.D. -1下列方程中解是光=3的方程是()A. x 4-1 = 2B. x — 1= 2C. 下列式子中,是一元一次方程的有() A. x + 5 = B. x 2 — 8 = x 2 +7D. 3% = 6 C.Sx — 3D.5= 3x-2,则5= 2A. x = yB. 3x= 3yC.下列说法中,正确的个数是()①若me = my ,则 nrx -my T = 0③若mx = my ,则mx + my = 2myA. 1B. 2②若血=砂,则x = y ④若A : = y,则?nx=my.C. 3D. 415若方程6% + 5a = 22与方程3% + 5 = 11的解相同,则白的值为______ .如果(尬+2)尤耐一1+8= 0是一元一次方程,贝衍1= ____ .15.已知407+5= 0是关于x的一元一次方程,贝阮= ____________ ・16.下列各式中:Qx4-3 = 5 — X;②一5 —4 = —9;③3* — 2光= 4%;④光=5’是一元一次方程的有______ (写出对应的序号).17.如果等式ax-3x=2^b不论x取什么值时都成立,则a= ___________ ,b = _______ .18.在等式4y=5 -2y的两边同时_________ ,得到4y + 2y=5,这是根据___________ •三、计算题19.已知方程3(x-l)=4x-S与关于/的方程辛一予=光一1有相同的解,求日的值.20.已知光=一1是关于X的方程+ g = 0的一个解,求3k2-15k-95的值.21.已知(皿2_1)尢2+(机+1)尢+ 1 = o是关于x的一元一次方程,求/〃的值.22.先阅读下列解题过程,然后解答问题(1)、(2)解方程:|尢+ 3| = 2.解:当x + 3 >0时,原方程可化为:光+ 3 =2,解得x = -l;当% + 3<0时,原方程可化为:% + 3=-2,解得x = -5.所以原方程的解是x = -l, x = -5.(1〕解方程:|3x-2|-4=0;(2)探究:当b为何值时,方程k-2| = b+l ①无解;②只有一个解;③有两个解.23.若规定两数日,b通过“A ”运算,得到4",即oA b = 4at,例如2A6=4X2X6= 48 •求(X+2)A (X—2)A 4 = 0中x 的值.答案和解析【答案】1. A2. B3. A4. D5. B6. C7. C& C9. A10. B11. B12. A13. 214. 215. 216.©©④17.3; -21&加上2y;在等式的两边同时加上同一个数(或同一个式子),所得结果仍是等式19.解:方程3(x-l)=4%-5,去括号得:3% - 3= 4% - 5,解得:%— 2,把龙=2代入方程兰二去分母得:8 —2a —6 + 3a=6,移项合并得:a=4.20.解:将光=一1代入方程得:一8-4 一£ + 9=0,解得:k = — 3,当k = -3时,3k2 -15k-95 = 27+ 45-95 =- 23.21.解:・・•(诫一I)/+(加+1)久+ 1 = 0是关于x的一元一次方程, .(m2— 1=0•• U + 1 工0 '解得m= 1.22.答:(1)当3%-2 >0时,原方程可化为:3x-2 = 4,解得光=2;当3%-2<0时,原方程可化为:3x-2 = -4,解得先=_?所以原方程的解是% = 2或光=一壬(2)7 |x-2| >0,・••当b + l<0,即b<- 1时,方程无解;当b + l = 0, B|J& = 一1时,方程只有一个解; 当b + l>0,即b>—l时,方程有两个解. 23.解:•・•(尤+2)A x-2A 4= 0,・•・ 4x(x+2)A (x- 2)A 4 = 0,・・・ 16x(x + 2)(x-2)A 4=0,・•・ 256x(x + 2)(x— 2) = 0,x = 0,光+ 2 = 0或%-2= 0,解得尢=0,无=—2或光=2.。

