高考数学讲义微专题14函数的切线问题(含详细解析)
课标卷中函数图像的切线问题

函数图像切线问题的解答一、高考考点分析函数图像的切线问题,是高考的高频考点,从2014年到2018年,每年都有切线的考题出现。
虽然题目的难度不大,但在新课教学或者练习中,有关切线的问题,却似乎是一个难啃的骨头,正确率总是不高。
问题的关键是没有弄清楚题目背后的知识,及解答问题的思维方法。
二、问题解决(一)知识准备及思想方法函数图像切线问题,考查的是导数的几何意义,及直线的方程,还有方程(组)的数学思想方法。
首先是导数的几何意义。
导数的几何意义为:曲线()f x 在点00(,)P x y 处切线的斜率等于函数()f x 在0x 处的导数值0'()f x ,即0'()k f x =(简记)。
这样就有了切线的斜率,还有切点00(,)P x y 。
如果是未知,就有符号表示出来。
其次,在必修2直线一章,我们学习了五种形式的直线方程,但其实,最常用的就是点斜式方程,即00()y y k x x -=-。
在解决函数切线问题中,也常用这个形式的方程。
最后,我们思考解决问题,要有方程的思想(求什么,设什么,列关于什么的方程)。
在这里多啰嗦一下,大家不要认为只有出现数字才能解答题目,出现了符号就束手无措了,在出现符号时,要根据题目做处理,哪些看成已知,哪些看成未知——也就是符号的思想。
(二)解答流程1、斜率:0'()k f x =求解或列方程;2、切点:00()y y k x x -=-(或斜率坐标公式)或00()y f x =求解或列方程。
三、高考试题展示1、(2018年1卷,6)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( )A .2y x =-B .y x =-C .2y x =D .y x =分析:()f x 为奇函数,由特值法(1)(1)f f -=-得1a =,3()f x x x ∴=+。
求导,得2'()31f x x =+,∴斜率'(0)1k f ==,又 切点为()00,,由点斜式,得切线方程为y x =。
函数的切线问题典例精讲

函数的切线问题典例精讲例1:求函数()()32xf x ex =-在1x =处的切线方程思路:本题切点已知,代入原函数求得函数值,代入导函数中求得切线斜率,进而利用点斜式求出切线方程解:()1f e=∴切点坐标为()1,e ()()()'33231x x x f x e x e x e =+-=+()'14f e∴=∴切线方程为:()4143y e e x y ex e-=-⇒=-例2:已知函数()ln 2f x x x =+,则:(1)在曲线()f x 上是否存在一点,在该点处的切线与直线420x y --=平行(2)在曲线()f x 上是否存在一点,在该点处的切线与直线30x y --=垂直解:(1)思路:切点未知,考虑设切点坐标为()00,x y ,再利用平行条件求出0x ,进而求出切线方程设切点坐标为()00,x y ()'0012f x x ∴=+由切线与420x y --=平行可得:()'00011242f x x x =+=⇒=011ln 122y f ⎛⎫∴==+ ⎪⎝⎭∴切线方程为:11ln 244ln 212y x y x ⎛⎫-+=-⇒=-- ⎪⎝⎭(2)思路:与(1)类似,切点未知,考虑设切点坐标为()00,x y ,有垂直关系可得切线斜率与已知直线斜率互为负倒数,列出方程求出0x ,进而求出切线方程设切点坐标()00,x y ()'0012f x x ∴=+,直线30x y --=的斜率为1()'00011213f x x x ∴=+=-⇒=-而()00,x ∈+∞013x ∴=-不在定义域中,舍去∴不存在一点,使得该点处的切线与直线30x y --=垂直例3:函数()2ln f x a x bx =-上一点()()2,2P f 处的切线方程为32ln 22y x =-++,求,a b 的值思路:本题中求,a b 的值,考虑寻找两个等量条件进行求解,P 在直线32ln 22y x =-++上,322ln 222ln 24y ∴=-⋅++=-,即()2=2ln24f -,得到,a b 的一个等量关系,在从切线斜率中得到2x =的导数值,进而得到,a b 的另一个等量关系,从而求出,a b 解:P 在32ln 22y x =-++上,()2322ln 222ln 24f ∴=-⋅++=-()2ln 242ln 24f a b ∴=-=-又因为P 处的切线斜率为3-()'2af x bx x=-()'2432af b ∴=-=-ln 242ln 2421432a b a a b b -=-⎧=⎧⎪∴⇒⎨⎨=-=-⎩⎪⎩例4:曲线xy e =在点()22,e处的切线与坐标轴所围三角形的面积为()A.2eB.22eC.24eD.22e 思路:()'xf x e =由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程()'22fe ∴=所以切线方程为:()222y e e x -=-即220e x y e --=,与两坐标轴的交点坐标为()()21,00,e -221122e S e ∴=⨯⨯=答案:D例5:一点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是().A.0,2π⎡⎤⎢⎥⎣⎦B.30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭C.3,4ππ⎡⎫⎪⎢⎣⎭D.3,24ππ⎛⎤⎥⎝⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来。
函数的切线问题微专题

x0
抓住关键:
y0 k
f (x0 ) f (x0 )
;
3.过点 A(x1, y1) 的切线方程:设切点为 P(x0 , y0 ) ,则斜率 k f (x0 ) ,过切点的切线方程为: ∵过点 A(x1, y1) ,∴ y1 y0 f (x0 )(x1 x0 ) 然后解出 x0 的值.( x0 有几个值,就有几条切线,三次函数多解)
函数的切线问题微专题
第一讲 函数切线及其应用
1.导数的几何意义:
函数 f (x) 在点 x0 处的导数的几何意义就是曲线 y f (x) 在点 (x0 , f (x)) 处的切线的斜率.注:( k f x tan )
2.在点
A(x0 ,
y0 ) 处的切线方程:
y
f
(x0 )
f
(x0 ) x
A. (5 , 4)
B. (5 , 0)
C. (4 , 0)
D. (5 , 3]
【解析】法一: f x x3 3x2 ,则 f x 3x2 6x ,设切点为 x0 , x03 3x02 ,则 f x0 3x02 6x0 .
∴过切点处的切线方程为 y x03 3x02 3x02 6x0 x x0 ,把点 2 ,n 代入得:
e2-2x,则 y′=2+2e2-2x>0.∵x=1 时,y=0,∴x0=1.故选 A.
[答案] A
【例 1.3】设点 P 是曲线 y x3 3x 3 上的任意一点,点 P 处切线的倾斜角为 ,则角 的范围是( ) 5
A.
0
,2 3
B.
0
,
2
2 3
,
C.
2
,2 3
D.
