2010高考数学复习专题:函数的最值

合集下载

高考数学一轮复习2.2函数的单调性与最值文

高考数学一轮复习2.2函数的单调性与最值文

第二节函数的单调性与最值一、基础知识批注——理解深一点1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.增(减)函数定义中的x1,x2的三个特征一是任意性;二是有大小,即x1<x2(x1>x2);三是同属于一个单调区间,三者缺一不可.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.有关单调区间的两个防范(1)单调区间只能用区间表示,不能用不等式表示.(2)有多个单调区间应分别写,不能用符号“∪”连接,也不能用“或”连接,只能用“逗号”或“和”连接.3.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.函数最值存在的两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.二、常用结论汇总——规律多一点在公共定义域内:(1)函数f (x )单调递增,g (x )单调递增,则f (x )+g (x )是增函数; (2)函数f (x )单调递减,g (x )单调递减,则f (x )+g (x )是减函数; (3)函数f (x )单调递增,g (x )单调递减,则f (x )-g (x )是增函数; (4)函数f (x )单调递减,g (x )单调递增,则f (x )-g (x )是减函数;(5)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (6)函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1f x的单调性相反;(7)复合函数y =f [g (x )]的单调性与y =f (u )和u =g (x )的单调性有关.简记:“同增异减”.三、基础小题强化——功底牢一点一判一判对的打“√”,错的打“×”(1)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).( )(2)具有相同单调性的函数的和、差、积、商函数还具有相同的单调性.( ) (3)若定义在R 上的函数f (x )有f (-1)<f (3),则函数f (x )在R 上为增函数.( ) (4)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).( ) (5)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.( )(6)所有的单调函数都有最值.( )答案:(1)× (2)× (3)× (4)× (5)× (6)×(二)选一选1.若函数y =(2m -1)x +b 在R 上是减函数,则( ) A .m >12B .m <12C .m >-12D .m <-12解析:选B 若函数y =(2m -1)x +b 在R 上是减函数,则2m -1<0,即m <12.2.下列函数中,图象是轴对称图形且在区间(0,+∞)上单调递减的是( ) A .y =1xB .y =-x 2+1C .y =2xD .y =log 2|x |解析:选B 因为函数的图象是轴对称图形,所以排除A 、C ,又y =-x 2+1在 (0,+∞)上单调递减,y =log 2|x |在(0,+∞)上单调递增,所以排除D.故选B.3.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象(图略)可知函数的单调减区间是[1,2].(三)填一填4.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.解析:由图可知函数的增区间为[-1,1]和[5,7]. 答案:[-1,1]和[5,7] 5.函数f (x )=2x -1在[-2,0]上的最大值与最小值之差为________. 解析:易知f (x )在[-2,0]上是减函数,∴f (x )max -f (x )min =f (-2)-f (0)=-23-(-2)=43.答案:43考点一 确定函数的单调性区间[典例] (1)求函数f (x )=-x 2+2|x |+1的单调区间. (2)试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性.[解] (1)易知f (x )=⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0=⎩⎪⎨⎪⎧-x -12+2,x ≥0,-x +12+2,x <0.画出函数图象如图所示,可知单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)法一:定义法 设-1<x 1<x 2<1,f (x )=a ⎝⎛⎭⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,则f (x 1)-f (x 2)=a ⎝⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a x 2-x 1x 1-1x 2-1.由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增. 法二:导数法f ′(x )=ax ′x -1-ax x -1′x -12=a x -1-ax x -12=-ax -12.当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增.[解题技法] 判断函数单调性和求单调区间的方法(1)定义法:一般步骤为设元―→作差―→变形―→判断符号―→得出结论.(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调性及区间.(4)性质法:对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及复合函数单调性性质进行判断;复合函数单调性,可用同增异减来确定.[题组训练]1.下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是( )A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x-xD .f (x )=ln(x +1)解析:选C 由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A 、D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x-x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.2.