最新精选人教版数学七年级上册第3章3.1从算式到方程同步练习

最新精选人教版数学七年级上册第3章3.1从算式到方程同步练习

人教版数学七年级上册第3章3.1从算式到方程同步练习一、选择题1.下列方程中,是一元一次方程的是()A.3x+6y=1B.y2-3y-4=0C.D.3x-2=4x+12.在下列方程中①x2+2x=1,②-3x=9,③x=0,④3-=2,⑤=y+是一元一次方程的有()个.A.1B.2C.3D.43.x=3是方程()的解.A.3x=6B.(x-3)(x-2)=0C.x(x-2)=4D.x+3=04.关于x的方程2x+4=3m和x-1=m有相同的解,则m的值是()A.6B.5C.D.-5.方程(m+1)x|m|+1=0是关于x的一元一次方程,则m()A.m=±1B.m=1C.m=-1D.m≠-16.方程(a+2)x2+5x m-3-2=3是关于x的一元一方程,则a和m分别为()A.2和4B.-2和4C.-2和-4D.-2和-47.已知3是关于x的方程5x-a=3的解,则a的值是()A.-14B.12C.14D.-138.下列各式中,是方程的是()A.7x-4=3xB.4x-6C.4+3=7D.2x<5二、填空题9.x=-4是方程ax2-6x-1=-9的一个解,则a= ______ .10.若(m-1)x|m|-4=5是一元一次方程,则m的值为 ______ .11.若x=3是方程2x-10=4a的解,则a= ______ .12.满足方程|x+2|+|x-3|=5的x的取值范围是 ______ .13.小强在解方程时,不小心把一个数字用墨水污染成了x=1-●,他翻阅了答案知道这个方程的解为x=1,于是他判断●应该是 ______ .三、解答题14.已知关于x的方程4x+3k=2x+2和方程2x+k=5x+2.5的解相同,求k的值.15.已知关于y的方程4y+2n=3y+2和方程3y+2n=6y-1的解相同,求n的值.人教版数学七年级上册第3章3.1从算式到方程同步练习答案和解析【答案】1.D2.B3.B4.A5.B6.B7.B8.A9.-210.-111.-112.-2≤x≤313.114.解:方程4x+3k=2x+2的根为:x=1-1.5k,方程2x+k=5x+2.5的根为:x=,∵两方程同根,∴1-1.5k=,解得:k=1.故当关于x的方程4x+3k=2x+2和方程2x+k=5x+2.5的解相同时k的值为1.15.解:关于y的方程4y+2n=3y+2和方程3y+2n=6y-1的解相同,得,化简,得,①×3-②得8n=4,解得n=.【解析】1. 解:A、3x+6y=1含有2个未知数,则不是一元一次方程,故选项不符合题意;B、y2-3y-4=0最高项的次数不是一次,则不是一元一次方程,故选项不符合题意;C、x-1=不是整式方程,则不是一元一次方程,故选项不符合题意;D、3x-2=4x+1是一元一次方程,选项符合题意.故选D.根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程,即可作出判断.本题考查了一元一次方程的概念,通常形式是ax+b=0(a,b为常数,且a≠0).一元一次方程属于整式方程,即方程两边都是整式.一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.我们将ax+b=0(其中x是未知数,a、b是已知数,并且a≠0)叫一元一次方程的标准形式.这里a是未知数的系数,b是常数,x的次数必须是1.2. 解:①x2+2x=1,是一元二次方程;②-3x=9,是分式方程;③x=0,是一元一次方程;④3-=2,是等式;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B.根据一元一次方程的定义,即可解答.本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.3. 解:将x=3代入方程(x-3)(x-2)=0的左边得:(3-3)(3-2)=0,右边=0,∴左边=右边,即x=3是方程的解.故选B.将x=3代入各项中方程检验即可得到结果.此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.4. 解:由题意,得x=m+1,2(m+1)+4=3m,解得m=6,故选:A.根据同解方程,可得关于m的方程,根据解方程,可得答案.本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.5. 解:由一元一次方程的特点得,解得:m=1.故选B.若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的等式,继而求出m 的值.解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.6. 解:根据题意得:a+2=0,且m-3=1,解得:a=-2,m=4.故选B.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.7. 解:把x=3代入方程,得:15-a=3,解得:a=12.故选B.根据方程解的定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.8. 解:A、7x-4=3x是方程;B、4x-6不是等式,不是方程;C、4+3=7没有未知数,不是方程;D、2x<5不是等式,不是方程;故选:A.根据方程的定义:含有未知数的等式叫方程解答即可.本题主要考查方程的定义,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数是解题的关键.9. 解:把x=-4代入方程ax2-6x-1=-9得:16a+24-1=-9,解得:a=-2.故答案为:-2.把x=-4代入已知方程,通过解方程来求a的值.本题考查了一元一次方程的解的定义.解决本题的关键是熟记使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.10. 解:由题意,得|m|=1且m-1≠0,解得m=-1,故答案为:-1.根据一元一次方程的定义,即可解答.本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.11. 解:把x=3代入方程得到:6-10=4a解得:a=-1.故填:-1.方程的解,就是能够使方程两边左右相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.把x=3代入方程,就得到关于a的方程,就可求出a的值.本题主要考查了方程解的定义,已知x=3是方程的解,实际就是得到了一个关于a 的方程,认真计算即可.12. 解:从三种情况考虑:第一种:当x≥3时,原方程就可化简为:x+2+x-3=5,解得:x=3;第二种:当-2<x<3时,原方程就可化简为:x+2-x+3=5,恒成立;第三种:当x≤-2时,原方程就可化简为:-x-2+3-x=5,解得:x=-2;所以x的取值范围是:-2≤x≤3.分别讨论①x≥3,②-2<x<3,③x≤-2,根据x的范围去掉绝对值,解出x,综合三种情况可得出x的最终范围.解一元一次方程,注意最后的解可以联合起来,难度很大.13. 解:●用a表示,把x=1代入方程得1=1-,解得:a=1.故答案是:1.●用a表示,把x=1代入方程得到一个关于a的方程,解方程求得a的值.本题考查了方程的解的定义,方程的解就是能使方程左右两边相等的未知数的值,理解定义是关键.14.两方程同根,用含有k的算式将根表示出来,再根据根相等可得出结果.本题考查同解方程的问题,解题的关键是用k将两方程根表示出来,再根据同根解方程即可.15.根据方程的解相同,可得关于y、n的二元一次方程组,根据解方程组,可得n的值.本题考查了同解方程,利用同解方程得出方程组是解题关键.。