3
,2 3
《切线的判定》课件

切线与过切点的半径所在的直 线相互垂直。
02
切线的判定方法
利用定义判定切线
总结词:直接验证
详细描述:根据切线的定义,如果直线与圆只有一个公共点,则该直线为圆的切 线。因此,可以通过验证直线与圆的交点数量来判断是否为切线。
利用切线的性质判定切线
总结词:半径垂直
详细描述:切线与过切点的半径垂直,因此,如果已知过切点的半径,可以通过验证直线与半径的夹角是否为直角来判断是 否为切线。
切线判定定理的变种
切线判定定理的变种
除了标准的切线判定定理,还存在一些变种,如利用切线的 性质来判断是否为切线,或者利用已知点和切线的性质来判 断未知点是否在曲线上。
切线判定定理的应用
切线判定定理在几何证明题中有着广泛的应用,如证明某直 线为圆的切线,或者判断某点是否在曲线上。这些应用都需 要熟练掌握切线判定定理及其变种。
04
切线判定定理的证明
定理的证明过程
第一步
根据题目已知条件,画 出图形,标出已知点和
未知点。
第二步
根据切线的定义,连接 已知点和未知点,并作
出过这两点的割线。
第三步
根据切线和割线的性质 ,证明割线与圆只有一 个交点,即证明割线是
圆的切线。
第四步
根据切线的判定定理, 如果一条割线满足上述 性质,则这条割线是圆
切线判定定理在其他领域的应用
物理学中的应用
在物理学中,切线判定定理可以应用于研究曲线运动和力的分析。例如,在分析物体在曲线轨道上的 运动时,可以利用切线判定定理来判断物体的运动轨迹是否与轨道相切。
工程学中的应用
在工程学中,切线判定定理可以应用于机械设计和流体力学等领域。例如,在机械设计中,可以利用 切线判定定理来判断曲轴是否与轴承相切,从而避免轴承的损坏。在流体力学中,可以利用切线判定 定理来判断流体是否沿着流线流动。
函数切线的知识点总结

函数切线的知识点总结1. 切线的概念在数学中,给定曲线上一点P,通过这一点能够作出唯一的直线L,它与曲线相交于此点,并且在此点处与曲线的切线相切,这样的直线L称为曲线的切线,点P叫做切点。
任何一条曲线,在它的每一点上都存在切线。
2. 切线的定义设曲线L是可导的,点P(a,f(a))在L上,若直线L通过点P,且曲线L和直线L在点P处的切线重合,则直线L称为曲线L在点P处的切线。
3. 曲线的切线方程对于曲线y=f(x),在点P(x0,y0)处的切线方程可以表示为:y - y0 = f'(x0)(x - x0)其中f'(x0)表示函数f(x)在x0处的导数。
4. 切线的斜率切线的斜率就是曲线在某一点的导数值,即切线的斜率等于曲线在该点处的导数值。
5. 切线的求解为了求得曲线在某一点的切线方程,我们需要进行以下步骤:a. 求出点(x0,y0)的横坐标和纵坐标;b. 求出函数f(x)在点x0处的导数f'(x0);c. 将这些信息带入切线方程y - y0 = f'(x0)(x - x0)中,即可得到曲线在点(x0,y0)处的切线方程。
6. 切线的图像曲线的切线可以通过函数图像来形象地描述,当我们观察曲线上不同点处的切线时,可以得到这些切线的整体情况。
通过图像,我们可以看到切线在曲线上的变化情况,以及曲线在不同点处的斜率和变化趋势。
7. 切线的应用函数的切线在数学中有诸多应用,例如在微积分中的微分、函数极值点的判断、曲线的切线综合问题等。
在工程、物理、经济等领域,函数的切线也有广泛的应用,例如在物理中的速度、加速度的研究,经济学中的边际利润等。
8. 切线的性质曲线上任意一点的切线斜率恒等于函数在该点的导数。
通过切线方程可以得到曲线在某点处的局部变化情况,比如曲线在该点处的导数值、函数值等。
9. 切线和割线在数学中,除了切线外,还有一个相关的概念叫做割线。
割线是曲线上的两点A、B之间的直线,而切线则是曲线上的一点。
高考数学抛物线中的切线问题(解析版)

抛物线中的切线问题一、考情分析对于抛物线特别是抛物线x 2=2py p ≠0 ,可以化为函数y =x 22p,从而可以借组导数研究求性质,这种关联使得可以把抛物线与导数的几何意义交汇,这是圆锥曲线中的一大亮点,也是圆锥曲线解答题的一个热点.二、解题秘籍(一)利用判别式求解抛物线中的切线问题求解直线抛物线相切问题,可以把直线方程与抛物线方程联立整理成一个一元二次方程,然后利用Δ=0求解.【例1】(2023届河南省新未来高三上学期联考)已知抛物线C :y 2=2px p >0 ,直线l 1,l 2都经过点P -p2,0 .当两条直线与抛物线相切时,两切点间的距离为4.(1)求抛物线C 的标准方程;(2)若直线l 1,l 2分别与抛物线C 依次交于点E ,F 和G ,H ,直线EH ,FG 与抛物线准线分别交于点A ,B ,证明:PA =PB .【解析】(1)设经过点P -p 2,0 的直线为l :y =k x +p2 ,由y 2=2px y =k x +p 2消去y ,得k 2x 2+k 2-2 px +k 2p 24=0,Δ=k 2-2 2p 2-4×k 2⋅k 2p 24=4p 2-k 2+1 ,当直线l 与抛物线C 相切时,Δ=0,∵p >0,∴k =±1,所以x 2-px +p 24=0,解得x =p 2,∴切点为p 2,p ,p 2,-p ,又∵两切点间的距离为4,∴2p =4,即p =2,∴抛物线C 的标准方程为y 2=4x ;(2)设点E x 1,y 1 ,F x 2,y 2 ,G x 3,y 3 ,H x 4,y 4 ,设直线l 1:x =k 1y -1,直线l 2:x =k 2y -1,联立y 2=4x x =k 1y -1 消去x ,得y 2-4k 1y +4=0,则y 1y 2=4,同理,y 3y 4=4,故y 1=4y 2,y 4=4y 3,直线EH 的方程为y -y 1y 4-y 1=x -x 1x 4-x 1,令x =-1,得y A -y 1y 4-y 1=1-y 214y 244-y 214,整理得y A =y 1y 4-4y 1+y 4,同理,y B =y 2y 3-4y 2+y 3,所以y A =4y 2⋅4y 3-44y 2+4y 3=4-y 2y 3y 2+y 3=-y B ,∴PA =PB .(二)利用导数几何意义求解抛物线中的切线问题求解抛物线x 2=2py 在其上一点P x 1,y 1 处的切线方程,可先把x 2=2py 化为y =x 22p ,则y =xp,则抛物线x 2=2py 在点P x 1,y 1 处的切线斜率为x 1p ,切线方程为y -y 1=x1px -x 1 .【例2】(2023届湖南省三湘名校教育联盟高三上学期联考)在直角坐标系xoy 中,已知抛物线C :x 2=2py p >0 ,P 为直线y =x -1上的动点,过点P 作抛物线C 的两条切线,切点分别为A ,B ,当P 在y 轴上时,OA ⊥OB .(1)求抛物线C 的方程;(2)求点O 到直线AB 距离的最大值.【解析】(1)当P 在y 轴上时,即P 0,-1 ,由题意不妨设A x 0,y 0 x 0>0 则B -x 0,y 0 ,设过点P 的切线方程为y =kx -1,与x 2=2py 联立得x 2-2pkx +2p =0,由直线和抛物线相切可得Δ=4p 2k 2-8p =0,x 0x 0=x 20=2p ,所以x 0=2p 由x 20=2py 0得y 0=1,∴A 2p ,1 ,B -2p ,1 ,由OA ⊥OB 可得2p ⋅-2p +1×1=0,解得p =12,∴抛物线C 的方程为x 2=y ;(2)x 2=y ,∴y =2x ,设A x 1,y 1 ,B x 2,y 2 ,则y -y 1=2x 1x -x 1 ,又x 21=y 1,所以y -y 1=2x 1x -2y 1即2x 1x =y +y 1,同理可得2x 2x =y +y 2,又P 为直线y =x -1上的动点,设P t ,t -1 ,则2x 1t =t -1+y 1,2x 2t =t -1+y 2,由两点确定一条直线可得AB 的方程为2xt =t -1+y ,即y -1=2t x -12 ,∴直线AB 恒过定点M 12,1 ,∴点O 到直线AB 距离的最大值为OM =12 2+1=52.(三)抛物线中与切线有关的性质过抛物线焦点弦的两端点作抛物线的切线,则(1)切线交点在准线上(2)切线交点与弦中点连线平行于对称轴(3)切线交点与焦点弦的两端点连线垂直(4)切线交点与焦点连线与焦点弦垂直(5)弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.反之:(1)过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点,该点与焦点连线垂直于过两切点的弦(2)过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.【例3】已知抛物线C :x 2=2py (p >0)的焦点为F ,过F 的直线l 与C 相交于A ,B 两点,PA ,PB 是C 的两条切线,A ,B 是切点.当AB ∥x 轴时,|AB |=2.(1)求抛物线C 的方程;(2)证明:|PF |2=|AF |⋅|FB |.【解析】(1)由题意,F 0,p 2 ,当AB ∥x 轴时,将y =p2代入x 2=2py 有x 2=p 2,解得x =±p ,又AB =2故2p =2,解得p =1.故抛物线C 的方程为x 2=2y .