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)解析:选D 令t =x 2-4,则y =log 12t .因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).3.判断函数f (x )=x +ax(a >0)在(0,+∞)上的单调性. 解:设x 1,x 2是任意两个正数,且x 1<x 2, 则f (x 1)-f (x 2)=⎝⎛⎭⎪⎫x 1+a x 1-⎝ ⎛⎭⎪⎫x 2+a x 2=x 1-x 2x 1x 2(x 1x 2-a ).当0<x 1<x 2≤a 时,0<x 1x 2<a ,x 1-x 2<0, 所以f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 所以函数f (x )在(0,a ]上是减函数; 当a ≤x 1<x 2时,x 1x 2>a ,x 1-x 2<0, 所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )在[a ,+∞)上是增函数.综上可知,函数f (x )=x +ax(a >0)在(0,a ]上是减函数,在[a ,+∞)上是增函数. 考点二 求函数的值域最值[典例] (1)(2019•深圳调研)函数y =|x +1|+|x -2|的值域为________.(2)若函数f (x )=-a x +b (a >0)在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________,b =________.(3)函数f (x )=⎩⎪⎨⎪⎧-x 2-4x ,x ≤0,sin x ,x >0的最大值为________.[解析] (1)图象法 函数y =⎩⎪⎨⎪⎧-2x +1,x ≤-1,3,-1<x <2,2x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞). (2)单调性法∵f (x )=-a x +b (a >0)在⎣⎢⎡⎦⎥⎤12,2上是增函数, ∴f (x )min =f ⎝ ⎛⎭⎪⎫12=12,f (x )max =f (2)=2.即⎩⎪⎨⎪⎧-2a +b =12,-a2+b =2,解得a =1,b =52.(3)当x ≤0时,f (x )=-x 2-4x =-(x +2)2+4,而-2∈(-∞,0],此时f (x )在x =-2处取得最大值,且f (-2)=4;当x >0时,f (x )=sin x ,此时f (x )在区间(0,+∞)上的最大值为1.综上所述,函数f (x )的最大值为4.[答案] (1)[3,+∞) (2)1 52 (3)4[解题技法] 求函数最值的5种常用方法[口诀归纳]单调性,左边看,上坡递增下坡减; 函数值,若有界,上界下界值域外.[提醒] (1)求函数的最值时,应先确定函数的定义域.(2)求分段函数的最值时,应先求出每一段上的最值,再选取其中最大的作为分段函数的最大值,最小的作为分段函数的最小值.[题组训练]1.函数f (x )=x 2+4x的值域为________.解析:当x >0时,f (x )=x +4x≥4,当且仅当x =2时取等号;当x <0时,-x +⎝ ⎛⎭⎪⎫-4x ≥4,即f (x )=x +4x≤-4,当且仅当x =-2取等号,所以函数f (x )的值域为(-∞,-4]∪[4,+∞). 答案:(-∞,-4]∪[4,+∞)2.若x ∈⎣⎢⎡⎦⎥⎤-π6,2π3,则函数y =4sin 2x -12sin x -1的最大值为________,最小值为________.解析:令t =sin x ,因为x ∈⎣⎢⎡⎦⎥⎤-π6,2π3,所以t ∈⎣⎢⎡⎦⎥⎤-12,1,y =f (t )=4t 2-12t -1,因为该二次函数的图象开口向上,且对称轴为t =32,所以当t ∈⎣⎢⎡⎦⎥⎤-12,1时,函数f (t )单调递减,所以当t =-12时,y max =6;当t =1时,y min =-9. 答案:6 -93.已知f (x )=x 2+2x +ax,x ∈[1,+∞),且a ≤1.若对任意x ∈[1,+∞),f (x )>0恒成立,则实数a 的取值范围是________.解析:对任意x ∈[1,+∞),f (x )>0恒成立等价于x 2+2x +a >0在x ∈[1,+∞)上恒成立,即a >-x 2-2x 在x ∈[1,+∞)上恒成立.又函数y =-x 2-2x 在[1,+∞)上单调递减, ∴(-x 2-2x )max =-3,故a >-3, 又∵a ≤1,∴-3<a ≤1. 答案:(-3,1]考点三 函数单调性的应用考法(一) 比较函数值的大小[典例] 设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时,f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)[解析] 因为f (x )是偶函数,所以f (-3)=f (3),f (-2)=f (2). 又因为函数f (x )在[0,+∞)上是增函数. 所以f (π)>f (3)>f (2),即f (π)>f (-3)>f (-2). [答案] A[解题技法] 比较函数值大小的解题思路比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质,转化到同一个单调区间内进行比较,对于选择题、填空题能数形结合的尽量用图象法求解.考法(二) 解函数不等式[典例] 设函数f (x )=⎩⎪⎨⎪⎧2x,x <2,x 2,x ≥2.若f (a +1)≥f (2a -1),则实数a 的取值范围是( )A .(-∞,1]B .(-∞,2]C .[2,6]D .[2,+∞)[解析] 易知函数f (x )在定义域(-∞,+∞)上是增函数,∵f (a +1)≥f (2a -1), ∴a +1≥2a -1,解得a ≤2.故实数a 的取值范围是(-∞,2]. [答案] B[解题技法] 求解含“f ”的函数不等式的解题思路先利用函数的相关性质将不等式转化为f (g (x ))>f (h (x ))的形式,再根据函数的单调性去掉“f ”,得到一般的不等式g (x )>h (x )(或g (x )<h (x )).