初中数学人教版七年级上册第三章3.1从算式到方程练习题-普通用卷

初中数学人教版七年级上册第三章3.1从算式到方程练习题-普通用卷

初中数学人教版七年级上册第三章3.1从算式到方程练习题一、选择题1.若a=b+2,则下面式子一定成立的是()A. a−b+2=0B. 3−a=b−1C. 2a=2b+2D. a2−b2=12.下列等式变形错误的是()A. 若a=b,则3a−1=3b−1B. 若a=b,则ac2=bc2C. 若ac2=bc2,则a=b D. 若ac2=bc2,则a=b3.根据等式性质,下列结论正确的是()A. 如果2a=b−2,那么a=bB. 如果a−2=2−b,那么a=−bC. 如果−2a=2b,那么a=−bD. 如果2a=12b,那么a=b4.若x=3是关于x的方程2x−k+1=0的解,则k的值()A. −7B. 4C. 7D. 55.已知a3=b4(a≠0,b≠0),下列变形错误的是()A. ab =34B. 3a=4bC. ba=43D. 4a=3b6.下列运用等式性质进行变形:①如果a=b,那么a−c=b−c;②如果ac=bc,那么a=b;③由2x+3=4,得2x=4−3;④由7y=−8,得y=−78,其中正确的有()A. 1个B. 2个C. 3个D. 4个7.已知y=1是关于y的方程2−13(m−1)=2y的解,则关于x的方程m(x−3)−2= m的解是()A. 0B. 6C. 43D. 以上答案均不对8.x=1是下列哪个方程的解()A. 2−4x=1B. 12x=2C. 3x+2=5D. 4x−2=6x−39.小亮在做作业时,不小心把方程中的一个常数污染了看不清,被污染的方程为:5x−2=7x+■,他翻看答案,解为x=−5,请你帮他补出这个常数是()A. 32B. 8 C. 72D. 1210.若关于x的方程(m−2)x|m|−1+3=0是一元一次方程,则m值为()A. −2B. 2C. −3D. 3二、填空题11.若(a−1)x2−|a|−3=0是关于x的一元一次方程,则a的值为______.12.已知x=1是方程ax−2b=3的解,那么2a−4b−3的值为______.13.已知x=3是关于x的方程ax+2x−3=0的解,则a的值为______.14.某人在解方程2x−13=x+a2−1去分母时,方程右边的−1忘记乘以6,算得方程的解为x=2,则a的值为______.三、解答题15.【概念学习】:若a+b=2,则称a与b是关于1的平衡数;【初步探究】:(1)5与______是关于1的平衡数,______与−1是关于1的平衡数;灵活运用:(2)若m=−3x2+2x−6,n=5x2−2(x2+x−4),试判断m,n是不是关于1的平衡数?并说明理由.16.如果x=3是方程k(x−1)4+x3+1=0的解,求k的值.17.已知a,b,c在数轴上的位置如图所示:(1)化简:|b−c|−2|a−b|+3|c−a|;(2)若c2=9,b的倒数是它本身,a满足关于x的方程2(x−1)=3a−1与3x+2=−2(a+1)的解互为相反数,求:(4a2bc−3ab2−bc2)−(5a2bc+2ab2−3bc2)的值.18.已知m,n是有理数,单项式−x n y的次数为3,而且方程(m+1)x2+mx−tx+n+2=0是关于x的一元一次方程.(1)分别求m,n的值.(2)若该方程的解是x=3,求t的值.(3)若题目中关于x的一元一次方程的解是整数,请直接写出整数t的值.答案和解析1.【答案】D【解析】解:∵a=b+2,∴a−b−2=0,所以A选项不成立;∵a=b+2,∴3−a=3−b−2=1−b,所以B选项不成立;∵a=b+2,∴2a=2b+4,所以C选项不成立;∵a=b+2,∴a2−b2=1,所以D选项成立.故选:D.根据等式的性质进行计算即可.本题考查了等式的性质,解决本题的关键是掌握等式的性质.2.【答案】D【解析】解:A、等式两边同时乘以3,然后同时减去1,等式仍成立,即3a−1=3b−1,故A不符合题意;B、两边乘c2,得到ac2=bc2,故B不符合题意;C、分子分母都乘以c2,则a=b,故C不符合题意;D、当c=0时,等式a=b不一定成立,故D符合题意;故选:D.根据等式的性质,可得答案.本题考查了等式的性质,熟记等式的性质并根据等式的性质求解是解题关键.3.【答案】C【解析】解:A、左边除以2,右边加2,故A错误;B、左边加2,右边加−2,故B错误;C、两边都除以−2,故C正确;D、左边除以2,右边乘以2,故D错误;故选:C.根据等式的性质,可得答案.本题考查了等式的性质,熟记等式的性质是解题关键.4.【答案】C【解析】解:将x=3代入2x−k+1=0,∴6−k+1=0,∴k=7,故选:C.将x=3代入原方程即可求出答案.本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.5.【答案】B【解析】解:由a3=b4得,4a=3b,A、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;B、由等式性质不可以得到3a=4b,原变形错误,故这个选项符合题意;C、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;D、由等式性质可得:4a=3b,原变形正确,故这个选项不符合题意;故选:B.根据两内项之积等于两外项之积对各选项分析判断即可得解.本题考查比例的性质.熟练掌握内项之积等于外项之积是解题的关键.6.【答案】B【解析】解:①如果a=b,那么a−c=b−c,正确;②如果ac=bc,那么a=b(c≠0),故此选项错误;③由2x+3=4,得2x=4−3,正确;④由7y=−8,得y=−8,故此选项错误;7故选:B.直接录用等式的基本性质分析得出答案.此题主要考查了等式的基本性质,正确把握性质2是解题关键.7.【答案】B(m−1)=2,【解析】解:把y=1代入方程得:2−13去分母得:6−m+1=6,解得:m=1,把m=1代入方程得:x−3−2=1,解得:x=6,故选:B.把y=1代入已知方程求出m的值,即可确定出所求方程的解.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.【答案】C【解析】解:A、方程2−4x=1,移项合并得:−4x=−1,解得:x=1,不符合题意;4x=2,B、方程12解得:x=4,不符合题意;C、方程3x+2=5,移项合并得:3x=3,解得:x=1,符合题意;D、方程4x−2=6x−3,移项合并得:−2x=−1,,不符合题意,解得:x=12故选:C.求出各项中方程的解,即可作出判断.此题考查了一元一次方程的解,以及解一元一次方程,熟练掌握解一元一次方程的步骤是解本题的关键.9.【答案】B【解析】解:设这个常数为a,即5x−2=7x+a,把x=−5代入得:−25−2=−35+a,解得:a=8,故选:B.设这个常数为a,把x=−5代入方程计算即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.【答案】A【解析】解:∵关于x的方程(m−2)x|m|−1+3=0是一元一次方程,∴m−2≠0且|m|−1=1,解得:m=−2,故选:A.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).则x的次数是1且系数不为0,即可得到关于m 的方程,即可求解.本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1.11.【答案】−1【解析】解:(a−1)x2−|a|−3=0是关于x的一元一次方程,∴2−|a|=1且a−1≠0.解得a=−1.故答案是:−1.根据一元一次方程的定义可知2−|a|=1且a−1≠0.本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.12.【答案】3【解析】解:把x=1代入方程得:a−2b=3,则原式=2(a−2b)−3=6−3=3.故答案为:3把x=1代入方程求出a−2b的值,原式变形后代入计算即可求出值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.13.【答案】−1【解析】解:将x=3代入方程得:3a+2×3−3=0,解得:a=−1.故答案为:−1.根据方程的解为x=3,将x=3代入方程即可求出a的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【答案】13【解析】解:∵在解方程2x−13=x+a2−1去分母时,方程右边的−1忘记乘以6,算得方程的解为x=2,∴把x=2代入方程2(2x−1)=3(x+a)−1得:2×(4−1)=3×(2+a)−1,解得:a=13,故答案为:13.把x=2代入方程2(2x−1)=3(x+a)−1,即可得出一个关于a的一元一次方程,求出方程的解即可.本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.15.【答案】−3 3【解析】解:(1)∵a+b=2,∴5与−3是关于1的平衡数,3与−1是关于1的平衡数.故答案为:−3,3.(2)m与n是关于1的平衡数,理由如下:∵m+n=(−3x2+2x−6)+[5x2−2(x2+x−4)]=−3x2+2x−6+5x2−2x2−2x+8=2.∴m与n是关于1的平衡数.(1)根据题中所给定义即可求解;(2)根据题意要判断m与n是否为平衡数,只要计算m,n相加是否等于2即可求解.本题考查了整式的加减、列代数式,解决本题的关键是理解题中所给定义.16.【答案】解:把x=3代入方程k(x−1)4+x3+1=0得:k(3−1)4+33+1=0,解得:k=−4.【解析】把x=3代入方程计算即可求出k的值.此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.【答案】解:(1)原式=b−c−2(a−b)−3(c−a)=a+3b−4c.(2)由题意可得,c=−3,b=−1,由2(x−1)=3a−1,得x=3a+12由3x+2=−2(a+1),得x=−2a−43,∴3a+12+−2a−43=0,a=1,原式=−a2bc−5ab2+2bc2=−12×(−1)×(−3)−5×1×(−1)2+2×(−1)×(−3)2=−3−5−18=−26.【解析】(1)根据数轴判断b−c、a−b、c−a的符号,然后去绝对值,最后合并同类项;(2)根据题意求出a、b、c的值,然后化简多项式,最后代入求值.本题考查了绝对值与数轴、一元一次方程,熟练掌握实数的混合运算与解一元一次方程是解题的关键.18.【答案】解:(1)由题意得:n=2,m=−1;(2)(m+1)x2+mx−tx+n+2=0,当x=3时,3m−3t+n+2=0,∵n=2,m=−1,∴−3−3t+2+2=0,t=13;(3)(m+1)x2+mx−tx+n+2=0,∵n=2,m=−1,∴−x−xt+4=0,x=4 t+1t=4−xx =4x−1,∴t≠−1,x≠0∵t是整数,x是整数,∴当x=1时,t=3,当x=4时,t=0,当x=−1时,t=−5,当x=−4时,t=−2,当x=2时,t=1,当x=−2时,t=−3.【解析】(1)根据单项式的定义和一元一次方程的定义可得结论;(2)将x=3代入可得t的值;(3)分别将第一问中的m和n的值代入,根据整数解和整数t的条件可得结论,本题考查了单项式的定义和一元一次方程的定义,熟练掌握这些定义是关键,并注意方程有整数解的条件.。