(2)由(1),设A x 1,y 1 ,B x 2,y 2 ,直线l 的方程为y =kx +12,联立抛物线方程有x 2-2kx -1=0,故x 1+x 2=2k ,x 1x 2=-1.又抛物线方程y =12x 2,故y =x ,故切线PA 的方程为y -12x 21=x 1x -x 1 ,即y =x 1x -12x 21,同理可得切线PB 的方程为y =x 2x -12x 22,联立y =x 1x -12x 21y =x 2x -12x 22可得x 1-x 2 x =12x 21-x 22 ,解得x =12x 1+x 2 ,代入y =x 1x -12x 21有y =12x 1x 1+x 2 -12x 21=12x 1x 2,代入韦达定理可得P k ,-12.故当k =0时有l ⊥PF ,当k ≠0时,因为k FP =-12-12k -0=-1k,故k FP ⋅k l =-1,也满足l ⊥PF .故l ⊥PF 恒成立.又k PA ⋅k PB =x 1x 2=-1,故PA ⊥PB .所以∠PAB +∠PBA =90∘,∠PAF +∠APF =90∘,故∠PBF =∠APF ,故Rt △PBF ∼Rt △APF ,故BFPF=PF AF ,即PF 2=AF ⋅BF ,即得证.【例4】已知直线l 过原点O ,且与圆A 交于M ,N 两点,MN =4,圆A 与直线y =-2相切,OA 与直线l 垂直,记圆心A 的轨迹为曲线C .(1)求C 的方程;(2)过直线y =-1上任一点P 作C 的两条切线,切点分别为Q 1,Q 2,证明:①直线Q 1Q 2过定点;②PQ 1⊥PQ 2.【解析】(1)如图,设A (x ,y ),因为圆A 与直线y =-2相切,所以圆A 的半径为|y +2|.由圆的性质可得|OA |2+|ON |2=|AN |2,即x 2+y 2+4=(y +2)2,化简得x 2=4y .因为O 与A 不重合,所以y ≠0,所以C 的方程为x 2=4y (y ≠0).(2)证明:①由题意可知Q 1,Q 2与O 不重合.如图,设P (t ,-1),Q 1x 1,y 1 ,则x 21=4y 1,因为y =x2,所以切线PQ 1的斜率为x 12,故x12=y 1+1x 1-t,整理得tx 1-2y 1+2=0.设Q 2x 2,y 2 ,同理可得tx 2-2y 2+2=0.所以直线Q 1Q 2的方程为tx -2y +2=0,所以直线Q1Q 2过定点(0,1).②因为直线Q 1Q 2的方程为tx -2y +2=0,由tx -2y +2=0,x 2=4y ,消去y 得x 2-2tx -4=0,所以x 1+x 2=2t ,x 1x 2=-4.又PQ 1 ⋅PQ 2=x 1-t x 2-t +y 1+1 y 2+1=x 1x 2-t x 1+x 2 +t 2+tx 1+22+1 tx 2+22+1 =x 1x 2-t x 1+x 2 +t 2+t 2x 1+2 t2x 2+2 =x 1x 2-t x 1+x 2 +t 2+t24x 1x 2+t x 1+x 2 +4=1+t24x 1x 2+t 2+4=0,所以PQ 1⊥PQ 2.三、跟踪检测1.(2023届云南省名校高三上学期月考)已知抛物线E :x 2=2py p >0 的焦点为F ,斜率为k k ≠0 的直线l 与E 相切于点A .(1)当k =2,AF =5时,求E 的方程;(2)若直线l 与l 平行,l 与E 交于B ,C 两点,且∠BAC =π2,设点F 到l 的距离为d 1,到l 的距离为d 2,试问:d1d 2是否为定值?若是,求出定值;若不是,说明理由.【解析】(1)由x 2=2py 得y =x 22p ,则y =x p,令xp =2,则x =2p ,即x A =2p ,y A =2p 22p=2p 则AF =2p +p2=5,所以p =2,故抛物线E 的方程为x 2=4y .(2)设A 2pt 0,2pt 20 ,B 2pt 1,2pt 21 ,C 2pt 2,2pt 22 ,则切线l 的斜率k =2pt 0p=2t 0,则切线l 的方程为:y -2pt 02=2t 0x -2pt 0 ,即y =2t 0x -2pt 20,k BC =2pt 12-2pt 222pt 1-2pt 2=t 1+t 2.直线l 的方程为y -2pt 21=t 1+t 2 x -2pt 1 ,化简得y =t 1+t 2 x -2pt 1t 2,因为l ∥l ,所以t 1+t 2=2t 0,由∠BAC =π2得2pt 12-2pt 022pt 1-2pt 0⋅2pt 22-2pt 022pt 2-2pt 0=-1,则t 1+t 0 t 2+t 0 =-1,即t 1t 2=-1-3t 20,即l :2t 0x -y +2p +6pt 02=0.由F 0,p 2 ,则d 1=3p 2+6pt 20 4t 20+1=3p 2+6pt 204t 20+1,d 2=-p 2-2pt 204t 20+1=p 2+2pt 204t 20+1,所以d 1d 2=3p 12+2t 20 p 12+2t 20 =3.故d1d 2是定值,定值为3.2.(2023届河南省北大公学禹州国际学校高三上学期月考)已知抛物线C 的顶点在坐标原点,焦点在y 轴的正半轴上,直线l :mx +y -1=0经过抛物线C 的焦点.(1)求抛物线C 的方程;(2)若直线l 与抛物线C 相交于A ,B 两点,过A ,B 两点分别作抛物线C 的切线,两条切线相交于点P ,求△ABP 面积的最小值.【解析】(1)由题意,设抛物线C 的方程为x 2=2py p >0 ,因为直线l :mx +y -1=0经过0,1 ,即抛物线C 的焦点F 0,p2,所以p2=1,解得p =2,所以抛物线C 的方程为x 2=4y .(2)设A x 1,y 1 、B x 2,y 2 ,联立方程组x 2=4y mx +y -1=0 ,整理得x 2+4mx -4=0,因为Δ=16m 2+16>0,且x 1+x 2=-4m ,x 1x 2=-4,y 1+y 2=x 214+x 224=x 1+x 2 2-2x 1x 24=4m 2+2,y 1y 2=x 214×x 224=-4 216=1所以AB =y 1+y 2+p =41+m 2 ,由x 2=4y ,可得y =x 24,则y =x 2,所以抛物线C 经过点A 的切线方程是y -y 1=x 12x -x 1 ,将y 1=x 214代入上式整理得y =x 12x -x 214,同理可得抛物线C 经过点B 的切线方程为y =x 22x -x 224,联立方程组y =x 12x -x 214y =x 22x -x 224,解得x =x 1+x 22,y =x 1x 24,所以x =-2m ,y =-1,所以P -2m ,-1 到直线mx +y -1=0的距离d =m ×-2m -1-1m 2+1=2m 2+1,所以△ABP 的面积S =12AB d =12×4×1+m 2 ×2m 2+1=4m 2+1 32,因为m 2+1≥1,所以S ≥4,即当m =0时,S =4,所以△ABP 面积的最小值为4.3.(2022届浙江省绍兴市高三上学期12月选考)已知抛物线C 的焦点是0,14 ,如图,过点D 22,t(t ≤0)作抛物线C 的两条切线,切点分别是A 和B ,线段AB 的中点为M .(1)求抛物线C 的标准方程;(2)求证:直线MD ⎳y 轴;(3)以线段MD 为直径作圆,交直线AB 于MN ,求|AB |-|MN ||AB |+|MN |的取值范围.【解析】(1)设抛物线的方程为x 2=2py p >0 ,由题意可得p 2=14,所以p =12,所以抛物线方程y =x 2.(2)由(1)y =x 2,因为y =2x ,设A (x 1,y 1),B (x 2,y 2),直线AD 的方程为y =2x 1x -x 21,直线BD 的方程为y =2x 2x -x 22,联立上述两直线方程,得D 点坐标D x 1+x 22,x 1x 2 ,又因为M 点为线段AB 的中点,所以M 点坐标M x 1+x 22,1-x 1x 2 ,因为x D =x M ,所以直线MD ⎳y 轴:(3)因为点D 22,t (t ≤0),所以x 1+x 22=22,x 1x 2=t ,则M 22,1-t ,圆心22,12,直线AB 的斜率为k =x 21-x 22x 1-x 2=x 1+x 2=2,直线AB 方程为y =2x -t ,y =x 2y =2x -t ,得x 2-2x +t =0,Δ=2-4t ,|AB |=1+k 2⋅Δ=6(1-2t ),圆心到直线AB 的距离为d =1-2t 23,半径r =|MD |2=1-2t2,|MN |=2r 2-d 2=63(1-2t ),令1-2t =m ≥1,|AB |-|MN ||AB |+|MN |=3-m 3+m =-1+6m +3在m ≥1时单调递减,|AB |-|MN ||AB |+|MN |∈-1,12 .4.(2022届山东省济宁市高三上学期期末)已知抛物线E :y 2=2px (p >0)上一点C 1,y 0 到其焦点F 的距离为2.(1)求实数p 的值;(2)若过焦点F 的动直线l 与抛物线交于A 、B 两点,过A 、B 分别作抛物线的切线l 1、l 2,且l 1、l 2的交点为Q ,l 1、l 2与y 轴的交点分别为M 、N .求△QMN 面积的取值范围.【解析】(1)因为点C 1,y 0 到其焦点F 的距离为2,由抛物线的定义知1+p2=2解得p =2(2)由上问可知,抛物线方程E :y 2=4x设A y 214,y 1 ,B y 224,y 2,(y 1≠0,y 2≠0),设l :x =ty +1,联立y 2=4x x =ty +1 ,得y 2-4ty -4=0,判别式Δ=16t 2+16>0,故t ∈R y 1+y 2=4t ,y 1y 2=-4设l 1:y -y 1=k x -y 214联立方程组y 2=4xy -y 1=k x -y 214,消x 得ky 2-4y +4y 1-ky 21=0,所以Δ=16-4k 4y 1-ky 21 =44-4ky 1+k 2y 21 =0所以k =2y 1则l 1:y -y 1=2y 1x -y 214,即y =2y 1x +y 12,令x =0,得M 0,y 12,同理l 2:y =2y 2x +y 22,N 0,y 22,联立y =2y 1x +y12y =2y 2x +y 22,得交点Q 的横坐标为x Q =y 1y 24=-1,∴S △QMN =12MN ⋅x Q =12y 12-y 22×1=14y 1+y 2 2-4y 1y 2=t 2+1≥1∴△QMN 面积的取值范围是1,+∞ .5.(2022届百校联盟高三上学期12月联考)已知曲线C 上任意一点到F 1(-1,0),F 2(1,0)距离之和为433,抛物线E :y 2=2px 的焦点是点F 2.(1)求曲线C 和抛物线E 的方程;(2)点Q x 0,y 0 x 0<0 是曲线C 上的任意一点,过点Q 分别作抛物线E 的两条切线,切点分别为M ,N ,求△QMN 的面积的取值范围.【解析】(1)依题意,曲线C 是以F 1(-1,0),F 2(1,0)为左右焦点,长轴长为433的椭圆,则短半轴长b 有b 2=232-12=13,曲线C 的方程为:x 243+y 213=1,即3x 24+3y 2=1,在y 2=2px 中,p 2=1,即p =2,所以曲线C 的方程为:3x 24+3y 2=1,抛物线E 的方程为:y 2=4x .(2)显然,过点Q 的抛物线E 的切线斜率存在且不为0,设切线方程为:y -y 0=k (x -x 0),由y -y 0=k (x -x 0)y 2=4x消去x 并整理得:k4⋅y 2-y +y 0-kx 0=0,依题意,Δ=1-k (y 0-kx 0)=x 0k 2-y 0k +1=0,设二切线斜率为k 1,k 2,则k 1+k 2=y 0x 0,k 1k 2=1x 0,设斜率为k 1的切线所对切点M (x 1,y 1),斜率为k 2的切线所对切点N (x 2,y 2),因此,y 1=2k 1,y 2=2k 2,于是得M 1k 21,2k 1 ,N 1k 22,2k 2 ,NM =1k 21-1k 22,2k 1-2k 2,直线MN 上任意点P (x ,y ),MP =x -1k 21,y -2k 1,由MP ⎳NM 得:2k 1-2k 2 x -1k 21 -1k 21-1k 22y -2k 1 =0,化简整理得:2x -k 1+k 2k 1k 2y +2k 1k 2=0,则直线MN 的方程为:2x -y 0y +2x 0=0,点Q 到直线MN 的距离d =|4x 0-y 20|4+y 2,|MN |=1k 21-1k 222+2k 1-2k 2 2=1k 1-1k 2 21k 1+1k 22+4 =k 1+k 2k 1k 22-4k 1k 2k 1+k 2k 1k 2 2+4 =(y 20-4x 0)(y 20+4),则△QMN 的面积S △QMN =12|MN |⋅d =12⋅(y 20-4x 0)(y 20+4)⋅|4x 0-y 20|4+y 20=12(y 20-4x 0)32,而点Q x 0,y 0 x 0<0 在曲线C 上,即y 20=13-14x 20,-23≤x 0<0,y 20-4x 0=-14x 20-4x 0+13在x 0∈-23,0 上单调递减,当x 0=0时,(y 20-4x 0)min =13,当x 0=-23时,(y 20-4x 0)max =83,于是有13<y 20-4x 0≤83,则39<(y 20-4x 0)32≤164123,有318<S △QMN ≤84123所以△QMN 的面积的取值范围是318,84123.6.(2022届四川省达州高三上学期诊断)过定点0,1 的动圆始终与直线l :y =-1相切.(1)求动圆圆心的轨迹C 的方程;(2)动点A 在直线l 上,过点A 作曲线C 的两条切线分别交x 轴于B ,D 两点,当△ABD 的面积是32时,求点A 坐标.【解析】(1)设动圆圆心坐标为x ,y ,因为过定点0,1 的动圆始终与直线l :y =-1相切,可得-x 2+y -1 2=y +1 ,化简得x 2=4y ,即动圆圆心的轨迹方程C :x 2=4y .(2)设动点A x 0,-1 ,根据题意过点A 作曲线C 的切线斜率存在,设为k k ≠0 ,所以切线方程为y =k x -x 0 -1,联立方程组x 2=4y ,y =k x -x 0 -1 ,整理得x 2-4kx +4kx 0+4=0,且Δ=k 2-kx 0-1=0,因为k 2-kx 0-1=0有两不等实根,所以有两条切线,斜率分别设为k 1,k 2,所以k 1+k 2=x 0,k 1k 2=-1,切线y =k 1x -x 0 -1交x 轴于点B x 0+1k 1,0 ,切线y =k 2x -x 0 -1交x 轴于点D x 0+1k 2,0 ,所以S △ABD =12x 0+1k 1-x 0-1k 2×1=12k 2-k 1k 1k 2=12k 1+k 22-4k 1k 2k 1k 2=32,即12x 02+41=32,解得x 0=±5,所以点A 坐标为5,-1 或-5,-1 .7.(2022届四川省成都市高三上学期考试)已知抛物线C :x 2=2py p >0 的焦点为F .且F 与圆M :x 2+y +42=1上点的距离的最小值为4.(1)求抛物线的方程;(2)若点P 在圆M 上,PA ,PB 是C 的两条切线.A ,B 是切点,求△PAB 面积的最大值.【解析】(1)抛物线C 的焦点为F 0,p 2 ,FM =p2+4,所以,F 与圆M :x 2+(y +4)2=1上点的距离的最小值为p2+4-1=4,解得p =2;所以抛物线的方程为x 2=4y .(2)抛物线C 的方程为x 2=4y ,即y =x 24,对该函数求导得y =x 2,设点A x 1,y 1 ,B x 2,y 2 ,P x 0,y 0 ,直线PA 的方程为y -y 1=x 12x -x 1 ,即y =x 1x2-y 1,即x 1x -2y 1-2y =0,同理可知,直线PB 的方程为x 2x -2y 2-2y =0,由于点P 为这两条直线的公共点,则x 1x 0-2y 1-2y 0=0x 2x 0-2y 2-2y 0=0,所以,点A 、B 的坐标满足方程x 0x -2y -2y 0=0,所以,直线AB 的方程为x 0x -2y -2y 0=0,联立x 0x -2y -2y 0=0y =x 24,可得x 2-2x 0x +4y 0=0,由韦达定理可得x 1+x 2=2x 0,x 1x 2=4y 0,所以AB =1+x 022⋅x 1+x 22-4x 1x 2=1+x 022⋅4x 20-16y 0=x 20+4 x 20-4y 0点P 到直线AB 的距离为d =x 20-4y 0x 2+4,所以,S △PAB =12AB ⋅d =12x 20+4 x 20-4y 0 ⋅x 20-4y 0x 20+4=12x 20-4y 0 32,∵x 20-4y 0=1-y 0+4 2-4y 0=-y 20-12y 0-15=-y 0+6 2+21,由已知可得-5≤y 0≤-3,所以,当y 0=-5时,△PAB 的面积取最大值12×2032=205.8.(2022届山西省怀仁市高三上学期期中)已知抛物线C :y 2=2px p >0 的焦点为F ,准线与x 轴交于D点,过点F 的直线与抛物线C 交于A ,B 两点,且FA ⋅FB =FA +FB .(1)求抛物线C 的方程;(2)设P ,Q 是抛物线C 上的不同两点,且PF ⊥x 轴,直线PQ 与x 轴交于G 点,再在x 轴上截取线段GE =GD ,且点G 介于点E 点D 之间,连接PE ,过点Q 作直线PE 的平行线l ,证明l 是抛物线C 的切线.