第3章3.1从算式到方程(课后作业)人教版数学七年级上册试题试卷含答案

第3章3.1从算式到方程(课后作业)人教版数学七年级上册试题试卷含答案

1.下列式子中,是方程的是( )A .250x -≠B .23x =C .132-=-D .71y -2.下列变形错误的是( )A .由x y =得:88x y -=-B .由32x =得:23x =C .由23x -=得:32x =-D .由342x x -=得:324x x =+3.下列等式的变形,正确的是( )A .若25x x =,则5x =B .若2m n n +=,则m n=C .若(0,0)a cb d b d=≠≠,则a c =,b d =D .若x y =,则33x ya a =--4.在下列方程的变形中,正确的是( )A .由213x x +=,得231x x +=.由2354x =,得3542x =⨯C .由2354x =,得2453x =⨯D .由123x +-=,得16x -+=5.等式的性质1:等式两边加(或减)__________结果仍__________.用符号表示:如果a b =,那么a c ±=__________.6.等式的性质2:等式两边以__________,或除以__________,结果仍 __________.用符号表示:如果a b =,那么ac =__________;如果a b =,0c ≠那么ac=__________.3.1从算式到方程课后作业:基础版题量: 10题 时间: 20min7.下列各方程中,是一元一次方程的是( )A .325x y +=B .2650y y -+=C .1133x x-=D .3247x x -=-8.下列方程变形正确的是( )A .2554x x -=+变形为255454x x x -=+--B .122x =变形为1212x =⨯=C .480x -=变形为11(488)844x -+=⨯D .11123x --=变形为3(1)21x --=9.若1x =是方程32ax x +=的解,则a 的值是( )A .1-B .5C .1D .5-10.方程2+▲3x =,▲处被墨水盖住了,已知方程的解是2x =,那么▲处的数字是__________.【错误题号】【错因自查】 基础不牢 审题不清 思路不清 计算错误 粗心大意【正确解答】【错误题号】【错因自查】 基础不牢 审题不清 思路不清 计算错误 粗心大意【正确解答】1.B 2.C 3.B 4.B5.同一个数(或式子);相等;b c6.同一个不为0的数;同一个不为0的数;相等;bc ;b c7.D 8.C 9.A 10.41.下列式子中,是方程的是( )A .250x -≠B .23x =C .132-=-D .71y -2.下列变形错误的是( )A .由x y =得:88x y -=-B .由32x =得:23x =C .由23x -=得:32x =-D .由342x x -=得:324x x =+3.下列等式的变形,正确的是( )A .若25x x =,则5x =B .若2m n n +=,则m n=C .若(0,0)a cb d b d=≠≠,则a c =,b d =D .若x y =,则33x ya a =--4.在下列方程的变形中,正确的是( )A .由213x x +=,得231x x +=B .由2354x =,得3542x =⨯C .由2354x =,得2453x =⨯D .由123x +-=,得16x -+=5.等式的性质1:等式两边加(或减)__________结果仍__________.用符号表示:如果a b =,那么a c ±=__________.6.等式的性质2:等式两边以__________,或除以__________,结果仍 __________.用符号表示:如果a b =,那么ac =__________;如果a b =,0c ≠那么ac=__________.7.(★)已知6826060a b b +=+,利用等式性质可求得a b +的值是__________.3.1从算式到方程课后作业:提升版题量: 10题 时间: 20min8.(★)列等式表示“比a 的3倍大5的数等于a 的4倍”为__________.9.(★)已知11y x y +=-,用x 的代数式表示y =__________.10.(★)已知m ,n 是有理数,单项式n x y -的次数为3,而且方程2(1)20m x mx tx n ++-++=是关于x 的一元一次方程.(1)分别求m ,n 的值.(2)若该方程的解是3x =,求t 的值.(3)若题目中关于x 的一元一次方程的解是整数,请直接写出整数t 的值.【错误题号】【错因自查】 基础不牢 审题不清 思路不清 计算错误 粗心大意【正确解答】【错误题号】【错因自查】 基础不牢 审题不清 思路不清 计算错误 粗心大意【正确解答】1.B2.C3.B4.B5.同一个数(或式子);相等;b c±6.同一个不为0的数;同一个不为0的数;相等;bc ;b c7.(★)10108.(★)354a a += 9.(★)11x x +-10.(★)(1)由题意得:2n =,1m =-;(2)2(1)20m x mx tx n ++-++=,当3x =时,3320m t n -++=,2n = ,1m =-,33220t ∴--++=,13t =;(3)2(1)20m x mx tx n ++-++=,2n = ,1m =-,40x xt ∴--+=,41x t =+,441x t x x-==-,1t ∴≠-,0x ≠t 是整数,x 是整数,∴当1x =时,3t =,当4x =时,0t =,当1x =-时,5t =-,当4x =-时,2t =-,当2x =时,1t =,当2x =-时,3t =-.1.下列式子中,是方程的是( )A .250x -≠B .23x =C .132-=-D .71y -2.下列变形错误的是( )A .由x y =得:88x y -=-B .由32x =得:23x =C .由23x -=得:32x =-D .由342x x -=得:324x x =+3.下列等式的变形,正确的是( )A .若25x x =,则5x =B .若2m n n +=,则m n=C .若(0,0)a cb d b d=≠≠,则a c =,b d =D .若x y =,则33x ya a =--4.在下列方程的变形中,正确的是( )A .由213x x +=,得231x x +=B .由2354x =,得3542x =⨯C .由2354x =,得2453x =⨯D .由123x +-=,得16x -+=5.等式的性质1:等式两边加(或减)__________结果仍__________.用符号表示:如果a b =,那么a c ±=__________.6.等式的性质2:等式两边以__________,或除以__________,结果仍 __________.用符号表示:如果a b =,那么ac =__________;如果a b =,0c ≠那么ac=__________.7.(★★)小李在解方程513(a x x -=为未知数)时,误将x -看作x +,得方程的解为2x =-,则原方程的解为( )3.1从算式到方程课后作业:培优版题量: 10题 时间: 20minA .0x =B .1x =C .2x =D .3x =8.(★★)数学中有很多奇妙现象,比如:关于x 的一元一次方程ax b =的解为b a -,则称该方程为“差解方程”.例如:24x =的解为2,且242=-,则该方程24x =是差解方程.若关于x 的一元一次方程510x m -+=是差解方程,则m =__________.9.(★★)一般情况下,2323m n m n++=+不成立,但是,有些数可以使它成立,例如,0m n ==,我们称使得2323m n m n++=+成立的一对数m 、n 为“相伴数对”,记作(,)m n ,如果(,3)m 是“相伴数对”那么m 的值是__________;小明发现(,)x y 是“相伴数对”,则式子xy的值是__________.10.(★★)当m 为何值时,关于x 的方程531m x x +=+的解比关于x 的方程25x m m +=的解大2?【错误题号】【错因自查】 基础不牢 审题不清 思路不清 计算错误 粗心大意【正确解答】【错误题号】【错因自查】 基础不牢 审题不清 思路不清 计算错误 粗心大意【正确解答】1.B 2.C 3.B 4.B5.同一个数(或式子);相等;b c±6.同一个不为0的数;同一个不为0的数;相等;bc ;bc7.(★★)C8.(★★)2949.(★★)43-,49-10.(★★)解方程531m x x +=+得:152mx -=,解25x m m +=得:2x m =,根据题意得:15222mm --=,解得:13m =-.故当m 为13时,关于x 的方程531m x x +=+的解比关于x 的方程25x m m +=的解大2.。