【解析】(1)解:设过点F 的直线方程为y =k x -p2,A x 1,y 1 ,B x 2,y 2 ,联立y =k x -p2 y 2=2px,得k 2x 2-pk 2+2p x +k 2p 24=0,则x 1+x 2=pk 2+2p k 2,x 1⋅x 2=p 24,所以FA +FB =x 1+p 2+x 2+p 2=2pk 2+2pk 2,FA ⋅FB =x 1+p 2 x 2+p 2 =p 22+p 2k 2+2 2k 2,因为FA ⋅FB =FA +FB ,所以2pk 2+2p k 2=p 22+p 2k 2+2 2k 2,化简得p 2-2p 1+1k2 =0,所以p =2,当过点F 的直线斜率不存在时,则FA =FB =p ,故FA +FB =2p ,FA ⋅FB =p 2,又因为FA ⋅FB =FA +FB ,则p 2=2p ,所以p =2,综上所述,p =2,所以y 2=4x ;(2)证明:不妨设点P 在第一象限,则P 1,2 ,D -1,0 ,F 1,0 ,设直线PQ 的方程为y -2=m x -1 ,m ≠0,Q x 3,y 3 ,联立y -2=m x -1 y 2=4x ,消元整理得m 24y 2-y -m +2=0,则2+y 3=4m ,即y 3=4-2mm 故x 3=2-m 2m 2,即Q 2-m 2m 2,4-2m m,当y =0时,x =-2m +1,则G -2m+1,0 ,又因GE =GD ,且点G 介于点E 点D 之间,则G 为DE 的中点,所以E -4m+3,0 ,则直线PE 的斜率为24m-2=m2-m ,因为直线PE 平行直线l ,所以直线l 的斜率为m2-m,故直线l 的方程为y -4-2m m =m 2-m x -2-m 2m 2,即y =m 2-m x +2-m m ,联立y =m 2-m x +2-mm y 2=4x,消元整理得m 42-m y 2-y +2-m m =0,Δ=1-4×m 42-m⋅2-mm =0,所以直线l 与抛物线只有一个交点,有直线l 斜率不为0,所以l 是抛物线C 的切线.9.已知抛物线C :x 2=2py ,点M -4,4 在抛物线C 上,过点M 作抛物线C 的切线,交x 轴于点P ,点O 为坐标原点.(1)求P 点的坐标;(2)点E 的坐标为-2,-1 ,经过点P 的直线交抛物线于A ,B 两点,交线段OM 于点Q ,记EA ,EB ,EQ 的斜率分别为k 1,k 2,k 3,是否存在常数λ使得k 1+k 2=λk 3.若存在,求出λ的值,若不存在,请说明理由.【解析】(1)因为M -4,4 在抛物线C 上,所以-4 2=8p ,所以p =2所以抛物线C 的方程为x 2=4y ,即y =14x 2,则y =12x ,所以切线的斜率为12×(-4)=-2,所以过点M 的切线方程为y =-2x +4 +4,即y =-2x -4联立y =-2x -4y =0,解得P 点的坐标为-2,0(2)由题意可知过点P 的直线的斜率存在,设为y =kx +2k ,线段OM 所在的直线为y =-x ,联立y =kx +2k y =-x,解得Q 点坐标为-2k k +1,2kk +1,所以k 3=2k k +1+1-2k k +1+2=3k +12设A x 1,x 214 ,B x 2,x 224,联立y =kx +2kx 2=4y ,得x 2-4kx -8k =0,所以x 1+x 2=4k ,x 1x 2=-8k .则k 1+k 2=x 214+1x 1+2+x 224+1x 2+2=14x 1x 2x 1+x 2 +x 1+x 2 +12x 21+x 22 +4x 1x 2+2x 1+x 2 +4=-8k 2+4k +1216k 2+16k +4-8k +8k +4=12k +44=3k +1所以k 1+k 2=2k 3,即存在λ=2满足条件.10.如图,已知A x 1,y 1 、B x 2,y 2 为二次函数y =ax 2(a >0)的图像上异于顶点的两个点,曲线y =ax 2在点A x 1,y 1 、B x 2,y 2 处的切线相交于点P x 0,y 0 .(1)利用抛物线的定义证明:曲线y =ax 2上的每一个点都在一条抛物线上,并指出这条抛物线的焦点坐标和准线方程;(2)求证:x 1、x 0、x 2成等差数列,y 1、y 0、y 2成等比数列;(3)设抛物线y =ax 2焦点为F ,过P 作PH 垂直准线l ,垂足为H ,求证:∠BPH =∠APF .【解析】(1)证明:令F 0,14a ,直线l :y =-14a,曲线y =ax 2上任意一点P x 0,ax 02,又a >0,则点P x 0,ax 02 到直线l 的距离d =ax 02+14a,则PF =x 02+ax 02-14a 2=x 02+ax 02 2-x 022+14a 2=ax 02 2+x 022+14a 2=ax 02+14a 2=ax 02+14a =ax 02+14a=d ,即曲线y =ax 2上任意一点到点F 0,14a 的距离与到直线l :y =-14a的距离相等,且点F 0,14a 不在直线l :y =-14a上,所以曲线y =ax 2上的每一个点都在一条抛物线上,抛物线的方程即为y =ax 2,焦点坐标为F 0,14a,准线方程为y =-14a;(2)解:对于y =ax 2,则y =2ax ,所以y |x =x 1=2ax 1,y |x =x 2=2ax 2,即过点A x 1,y 1 、B x 2,y 2 的切线方程分别为y -y 1=2ax 1x -x 1 、y -y 2=2ax 2x -x 2 ,又y 1=ax 12,y 2=ax 22,所以y =2ax 1x -ax 12、y =2ax 2x -ax 22,由y =2ax 1x -ax 12y =2ax 2x -ax 22 ,解得x =x 1+x 22y =ax 2x 1,即P x 1+x 22,ax 2x 1 ,即x 0=x 1+x 22,y 0=ax 2x 1,又y 02=a 2x 22x 12=y 1⋅y 2,所以x 1、x 0、x 2成等差数列,y 1、y 0、y 2成等比数列;(3)解:由(2)可知k BP =2ax 2,k AP =2ax 1,F 0,14a ,所以k PF =y 0-14ax 0=ax 2x 1-14a x 1+x 22,如图,设AP ,PF ,PB 与x 轴分别交于点C 、D 、E ,则tan ∠ACx =2ax 1,tan ∠BEx =2ax 2,tan ∠FDx =ax 2x 1-14ax 1+x 22,又∠BPH =π2-π-∠BEx =∠BEx -π2,∠FPA =∠FDx -∠ACx ,所以tan ∠BPH =tan ∠BEx -π2 =-1tan ∠BEx=-12ax 2,tan ∠FPA =tan ∠FDx -∠ACx =tan ∠FDx -tan ∠ACx1+tan ∠FDx tan ∠ACx=ax 2x 1-14a x 1+x 22-2ax11+ax 2x 1-14a x 1+x 22⋅2ax 1=ax 2x 1-14a -2ax 1⋅x 1+x 22x 1+x 22+ax 2x 1-14a ⋅2ax 1=-14a-ax 12x 1+x 22+2a 2x 12x 2-x 12=-14a -ax 12x 22+2a 2x 12x 2=-14a-ax 1212x 2+4a 2x 12x 2 =-1+4a 2x 12 2ax 21++4a 2x 12 =-12ax 2,即tan ∠BPH =tan ∠FPA ,所以∠BPH =∠FPA ;11.已知抛物线x 2=2py (p >0)上的任意一点到P (0,1)的距离比到x 轴的距离大1.(1)求抛物线的方程;(2)若过点(0,2)的直线l 与抛物线交于A ,B 两点,过A ,B 两点分别作抛物线的切线,两条切线交于点Q ,求△QAB 重心G 的轨迹方程.【解析】(1)由抛物线的定义可得p =2,∴抛物线的方程为x 2=4y ;(2)由题意可得直线AB 的斜率存在,设其为k ,设A x 1,y 1 ,B x 2,y 2 ,则直线AB 的方程为y =kx +2;代入抛物线方程得x 2-4kx -8=0,则有x 1+x 2=4k ,x 1x 2=-8,∵y =x 24,∴y=x 2,∴l AQ :y -y 1=x 12x -x 1 ,即y =x 12x -x 214①同理可得l BQ :y =x 22x -x 224②,①-②有x 1-x 22 x =x 21-x 224,得x Q =x 1+x 22=2k ,∴y Q =kx 1-x 214=kx 1-y 1=-2.∴Q (2k ,-2)又y 1+y 2=k x 1+x 2 +4=4k 2+4,设G (x ,y ),则x =x 1+x 2+x Q3=2ky =y 1+y 2+y Q 3=4k 2+23,消k 得y =x 2+23,所以G 的轨迹方程为y =13x 2+23.12.已知抛物线C :x 2=2py p >0 的焦点为F ,点P -2,y 0 为抛物线上一点,抛物线C 在点P 处的切线与y 轴相交于点Q ,且△FPQ 的面积为2.(1)求抛物线的方程.(2)若斜率不为0的直线l 过焦点F ,且交抛物线C 于A ,B 两点,线段AB 的中垂线与y 轴交于点M ,证明:MF AB为定值.【解析】(1)将P -2,y 0 代入x 2=2py 得,y 0=2p 设抛物线的切线方程为y =k (x +2)+2p,代入x 2=2py 整理得:x 2-2pkx -(4pk +4)=0由题知Δ=4p 2k 2+4pk +4=0,解得k =-2p又y Q =2k +2p ,所以FQ =p 2-2k -2p 所以S △FPQ =p 2-2k -2p =p 2+2p=2,解得p =2所以抛物线C 的方程为x 2=4y(2)记AB 中点为N ,A (x 1,y 1),B (x 2,y 2),N (x 3,y 3)设直线AB 方程为y =mx +1,代入x 2=4y 整理得:x 2-4mx -4=0,则x 1+x 2=4m ,x 1x 2=-4所以AB =m 2+1(x 1+x 2)2-4x 1x 2=4(m 2+1)因为N 为AB 中点,所以x 3=x 1+x 22=2m ,y 3=2m 2+1所以直线MN 的方程为y -(2m 2+1)=-1m(x -2m )则y M =2m 2+3所以MF =2m 2+2所以MF AB =2m 2+24(m 2+1)=1213.(2022届新未来4月联考)已知直线l :x -ky +k -1=0与抛物线C :y 2=2px (p >0)交于A ,B 两点,过A ,B 两点且与抛物线C 相切的两条直线相交于点D ,当直线l ⊥x 轴时,|AB |=4.(1)求抛物线C 的标准方程;(2)求|OD |的最小值.【解析】(1)当直线l ⊥x 轴时,x =1,代入y 2=2px 解得y =±2p ,∴|AB |=22p =4,得p =2,∴抛物线C 的标准方程为y 2=4x ;(2)设A x A ,y A ,B x B ,y B ,D x D ,y D .联立x -ky +k -1=0,y 2=4x ,得y 2-4ky +4k -4=0.∴y A +y B =4k ,y A ⋅y B =4k -4①,∵直线l :x -ky +k -1=0恒过点(1,1),且与抛物线有两个交点,点(1,1)在抛物线上,∴k ≠0,当直线AD 和直线BD 斜率存在时,设直线AD :y =mx +n ,联立y =mx +n ,y 2=4x ,∴my 2-4y +4n =0,Δ=16-4m ⋅4n =0,∴m ⋅n =1,∴y A =2m ,同理,设直线BD :y =ax +b ,则ab =1,y B =2a,联立y =mx +n ,y =ax +b , ∴x D =1am ,y D =1a +1m.由①可知2m +2a =4k ,2m ⋅2a =4k -4,∴1m +1a -2ma=2,即y D -2x D =2,∴点D 在直线2x -y +2=0上.当直线AD 或直线BD 斜率不存在时,即直线l 过原点时,k =1,过原点的切线方程为x =0,易知另外一点为(4,4),过点(4,4)的切线方程设为x -4=t (y -4),联立x -4=t (y -4)y 2=4x,得y 2-4ty +16t -16=0,Δ=16t 2-416t -16 =0,解得t =2,即切线方程y =12x +2.此时交点D 的坐标为(0,2),在直线2x -y +2=0上,故OD 的最小值为原点到直线2x -y +2=0的距离,即25=255.14.过原点O 的直线与拋物线C :y 2=2px (p >0)交于点A ,线段OA 的中点为M ,又点P 3p ,0 ,PM ⊥OA .在下面给出的三个条件中任选一个填在横线处,并解答下列问题:①OA =46,②PM =23;③△POM 的面积为62.(1)______,求拋物线C 的方程;(2)在(1)的条件下,过y 轴上的动点B 作拋物线C 的切线,切点为Q (不与原点O 重合),过点B 作直线l 与OQ 垂直,求证:直线l 过定点.注:如果选择多个条件分别解答,按第一个解答计分.【解析】(1)由题意知直线OA 的斜率存在且不为0,设其方程为y =kx k ≠0 ,由y 2=2px ,y =kx 得x =0,y =0 或x =2p k 2,y =2p k,即O 0,0 ,A 2p k 2,2p k所以线段OA 的中点M p k 2,p k.因为PM ⊥OA ,所以直线PM 的斜率存在,k PM =p kpk 2-3p =k1-3k 2.所以k 1-3k2⋅k =-1,解得k =±22,所以直线OA 的方程为x ±2y =0,A 4p ,±22p .若选①,不妨令A 4p ,22p ,由OA =46,得4p2+22p 2=46,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .若选②,因为PM ⊥OA ,PM =23,所以点P 到直线OA 的距离为23,即3p12+±2 2=23,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .若选③,不妨令A 4p ,22p ,因为OM =12OA =124p 2+22p 2=6p ,点P 到直线OA 的距离PM =3p12+±22=3p ,所以S △POM =12OM ⋅PM =12×6p ×3p =62,解得p =2(舍去p =-2),所以抛物线C 的方程为y 2=4x .(2)由题意可知切线BQ 的斜率存在且不为0.设B 0,b b ≠0 ,切线BQ 的方程为y =k 1x +b ,由y =k 1x +b ,y 2=4x得k 1y 2-4y +4b =0,(*)所以Δ=-4 2-4×k 1×4b =0,解得k 1=1b,所以方程(*)的根为y =2b ,代入y 2=4x 得x =b 2,所以切点b 2,2b ,于是k OQ =2b b2=2b ,则k l =-b2,所以直线l 的方程为y =-b 2x +b ,即y =-b2x -2 ,所以当b 变化时,直线l 恒过定点2,0 .15.已知抛物线x 2=2py (y >0),其焦点为F ,抛物线上有相异两点A x 1,y 1 ,B x 2,y 2 .(1)若AF ⎳x 轴,且经过点A 的抛物线的切线经过点(1,0),求抛物线方程;(2)若p =2,且|AF |+|BF |=4,线段AB 的中垂线交x 轴于点C ,求△ABC 面积的最大值.【解析】(1)抛物线x 2=2py (y >0),焦点坐标为0,p2,因为AF ⎳x ,所以y A =p 2,所以x A =p ,又y =x 22p ,所以y =x p,所以过A 点的切线的斜率k =1,所以切线方程为y -p 2=x -p ,令y =0得x =p2=1,所以p =2,所以x 2=4y(2)若p =2,则抛物线为x 2=4y ,焦点为0,1 ,准线方程为y =-1,因为|AF |+|BF |=4,所以y A +1+y B +1=4,所以y A +y B =2,设直线AB 的方程为y =kx +m ,联立x 2=4y 得x 2-4kx -4m =0,Δ=16k 2+16m >0所以x 1+x 2=4k ,x 1x 2=-4m ,所以y 1+y 2=kx 1+kx 2+2m =4k 2+2m =2,即m =1-2k 2,所以Δ=16k 2+161-2k 2 >0,解得-1<k <1,当k =0时,直线方程为y =1,则A 2,0 ,B -2,0 ,所以AB 的中垂线恰为y 轴,则C 0,0 ,所以S △ABC =12×4×1=2,当-1<k <1,且k ≠0时,又AB 的中点坐标为x 1+x 22,y 1+y 22 =2k ,1 ,所以AB 的中垂线l 的方程为y =-1kx -2k +1,令y=0得x =3k ,所以C 3k ,0 ,所以C 到AB 的距离d =3k 2+m k 2+1,又AB=k 2+116k 2+16m ,所以S △ABC =12AB d =2k 2+m ×3k 2+m =21-k 2×1+k 2 =21-k 2 1+k 2 2令1-k 2=t ,则t ∈0,1 ,f t =t 2-t 2=t 3-4t 2+4t ,因为f t =3t 2-8t +4=t -2 3t -2 ,所以当t ∈0,23 时f t >0,f t 在0,23 上单调递增,当t ∈23,1 时f t <0,f t 在23,1 上单调递减,所以f t max =f 23 =3227所以S △ABC max =23227=869>2所以S △ABC max =86916.设抛物线C :x 2=2py (p >0)的焦点为F ,点P m ,2 (m >0)在抛物线C 上,且满足PF =3.(1)求抛物线C 的标准方程;(2)过点G 0,4 的直线l 与抛物线C 交于A ,B 两点,分别以A ,B 为切点的抛物线C 的两条切线交于点Q ,求三角形PQG 周长的最小值.【解析】(1)由抛物线定义,得PF =2+p2=3,得p =2,∴抛物线C 的标准方程为x 2=4y ;(2)设A x 1,y 1 ,B x 2,y 2 ,直线l 的方程为y =kx +4,∴联立y =kx +4x 2=4y,消掉x ,得x 2-4kx -16=0,Δ>0,∴x 1+x 2=4k ,x 1x 2=-16,设A ,B 处的切线斜率分别为k 1,k 2,则k 1=x 12,k 2=x22,∴在点A 的切线方程为y -y 1=x 12x -x 1 ,即y =x 1x 2-x 124①,同理,在B 的切线方程为y =x 2x 2-x 224②,由①②得:x Q =x 1+x 22=2k ,代入①或②中可得:y Q =kx 1-x 214=y 1-4-y 1=-4,∴Q 2k ,-4 ,即Q 在定直线y =-4上,设点G 关于直线y =-4的对称点为G ,则G 0,-12 ,由(1)知P 22,2 ,∵PQ +GQ =PQ +G Q ≥G P =251,即P ,Q ,G 三点共线时等号成立,∴三角形PQG 周长最小值为GP +G P =251+23.17.已知圆C :x 2+y -2 2=1与定直线l :y =-1,且动圆M 与圆C 外切并与直线l 相切.(1)求动圆圆心M 的轨迹E 的方程;(2)已知点P 是直线l 1:y =-2上一个动点,过点P 作轨迹E 的两条切线,切点分别为A 、B .①求证:直线AB 过定点;②求证:∠PCA =∠PCB .