人教版数学七年级上册 第3章 3.1 从算式到方程同步测试试题(一)

人教版数学七年级上册 第3章 3.1 从算式到方程同步测试试题(一)

从算式到方程同步测试试题(一)一.选择题1.若x=1是关于x的方程mx﹣3=2x的解,则m的值为()A.5B.﹣5C.6D.﹣62.下面四个等式的变形中正确的是()A.由2x+4=0得x+2=0B.由x+7=5﹣3x得4x=2C.由x=4得x=D.由﹣4(x﹣1)=﹣2得4x=﹣63.下列方程中,不是一元一次方程的为()A.3x+2=6B.4x﹣2=x+1C.x+1=0D.5x+6y=14.若关于x的方程3(x+4)=2a+5的解不小于方程x﹣3a=4x+2的解,则a的取值范围是()A.a>1B.a<1C.a≥1D.a≤15.设“■●▲”表示三种不同的物体,现用天平称了两次,情况如图,那么“■●▲”中质量最大的是()A.▲B.■C.●D.无法判断6.已知x=1是方程﹣=k的解,则k的值是()A.4B.﹣C.D.﹣47.要将等式﹣x=1进行一次变形,得到x=﹣2,下列做法正确的是()A.等式两边同时加B.等式两边同时乘以2C.等式两边同时除以﹣2D.等式两边同时乘以﹣28.关于x的一元一次方程x3﹣3n﹣1=0,那么n的值为()A.0B.1C.D.9.下列等式变形正确的是()A.由a=b,得5+a=5﹣bB.如果3a=6b﹣1,那么a=2b﹣1C.由x=y,得D.如果2x=3y,那么10.已知下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有()A.2个B.3个C.4个D.5个二.填空题11.若x3n﹣5+5=0是关于x的一元一次方程,则n=.12.已知x=5是关于x的方程ax+8=20﹣a的解,则a的值是.13.若是关于x的一元一次方程,则m的值为.14.已知方程与关于x的方程3n﹣1=3(x+n)﹣2n的解互为相反数,则n 的值为.15.方程.﹣=1中有一个数字被墨水盖住了,查后面的答案,知道这个方程的解是x=﹣1.那么墨水盖住的数字是.三.解答题16.某同学在解方程时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x=1.求a的值,并正确地解方程.17.小马虎解方程,在去分母时,两边同时乘以6,然而方程右边的﹣1忘记乘6,因此求得的解为x=4,(1)求a的值;(2)写出正确的求解过程.18.在做解方程练习时,学习卷中有一个方程“2y﹣=y+■”中的■没印清晰,小聪问老师,老师只是说:“■是一个有理数,该方程的解与当x=2时代数式5(x﹣1)﹣2(x ﹣2)﹣4的值相同.”小聪很快补上了这个常数.同学们,你们能补上这个常数吗?19.我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则该方程2x=4是差解方程.请根据上述规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.参考答案与试题解析一.选择题1.【解答】解:把x=1代入方程mx﹣3=2x得:m﹣3=2,解得:m=5,故选:A.2.【解答】解:A、由2x+4=0方程两边都除以2即可得出x+2=0,原变形正确,故本选项符合题意;B、由x+7=5﹣3x可得4x=﹣2,原变形错误,故本选项不符合题意;C、由x=4可得x=,原变形错误,故本选项不符合题意;D、由﹣4(x﹣1)=﹣2可得4x=6,原变形错误,故本选项不符合题意;故选:A.3.【解答】解:A.3x+2=6是一元一次方程;B.4x﹣2=x+1是一元一次方程;C.x+1=0是一元一次方程;D.5x+6y=1含有2个未知数,不是一元一次方程;故选:D.4.【解答】解:方程3(x+4)=2a+5,去括号得:3x+12=2a+5,解得:x=,方程x﹣3a=4x+2,移项合并得:﹣3x=3a+2,解得:x=﹣,根据题意得:≥﹣,去分母得:2a﹣7≥﹣3a﹣2,移项合并得:5a≥5,解得:a≥1.故选:C.5.【解答】解:第一个不等式,■质量<▲质量,根据第二个不等式,●质量<■质量,所以●质量<■质量<▲质量,故选:A.6.【解答】解:把x=1代入方程得:﹣k﹣=k,去分母得:﹣4k﹣3=8k,解得:k=﹣.故选:B.7.【解答】解:将等式﹣x=1进行一次变形,等式两边同时乘以﹣2,得到x=﹣2.故选:D.8.【解答】解:由题意得:3﹣3n=1,3n=2,n=,故选:C.9.【解答】解:A、由a=b得a+5=b+5,所以A选项错误;B、如果3a=6b﹣1,那么a=2b﹣,所以B选项错误;C、由x=y得=(m≠0),所以C选项错误;D、由2x=3y得﹣6x=﹣9y,则2﹣6x=2﹣9y,所以=,所以D选项正确.故选:D.10.【解答】解:根据一元一次方程定义可知:下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有②⑤.故选:A.二.填空题11.【解答】解:∵x3n﹣5+5=0是关于x的一元一次方程,∴3n﹣5=1,解得:n=2,故答案为:2.12.【解答】解:把x=5代入方程得:5a+8=20﹣a,解得:a=2.故答案为:2.13.【解答】解:∵是关于x的一元一次方程,∴m2﹣3=1且m﹣2≠0,解得:m=﹣2.故答案为:﹣2.14.【解答】解:第一个方程去分母得:3(2x﹣3)=10x﹣45,去括号得:6x﹣9=10x﹣45,移项合并得:﹣4x=﹣36,解得:x=9,把x=﹣9代入第二个方程得:3n﹣1=3(n﹣9)﹣2n,去括号得:3n﹣1=3n﹣27﹣2n,移项合并得:2n=﹣26,解得:n=﹣13.故答案为:﹣1315.【解答】解:设被墨水盖住的数字为a,把x=﹣1代入方程得:﹣=1,去分母得:﹣2﹣a+1+3=2,移项合并得:﹣a=0,解得:a=0,故答案为:0.三.解答题16.【解答】解:将x=1代入2x﹣1=x+a﹣2得:1=1+a﹣2.解得:a=2,将a=2代入2x﹣1=x+a﹣6得:2x﹣1=x+2﹣6.解得:x=﹣3.17.【解答】解:把x=4代入方程2(2x﹣1)=3(x+a)﹣1得:2×(8﹣1)=3×(4+a)﹣1,解得:a=1,把a=1代入方程得:=﹣1,去分母,得2(2x﹣1)=3(x+1)﹣6,去括号,得4x﹣2=3x+3﹣6,移项,得4x﹣3x=3﹣6+2,合并同类项,得x=﹣1.18.【解答】解:当x=2时代数式5(x﹣1)﹣2(x﹣2)﹣4=5x﹣5﹣2x+4﹣4=3x﹣5=3×2﹣5=1,即y=1,代入方程中得到:2×1﹣=×1+。

人教版数学七年级上册 第3章 3.1 从算式到方程同步测试试题(一)

人教版数学七年级上册 第3章 3.1 从算式到方程同步测试试题(一)

从算式到方程同步测试试题(一)一.选择题1.下列说法错误的是()A.若a=b,则a+c=b+c B.若a=b,则a﹣c=b﹣cC.若a=b,则ac=bc D.若a=b,则=2.若方程ax=5+3x的解为x=5,则a等于()A.80B.4C.16D.23.关于x的方程(m﹣1)x|m|+3=0是一元一次方程,则m的值是()A.﹣1B.1C.1或﹣1D.24.下列由等式的性质进行的变形,错误的是()A.如果a=b,那么a﹣5=b﹣5B.如果a=b,那么﹣=﹣C.如果a=3,那么a2=3a D.如果,那么a=b5.下列解方程的各种变形中,正确的是()A.由5x=4x+1可得4x﹣5x=1B.由3(x﹣1)﹣2(2x﹣3)=1可得3x﹣3﹣4x﹣6=1C.由﹣1=可得3(x+2)﹣1=2(2x﹣3)D.由x=可得x=6.下列方程中是一元一次方程的是()A.4x﹣5=0B.2x﹣y=3C.3x2﹣14=2D.﹣2=37.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A.0个B.1个C.2个D.3个8.下列变形正确的是()A.若x=y,则x﹣a=y+a B.若=,则=C.若ac2=bc2,则a=b D.若x=y,则=9.如图①,天平呈平衡状态,其中左侧盘中有一袋玻璃球,右侧盘中也有一袋玻璃球,还有2个各20g的砝码.现将左侧袋中一颗玻璃球移至右侧盘,并拿走右侧盘中的1个砝码,天平仍呈平衡状态,如图②.则移动的玻璃球质量为()A.10 g B.15 g C.20 g D.25 g10.运用等式性质进行的变形,正确的是()A.如果a=b,那么a+2=b+3B.如果a=b,那么ac=bcC.如果a=b,那么D.如果a2=3a,那么a=3二.填空题11.关于x的一元一次方程ax+2=x﹣a+1的解是x=﹣2,则a的值是.12.若(n﹣2)x|n|﹣1+5=0是关于x的一元一次方程,则n=.13.若2x a﹣1+1=0是一元一次方程,则a=,代数式﹣a2+2a的值是.14.一般情况下+=不成立,但有些数可以使得它成立,例如m=n=0.我们称使得+=成立的一对数m,n为“相伴数对”,记为(m,n).若(a,b)是“相伴数对”,则4a+b+2=.15.若关于x一元一次方程x+2019=2x+m的解为x=2019,则关于y的一元一次方程(y+1)+2019=2(y+1)+m的解为.三.解答题16.当n为何值时,关于x的方程的解为0?17.已知x=是方程﹣=的根,求代数式(﹣4m2+2m﹣8)﹣(m﹣1)的值.18.已知方程+5(x﹣)=,求代数式3+20(x﹣)的值.19.已知方程(m﹣2)x|m|﹣1﹣5=0是关于x的一元一次方程.(1)求m的值,并写出这个方程;(2)判断x=﹣1,x=0,x=﹣9是否是方程的解.参考答案与试题解析一.选择题1.【解答】解:A、两边都加c,结果不变,故A不符合题意;B、两边都减C,结果不变,故C不符合题意;C、两边都乘以c,结果不变,故C不符合题意;D、c=0时,两边都除以c无意义,故D符合题意;故选:D.2.【解答】解:∵方程ax=5+3x的解为x=5,∴5a=5+15,解得a=4.故选:B.3.【解答】解:由题意,得|m|=1且m﹣1≠0,解得m=﹣1,故选:A.4.【解答】解:A、两边都减5,结果不变,故A不符合题意;B、两边都除以﹣2,结果不变,故B不符合题意;C、两边都乘以同一个整式,结果不变,故C不符合题意;D、c=0时,a,b是任意不为0的数,故结论错误,故D符合题意;故选:D.5.【解答】解:A、由5x=4x+1可得5x﹣4x=1,所以选项A变形不正确,此选项不符合题意;B、由3(x﹣1)﹣2(2x﹣3)=1可得3x﹣3﹣4x+6=1,所以选项B变形不正确,此选项不符合题意;C、由﹣1=可得3(x+2)﹣12=2(2x﹣3),所以选项C变形不正确,此选项不符合题意;D、由=,可得:x=,所以选项D变形正确;此选项符合题意;故选:D.6.【解答】解:A、是一元一次方程,故本选项正确;B、不是一元一次方程,故本选项错误;C、不是一元一次方程,故本选项错误;D、不是一元一次方程,故本选项错误;故选:A.7.【解答】解:由第①个天平,得一个球等于两个长方体,故③不符合题意;两个球等于四个长方体,故②不符合题意,两个球等于四个长方体,故④符合题意;故选:B.8.【解答】解:A、若x=y,则x﹣a=y﹣a,错误;B、若=,则=,正确;C、若ac2=bc2,且c≠0,则a=b,错误;D、若x=y,且a+2≠0,则=,错误,故选:B.9.【解答】解:设左、右侧秤盘中一袋玻璃球的质量分别为m克、n克,根据题意得:m=n+40;设被移动的玻璃球的质量为x克,根据题意得:m﹣x=n+x+20,x=(m﹣n﹣20)=(n+40﹣n﹣20)=10.故选:A.10.【解答】解:A、在等式a=b的两边应该加上同一个数该等式才成立,故本选项错误;B、在等式a=b的两边同时乘以c,该等式仍然成立,故本选项正确;C、当c=0时,该等式不成立,故本选项错误;D、如果a2=3a,那么a=0或a=3,故本选项错误;故选:B.二.填空题(共5小题)11.【解答】解:把x=﹣2代入得:﹣2a+2=﹣2﹣a+1,移项合并得:﹣a=﹣3,解得:a=3.故答案为:312.【解答】解:由于方程是一元一次方程,所以需满足所以n=﹣2.故答案为:﹣213.【解答】解:由题意可知:a﹣1=1,∴a=2,∴原式=﹣4+4=0,故答案为:2,014.【解答】解:根据题意得:+=,去分母得:6a+3b=2a+2b,移项合并得:4a+b=0,所以4a+b+2=0+2=2.故答案为:2.15.【解答】解:∵关于x一元一次方程x+2019=2x+m的解为x=2019,∴关于(y+1)的一元一次方程(y+1)+2019=2(y+1)+m的解为y+1=2019,解得y=2018,即关于y的一元一次方程(y+1)+2019=2(y+1)+m的解为y=2018.故答案为2018.三.解答题(共4小题)16.【解答】解:把x=0代入方程得:+1=+n,去分母得:2n+6=3+6n,∴n=,即当n=时,关于x的方程的解为0.17.【解答】解:把代入方程,得:﹣=,解得:m=5,∴原式=﹣m2﹣1=﹣26.18.【解答】解:已知方程整理得:(x﹣)=,则原式=3+1=4.19.【解答】解:(1)∵(m﹣2)x|m|﹣1﹣5=0是关于x的一元一次方程。