【解析】(1)依题意知:M 到C 0,2 的距离等于M 到直线y =-2的距离,∴动点M 的轨迹是以C 为焦点,直线y =-2为准线的抛物线,设抛物线方程为x 2=2py p >0 ,则p2=2,则p =4,即抛物线的方程为x 2=8y ,故:动圆圆心M 的轨迹E 的方程为:x 2=8y ;(2)①由x 2=8y 得:y =18x 2,∴y =14x ,设A x 1,18x 21、B x 2,18x 22 ,P t ,-2 ,其中x 1≠x 2,则切线PA 的方程为y -18x 21=x 14x -x 1 ,即y =14x 1x -18x 21,同理,切线PB 的方程为y =14x 2x -18x 22,由y =14x 1x -18x 21y =14x 2x -18x 22 ,解得x =x 1+x 22y =x 1x 28 ,∴t =x 1+x 22-2=x 1x 28,即x 1+x 2=2t x 1x 2=-16 ,∵A x 1,18x 21、B x 2,18x 22 x 1≠x 2 ,∴直线AB 的方程为y -18x 21=18x 22-18x 21x 2-x 1x -x 1 ,化简得y =x 1+x 28x -x 1x 28,即y =t4x +2,故直线AB 过定点0,2 ;②由①知:直线AB 的斜率为k AB =t4,(i )当直线PC 的斜率不存在时,直线AB 的方程为y =2,∴PC ⊥AB ,∴∠PCA =∠PCB ;(ii )当直线PC 的斜率存在时,∵P t ,-2 、C 0,2 ,∴直线PC 的斜率k PC =-2-2t -0=-4t ,∴k AB ⋅k PC =t 4×-4t=-1,∴PC ⊥AB ,∴∠PCA =∠PCB .综上所述:∠PCA =∠PCB 得证.18.设抛物线C :x 2=2py p >0 ,其焦点为F ,准线为l ,点P 为C 上的一点,过点P 作直线l 的垂线,垂足为M ,且MF =FP ,FM ⋅FP=2.(1)求抛物线C 的方程;(2)设点Q 为C 外的一点且Q 点不在坐标轴上,过点Q 作抛物线C 的两条切线,切点分别为A ,B ,过点Q 作y 轴的垂线,垂足为S ,连接AS ,BS ,证明:直线AS 与直线BS 关于y 轴对称.【解析】(1)∵PM =PF =FM ,∴△PFM 为等边三角形,∴∠FMP =∠PFM =60°,又FM ⋅FP=FM ⋅FP cos ∠PFM =FM 2cos60°=2,∴FM =2设直线l 交y 轴于N 点,则在Rt △MNF 中∠NMF =30°,NF =1=p ,∴C 的方程为x 2=2y(2)设点Q a ,b a ≠0,b ≠0 ,A x 1,y 1 ,B x 2,y 2 ,又C 的方程为x 2=2y 可化为y =x 22,∴y =x所以过点A 且与C 相切的直线的斜率为x 1,过点B 且与C 相切的直线的斜率为x 2,所以直线QA 的方程为y-y1=x1x-x1,直线QB的方程为y-y2=x2x-x2.又直线QA与QB均过点Q,b-y1=x1a-x1,b-y2=x2a-x2,又x21=2y1,x22=2y2,∴y1=ax1-b,y2=ax2-b,所以直线AB的方程为y=ax-b,联立方程y=ax-b和x2=2y得方程组x2=2y,y=ax-b,消去y得x2-2ax+2b=0,∵b≠0,∴x1≠0,x2≠0,∵x1x2=2b,又S0,b,则直线AS的斜率k1=y1-bx1;直线BS的斜率k2=y2-bx2,∴k1+k2=x1+x2x1x22-bx1x2,∵x1x22-b=0,∴k1+k2=0,所以直线AS与直线BS关于y轴对称.。
函数切线问题的解法探究

函数切线问题的解法探究一、导数的几何意义对于函数f(x),在其中一点x=a处的导数f'(a)表示函数在该点的切线斜率。
也就是说,如果在点a处存在切线,那么切线的斜率就是函数在该点的导数。
我们知道,切线是曲线在该点附近的一条直线,具有与曲线相切的性质。
通过求函数在其中一点的导数,我们可以得到该点处的切线斜率,从而确定切线的位置。
根据导数的定义公式f'(x) = lim (h→0) [f(x+h) - f(x)]/h,我们可以求得函数在任意一点的导数。
二、切线问题的解决步骤解决函数切线问题的一般步骤如下:1.求函数的导数首先,我们需要求得给定函数f(x)的导数f'(x)。
导数的计算可以通过直接求解导数的定义公式,或者运用导数的性质(如常数因子法则、和法则、差法则、乘积法则、商法则等)来求解。
这一步是解决函数切线问题的关键,因为只有求得导数,才能确定函数在特定点的切线斜率。
2.确定切点找到切线的第一步是确定切点的坐标。
通常,切点的x坐标可以从题目中给出,然后我们可以利用这个值来求出切点的y坐标。
计算切线的切点坐标可以帮助我们更好地理解切线的位置。
3.求切线方程已知切点和切线的斜率,我们可以通过切线的斜截式方程来求出切线的方程。
切线的斜率已经通过导数得到,我们可以用导数的值代入斜截式方程的斜率,再代入切点的坐标,即可得到切线方程。
4.分析问题得到切线方程之后,我们可以通过与给定的函数对比分析切线的性质。
比如,两条曲线在切点处的斜率是否相等,两条曲线在切点处是否相切等问题。
这些问题可以通过切线方程和给定函数的关系来解决。
总之,函数切线问题是高中数学中重要的一部分,它通过导数的几何意义和性质来帮助我们解决函数与曲线的关系问题。
我们需要掌握导数的定义和导数的计算方法,熟练掌握运用导数的性质,才能解决函数切线问题。
高考数学讲义微专题14函数的切线问题(含详细解析)

微专题14 函数的切线问题一、基础知识: (一)与切线相关的定义1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。
这样直线AB 的极限位置就是曲线在点A 的切线。
(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。
例如函数3y x =在()1,1--处的切线,与曲线有两个公共点。
(3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点A 处的切线。
对于一个函数,并不能保证在每一个点处均有切线。
例如y x =在()0,0处,通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相同,故y x =在()0,0处不含切线(4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边)2、切线与导数:设函数()y f x =上点()()00,,A x f x ()f x 在A 附近有定义且附近的点()()00,B x x f x x +∆+∆,则割线AB 斜率为:()()()()()000000AB f x x f x f x x f x k x x x x +∆-+∆-==+∆-∆ 当B 无限接近A 时,即x ∆接近于零,∴直线AB 到达极限位置时的斜率表示为:()()000limx f x x f x k x∆→+∆-=∆,即切线斜率,由导数定义可知:()()()'0000limx f x x f x k f x x∆→+∆-==∆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微专题14 函数的切线问题一、基础知识: (一)与切线相关的定义1、切线的定义:在曲线的某点A 附近取点B ,并使B 沿曲线不断接近A 。
这样直线AB 的极限位置就是曲线在点A 的切线。
(1)此为切线的确切定义,一方面在图像上可定性的理解为直线刚好与曲线相碰,另一方面也可理解为一个动态的过程,让切点A 附近的点向A 不断接近,当与A 距离非常小时,观察直线AB 是否稳定在一个位置上(2)判断一条直线是否为曲线的切线,不再能用公共点的个数来判定。
例如函数3y x =在()1,1--处的切线,与曲线有两个公共点。
(3)在定义中,点B 不断接近A 包含两个方向,A 点右边的点向左接近,左边的点向右接近,只有无论从哪个方向接近,直线AB 的极限位置唯一时,这个极限位置才能够成为在点A 处的切线。
对于一个函数,并不能保证在每一个点处均有切线。
例如y x =在()0,0处,通过观察图像可知,当0x =左边的点向其无限接近时,割线的极限位置为y x =-,而当0x =右边的点向其无限接近时,割线的极限位置为y x =,两个不同的方向极限位置不相同,故y x =在()0,0处不含切线(4)由于点B 沿函数曲线不断向A 接近,所以若()f x 在A 处有切线,那么必须在A 点及其附近有定义(包括左边与右边)2、切线与导数:设函数()y f x =上点()()00,,A x f x ()f x 在A 附近有定义且附近的点()()00,B x x f x x +∆+∆,则割线AB 斜率为:()()()()()000000AB f x x f x f x x f x k x x x x +∆-+∆-==+∆-∆ 当B 无限接近A 时,即x ∆接近于零,∴直线AB 到达极限位置时的斜率表示为:()()000limx f x x f x k x∆→+∆-=∆,即切线斜率,由导数定义可知:()()()'0000limx f x x f x k f x x∆→+∆-==∆。
故()'0f x 为()f x 在()()00,A x f x 处切线的斜率。
这是导数的几何意义。