人教版数学七年级上册 第3章 3.1从算式到方程同步测试题(一)

人教版数学七年级上册 第3章 3.1从算式到方程同步测试题(一)

从算式到方程同步测试题(一)一.选择题1.下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有()A.5个B.4个C.3个D.2个2.根据等式的性质,下列选项中等式不一定成立的是()A.若a=b,则a+2=b+2B.若ax=bx,则a=bC.若=,则x=y D.若3a=3b,则a=b3.x=3是下列方程的解的有()①﹣2x﹣6=0;②|x+2|=5;③(x﹣3)(x﹣1)=0;④x=x﹣2.A.1个B.2个C.3个D.4个4.下列等式变形错误的是()A.由5x﹣7y=2,得﹣2﹣7y=5xB.由6x﹣3=x+4,得6x﹣3=4+xC.由8﹣x=x﹣5,得﹣x﹣x=﹣5﹣8D.由x+9=3x﹣1,得3x﹣1=x+95.下列方程中:①2x+4=6,②x﹣1=,③3x2﹣2x,④5x<7,⑤3x﹣2y=2,⑥x=3,其中是一元一次方程的有()A.5个B.4个C.3个D.2个6.已知等式2a=3b+4,则下列等式中不成立的是()A.2a﹣3b=4B.2a+1=3b+5C.2ac=3bc+4D.a=b+27.下列等式是一元一次方程的是()A.s=a+b B.2﹣5=﹣3C.+1=﹣x﹣2D.3x+2y=58.若ax=ay,那么下列等式一定成立的是()A.x=y B.x=|y|C.y D.3﹣ax=3﹣ay9.下列方程:①y=x﹣7;②2x2﹣x=6;③m﹣5=m;④=1;⑤=1,⑥6x =0,其中是一元一次方程的有()A.2个B.3个C.4个D.5个10.下面四个等式的变形中正确的是()A.由x+7=5﹣3x,得4x=2B.由4x+8=0,得x+2=0C.由x=4,得x=D.由4(x﹣1)=﹣2,得4x=﹣6二.填空题11.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m=.12.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,写出其中解是x=2020的方程:.13.当a=时,方程解是x=1?14.如果x2m﹣1﹣6=0是关于x的一元一次方程,则m的值是.15.如图,已知天平1和天平2的两端都保持平衡.要使天平3两端也保持平衡,则天平3的右托盘上应放个圆形.三.解答题16.已知关于x的一元一次方程(m2﹣4)x2+(m+2)x+3n﹣5=0的解为﹣1,求m2+2n的值.17.小明在解方程时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是+1=x,怎么办呢?小明想了一想,便翻了书后的答案,此方程的解为x=﹣2.5,请你帮算一下被污染的常数是多少呢?18.已知(m﹣3)x|m|﹣2+6=0是关于x的一元一次方程(1)求m的值(2)若|y﹣m|=3,求y的值19.若关于x的一元一次方程ax=b(a≠0)的解恰好为a+b即x=a+b,则称该方程为“友好方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“友好方程”.(1)①﹣2x=4,②3x=﹣4.5;③x=﹣1三个方程中,为“友好方程”的是(填写序号)(2)若关于x的一元一次方程3x=b是“友好方程”,求b的值;(3)若关于x的一元一次方程﹣2x=2m+1是“友好方程”,求m的值.参考答案与试题解析一.选择题1.【解答】解:下列方程:①3x﹣y=2:②x++2=0;③=1;④x=0;⑤3x﹣1≥5:⑥x2﹣2x﹣3=0;⑦x.其中一元一次方程有③④⑦,共3个.故选:C.2.【解答】解:∵若a=b,则a+2=b+2,∴选项A不符合题意;∵若ax=bx,则x=0时,a可以不等于b,∴选项B符合题意;∵若=,则x=y,∴选项C不符合题意;∵若3a=3b,则a=b,∴选项D不符合题意.故选:B.3.【解答】解:①∵﹣2x﹣6=0,∴x=﹣3.②∵|x+2|=5,∴x+2=±5,解得x=﹣7或3.③∵(x﹣3)(x﹣1)=0,∴x=3或1.④∵x=x﹣2,∴x=3,∴x=3是所给方程的解的有3个:②、③、④.故选:C.4.【解答】解:∵5x﹣7y=2,∴﹣2﹣7y=﹣5x,∴选项A符合题意;∵6x﹣3=x+4,∴6x﹣3=4+x,∴选项B不符合题意;∵8﹣x=x﹣5,∴﹣x﹣x=﹣5﹣8,∴选项C不符合题意;∵x+9=3x﹣1,∴3x﹣1=x+9,∴选项D不符合题意.故选:A.5.【解答】解:①2x+4=6是一元一次方程;②x﹣1=是分式方程;③3x2﹣2x不是方程,是代数式;④5x<7是一元一次不等式;⑤3x﹣2y=2是二元一次方程;⑥x=3是一元一次方程;一元一次方程共2个,故选:D.6.【解答】解:∵2a=3b+4,∴2ac=3bc+4c,故C不成立故选:C.7.【解答】解:A、s=a+b,是三元一次方程,故本选项不符合题意;B、2﹣5=﹣3中不含有未知数,不是方程,故本选项不符合题意;C、+1=﹣x﹣2,是一元一次方程,故本选项符合题意;D、3x+2y=5中含有2个未知数,不是一元一次方程,故本选项不符合题意.故选:C.8.【解答】解:A、当a=0时,x与y不一定相等,故本选项错误;B、当a=0时,x与|y|不一定相等,故本选项错误;C、当a=0时,x与y不一定相等,故本选项错误;D、等式ax=ay的两边同时乘﹣1,再同时加上3,该等式仍然成立,故本选项正确.故选:D.9.【解答】解:一元一次方程有m﹣5=m,=1,6x=0,共3个,故选:B.10.【解答】解:A、由x+7=5﹣3x方程两边都加3x﹣7即可得出4x=﹣2,故本选项错误;B、由4x+8=0方程两边都除以4即可得出x+2=0,故本选项正确;C、由x=4,得x=,故本选项错误;D、由4(x﹣1)=﹣2可得4x=2,故本选项错误;故选:B.二.填空题11.【解答】解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.12.【解答】解:∵一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;∴一列方程如下排列:+=1的解是x=2;+=1的解是x=3;+=1的解是x=4;…∴+=1,∴方程为+=1,故答案为:+=1.13.【解答】解:把x=1代入原方程,得+=1,去分母,得:2(a﹣1)+3(1+a)=6,去括号,得:2a﹣2+3+3a=6,移项、合并同类项,得:5a=5,系数化为1,得:a=1,故答案为:1.14.【解答】解:∵x2m﹣1﹣6=0是关于x的一元一次方程,∴2m﹣1=1,解得:m=1,故答案为:1.15.【解答】解:设圆形物品的质量为x,三角形物品的质量为y,正方形物品的质量为z,根据题意得:,利用加减消元法,消去y得:z=x,∴2z=3x,即应在右托盘上放3个圆形物品,故答案为:3.三.解答题16.【解答】解:根据题意得m2﹣4=0且m+2≠0,∴m=2,原方程化为4x+3n﹣5=0,∵x=﹣1为方程4x+3n﹣5=0的解,∴﹣4+3n﹣5=0,∴n=3,∴m2+2n=22+2×3=10.17.【解答】解:设□为a,把x=﹣2.5代入得:+1=﹣2.5,解得:a=5,故被污染的常数是5.18.【解答】解:(1)∵(m﹣3)x|m|﹣2+6=0是关于x的一元一次方程,∴|m|﹣2=1且m﹣3≠0,解得:m=﹣3;(2)把m=﹣3代入已知等式得:|y+3|=3,∴y+3=3或y+3=﹣3,解得:y=0或y=﹣6.19.【解答】解:(1)﹣2x=4的解是x=2≠﹣2+4,即方程﹣2x=4不是“友好方程”,3x=﹣4.5的解是x=﹣1.5=3+(﹣4.5),即方程3x=﹣4.5是“友好方程”,x=﹣1的解是x=﹣2≠+(﹣1),即方程x=﹣1不是“友好方程”,故答案为:②;(2)∵关于x的一元一次方程3x=b是“友好方程”,∴=3+b,解得:b=﹣4.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课本第83页 练习 利用等式的性质解下列方程并检验:
(1)x - 5 = 6;
解:(1)两边加 5,得
x-5+5=6+5
于是
x = 11
检验:将 x = 11 代入方程 x - 5 = 6 的左边,得
11 - 5 = 6
方程的左右两边相等,所以 x = 11 是方程的解。
课本第83页 练习 利用等式的性质解下列方程并检验:
种铅笔共 20 支,两种铅笔各买了多少支?
解:设甲种铅笔买了 x 支,则乙种铅笔买了(20 - x)支。
列方程
0.3x + 0.6×(20 - x)= 9
课本第80页 练习 根据下列问题,设未知数,列出方程: 3. 一个梯形的下底比上底多 2 cm,高是 5 cm,面积是 40 cm2,
求上底。
解:设上底为x cm,则下底为(x + 2)cm。
(2)0.3x = 45;
解:(2)两边除以 0.3,得
于是
0.3x 0.3
=
45 0.3
x = 150
检验:将 x = 150 代入方程 0.3x = 45 的左边,得 0.3×150 = 45
方程的左右两边相等,所以 x = 150 是方程的解。
课本第83页 练习
利用等式的性质解下列方程并检验:
课本第83页 练习
利用等式的性质解下列方程并检验:
(4)2 -
1 4
x = 3。
解:(4)两边减 2,得 化简,得 两边乘 - 4,得2-ຫໍສະໝຸດ 1 4x-2=3-2
-
1 4
x=1
x=-4
检验:

x
=
-
4
代入方程 2 -
2-
1 ×(4
1 4
x
=
3
4)= 3
的左边,得
方程的左右两边相等,所以 x = - 4 是方程的解。
第三章 一元一次方程
3.1 从算式到方程
.
练习题
课本第80页 练习 根据下列问题,设未知数,列出方程: 1. 环形跑道一周长 400 m,沿跑道跑多少周,可以跑 3 000m?
解:设沿跑道跑 x 周。 列方程
400x = 3 000
课本第80页 练习 根据下列问题,设未知数,列出方程: 2. 甲种铅笔每支 0.3 元,乙种铅笔每支 0.6 元,用 9 元钱买了两
(3)5x + 4 = 0;
解:(3)两边减 4,得 5x + 4 - 4 = 0 - 4
化简,得 5x = - 4
两边除以 5,得 x = - 0.8
检验:将 x = - 0.8 代入方程 5x + 4 = 0 的左边,得 5×(- 0.8)+ 4 = 0
方程的左右两边相等,所以 x = - 0.8 是方程的解。
列方程
[x +(x + 2)]×5÷2 = 40
课本第80页 练习 根据下列问题,设未知数,列出方程: 4. 用买 10 个大水杯的钱,可以买 15 个小水杯,大水杯比小水
杯的单价多 5 元,两种水杯的单价各是多少元?
解:设大水杯的单价是 x 元,则小水杯的单价是(x - 5)元。
列方程
10x = 15(x - 5)
相关文档
最新文档