3、从导数的几何意义中可通过数形结合解释几类不含导数的点:(1)函数的边界点:此类点左侧(或右侧)的点不在定义域中,从而某一侧不含割线,也就无从谈起极限位置。
故切线不存在,导数不存在;与此类似还有分段函数如果不连续,则断开处的边界值也不存在导数(2)已知点与左右附近点的割线极限位置不相同,则不存在切线,故不存在导数。
例如前面例子y x =在()0,0处不存在导数。
此类情况多出现在单调区间变化的分界处,判断时只需选点向已知点左右靠近,观察极限位置是否相同即可(3)若在已知点处存在切线,但切线垂直x 轴,则其斜率不存在,在该点处导数也不存在。
例如:y =()0,0处不可导综上所述:(1)-(3)所谈的点均不存在导数,而(1)(2)所谈的点不存在切线,(3)中的点存在切线,但没有导数。
由此可见:某点有导数则必有切线,有切线则未必有导数 。
(二)方法与技巧:1、求切线方程的方法:一点一方向可确定一条直线,在求切线时可考虑先求出切线的斜率(切点导数)与切点,在利用点斜式写出直线方程2、若函数的导函数可求,则求切线方程的核心要素为切点A 的横坐标0x ,因为0x 可“一点两代”,代入到原函数,即可得到切点的纵坐标()0f x ,代入到导函数中可得到切线的斜率()'0f x k =,从而一点一斜率,切线即可求。
所以在解切线问题时一定要盯住切点横坐标,千方百计的把它求解出来。
3、求切线的问题主要分为两大类,一类是切点已知,那么只需将切点横坐标代入到原函数与导函数中求出切点与斜率即可,另一类是切点未知,那么先要设出切点坐标()00,x y ,再考虑利用条件解出核心要素0x ,进而转化成第一类问题4、在解析几何中也学习了求切线的方法,即先设出切线方程,再与二次方程联立利用0∆=求出参数值进而解出切线方程。
解析几何中的曲线与函数同在坐标系下,所以两个方法可以互通。
若某函数的图像为圆锥曲线,二次曲线的一部分,则在求切线时可用解析的方法求解,例如:y =1,22⎛⎝⎭处的切线方程,则可考虑利用圆的切线的求法进行解决。
若圆锥曲线可用函数解析式表示,像焦点在y 轴的抛物线,可看作y 关于x 的函数,则在求切线时可利用导数进行快速求解(此方法也为解析几何中处理焦点在y 轴的抛物线切线问题的重要方法)5、在处理切线问题时要注意审清所给已知点是否为切点。
“在某点处的切线”意味着该点即为切点,而“过某点的切线”则意味着该点有可能是切点,有可能不是切点。
如果该点恰好在曲线上那就需要进行分类讨论了。
二、典型例题 例1:求函数()()32xf x ex =-在1x =处的切线方程思路:本题切点已知,代入原函数求得函数值,代入导函数中求得切线斜率,进而利用点斜式求出切线方程解:()1f e = ∴切点坐标为()1,e()()()'33231x x x f x e x e x e =+-=+()'14f e ∴= ∴切线方程为:()4143y e e x y ex e -=-⇒=-小炼有话说:切点已知时求切线方程是切线问题中较简单的一类问题,体会切点分别代入到函数与导函数中所起到的作用,体会切点横坐标在切线问题中的关键作用 例2:已知函数()ln 2f x x x =+,则:(1)在曲线()f x 上是否存在一点,在该点处的切线与直线420x y --=平行 (2)在曲线()f x 上是否存在一点,在该点处的切线与直线30x y --=垂直解: (1)思路:切点未知,考虑设切点坐标为()00,x y ,再利用平行条件求出0x ,进而求出切线方程设切点坐标为()00,x y ()'0012fx x ∴=+ 由切线与420x y --=平行可得: ()'00011242f x x x =+=⇒= 011ln 122y f ⎛⎫∴==+ ⎪⎝⎭∴切线方程为:11ln 244ln 212y x y x ⎛⎫-+=-⇒=-- ⎪⎝⎭(2)思路:与(1)类似,切点未知,考虑设切点坐标为()00,x y ,有垂直关系可得切线斜率与已知直线斜率互为负倒数,列出方程求出0x ,进而求出切线方程 设切点坐标()00,x y ()'0012fx x ∴=+,直线30x y --=的斜率为1 ()'00011213f x x x ∴=+=-⇒=- 而()00,x ∈+∞ 013x ∴=-不在定义域中,舍去∴不存在一点,使得该点处的切线与直线30x y --=垂直小炼有话说:(1)求切线的关键要素为切点,进而若切点已知便直接使用,切线未知则需先设再求。
两直线平行与垂直关系与直线的斜率密切相关,进而成为解出切点横坐标的关键条件(2)在考虑函数问题时首先要找到函数的定义域。
在解出自变量的值或范围时也要验证其是否在定义域内例3:函数()2ln f x a x bx =-上一点()()2,2P f 处的切线方程为32ln22y x =-++,求,a b 的值思路:本题中求,a b 的值,考虑寻找两个等量条件进行求解,P 在直线32ln22y x =-++上,322ln222ln24y ∴=-⋅++=-,即()2=2ln24f -,得到,a b 的一个等量关系,在从切线斜率中得到2x =的导数值,进而得到,a b 的另一个等量关系,从而求出,a b 解:P Q 在32ln22y x =-++上,()2322ln222ln24f ∴=-⋅++=-()2ln242ln24f a b ∴=-=-又因为P 处的切线斜率为3- ()'2afx bx x=- ()'2432af b ∴=-=-ln 242ln 2421432a b a a b b -=-⎧=⎧⎪∴⇒⎨⎨=-=-⎩⎪⎩小炼有话说:(1)本题中切线体现了两个作用:①切点在切线上,进而可间接求出函数值;②切线的斜率即为切点导数值(2)一般来说,在求未知量的值题目中,未知量的个数与所用条件的个数相等。
在本题中确定,a b 两个未知量,从而想到寻找两个条件来解决问题。
例4:曲线xy e =在点()22,e 处的切线与坐标轴所围三角形的面积为( )A.2eB. 22eC. 24eD.22e思路:()'x fx e = 由图像可得三角形的面积可用切线的横纵截距计算,进而先利用求出切线方程 ()'22fe ∴=所以切线方程为:()222y e e x -=-即220e x y e --=,与两坐标轴的交点坐标为()()21,00,e - 221122e S e ∴=⨯⨯=答案:D小炼有话说:在平面直角坐标系中,我们研究的问题不仅有函数,还有解析几何。
所以在求面积等问题时也会用到解析几何的一些理念与方法。
例如求三角形面积要寻底找高,而选择底和高以计算简便为原则,优先使用点的坐标表示。
在本题中选择横纵截距来刻画三角形的两条直角边有助于简化计算。
例5:一点P 在曲线323y x x =-+上移动,设点P 处切线的倾斜角为α,则角α的取值范围是( ). A.0,2π⎡⎤⎢⎥⎣⎦ B.30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U C.3,4ππ⎡⎫⎪⎢⎣⎭ D.3,24ππ⎛⎤⎥⎝⎦思路:倾斜角的正切值即为切线的斜率,进而与导数联系起来。
'231y x =-,对于曲线上任意一点P ,斜率的范围即为导函数的值域:[)'2=311,y x -∈-+∞,所以倾斜角的范围是30,,24πππ⎡⎫⎡⎫⎪⎪⎢⎢⎣⎭⎣⎭U 答案:B小炼有话说:(1)对于切线而言,其倾斜角,斜率,切点处的导数联系紧密:倾斜角的正切值为斜率,斜率即为切点的导数值。
(2)斜率范围到倾斜角范围的转化要注意一下两点:① 斜率化倾斜角时尽量用图像进行辅助,观察斜率变化时,倾斜角的变化程度。
② 直线倾斜角的范围为[)0,π 例6:求过点()2,8A ,且与曲线()3f x x =相切的直线方程思路:()2,8A 满足()f x ,但题目并没有说明A 是否为切点,所以要分A 是否为切点进行分类讨论。
当A 是切点时,易于求出切线方程,当A 不是切点时,切点未知,从而先设再求,设切点()00,x y ,切线斜率为k ,三个未知量需用三个条件求解:① ()00y f x =,②()'0k f x =,③00AAy y k x x -=-解:(1)当()2,8A 为切点时 ()'23f x x =()'212f ∴= ∴切线方程为:()81221216y x y x -=-⇒=-(2)当()2,8A 不是切点时,设切点()00,P x y ()02x ≠,切线斜率为k3002000382y x k x y k x ⎧⎪=⎪⎪∴=⎨⎪-⎪=-⎪⎩,消去0,k y 可得:32000832x x x -=- 而()()3200008224x x x x -=-++ 02x ≠Q ∴方程等价于:222000032420x x x x x =++⇒--= 解得:02x =(舍),01x =-01,3y k ∴=-= ∴切线方程为()13132y x y x +=+⇒=+综上所述:切线方程为1216y x =-或32y x =+小炼有话说:(1)由于在导数中利用极限的思想对切线进行了严格定义,即割线的极限位置是切线,从而不能局限的认为切线与曲线的公共点一定就是切点,存在一条直线与曲线相切于一点,并与曲线的另一部分相交于一点的情况,本题便是一个典型的例子(2)在已知一点求切线方程时,要注意切线斜率不仅可用切点的导数值来表示,也可以用已知点与切点来进行表示,进而增加可以使用的条件。