考法(三) 利用单调性求参数的范围(或值)[典例] (2019•南京调研)已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,则实数a的取值范围是________.[解析] 设1<x 1<x 2,∴x 1x 2>1. ∵函数f (x )在(1,+∞)上是增函数,∴f (x 1)-f (x 2)=x 1-a x 1+a 2-⎝⎛⎭⎪⎫x 2-a x 2+a2=(x 1-x 2)⎝⎛⎭⎪⎫1+a x 1x 2<0. ∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2. ∵1<x 1<x 2,x 1x 2>1,∴-x 1x 2<-1,∴a ≥-1. ∴a 的取值范围是[-1,+∞). [答案] [-1,+∞)[解题技法]利用单调性求参数的范围(或值)的方法(1)视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数;(2)需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的.[题组训练]1.已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)]·(x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象关于直线x =1对称,所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52.当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .2.已知函数f (x )=⎩⎪⎨⎪⎧ax 2-x -14,x ≤1,log a x -1,x >1是R 上的单调函数,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫14,12B.⎣⎢⎡⎦⎥⎤14,12C.⎝ ⎛⎦⎥⎤0,12 D.⎣⎢⎡⎭⎪⎫12,1 解析:选B 由对数函数的定义可得a >0,且a ≠1.又函数f (x )在R 上单调,而二次函数y =ax 2-x -14的图象开口向上,所以函数f (x )在R 上单调递减,故有⎩⎪⎨⎪⎧ 0<a <1,12a≥1,a ×12-1-14≥log a1-1,即⎩⎪⎨⎪⎧0<a <1,0<a ≤12,a ≥14.所以a ∈⎣⎢⎡⎦⎥⎤14,12.[课时跟踪检测]A 级——保大分专练1.下列四个函数中,在x ∈(0,+∞)上为增函数的是( ) A .f (x )=3-x B .f (x )=x 2-3x C .f (x )=-1x +1D .f (x )=-|x |解析:选C 当x >0时,f (x )=3-x 为减函数;当x ∈⎝ ⎛⎭⎪⎫0,32时,f (x )=x 2-3x 为减函数,当x ∈⎝ ⎛⎭⎪⎫32,+∞时,f (x )=x 2-3x 为增函数;当x ∈(0,+∞)时,f (x )=-1x +1为增函数;当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.若函数f (x )=ax +1在R 上单调递减,则函数g (x )=a (x 2-4x +3)的单调递增区间是( )A .(2,+∞)B .(-∞,2)C .(4,+∞)D .(-∞,4)解析:选B 因为f (x )=ax +1在R 上单调递减,所以a <0. 而g (x )=a (x 2-4x +3)=a (x -2)2-a . 因为a <0,所以g (x )在(-∞,2)上单调递增.3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值范围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 D.⎣⎢⎡⎭⎪⎫12,23 解析:选D 因为函数f (x )是定义在区间[0,+∞)上的增函数,满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13.所以0≤2x -1<13,解得12≤x <23. 4.(2019·菏泽模拟)定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由题意知当-2≤x ≤1时,f (x )=x -2,当1<x ≤2时,f (x )=x 3-2,又f (x )=x -2,f (x )=x 3-2在相应的定义域内都为增函数,且f (1)=-1,f (2)=6,∴f (x )的最大值为6.5.已知函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,那么不等式-3<f (x +1)<1的解集的补集是(全集为R)( )A .(-1,2)B .(1,4)C .(-∞,-1)∪[4,+∞)D .(-∞,-1]∪[2,+∞)解析:选D 由函数f (x )是R 上的增函数,A (0,-3),B (3,1)是其图象上的两点,知不等式-3<f (x +1)<1即为f (0)<f (x +1)<f (3),所以0<x +1<3,所以-1<x <2,故不等式-3<f (x +1)<1的解集的补集是(-∞,-1]∪[2,+∞).6.已知函数f (x )=⎩⎪⎨⎪⎧ -x 2-ax -5,x ≤1,a x,x >1是R 上的增函数,则实数a 的取值范围是( )A .[-3,0)B .(-∞,-2]C .[-3,-2]D .(-∞,0)解析:选C 若f (x )是R 上的增函数,则应满足⎩⎪⎨⎪⎧ -a 2≥1,a <0,-12-a ×1-5≤a 1,解得-3≤a ≤-2.7.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为________.解析:设t =x 2-2x -3,由t ≥0,即x 2-2x -3≥0,解得x ≤-1或x ≥3,所以函数f (x )的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t =x 2-2x -3在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f (x )的单调递增区间为[3,+∞).答案:[3,+∞)8.函数f (x )=⎩⎪⎨⎪⎧1x,x ≥1,-x 2+2,x <1的最大值为________. 解析:当x ≥1时,函数f (x )=1x为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2.答案:29.若函数f (x )=1x 在区间[2,a ]上的最大值与最小值的和为34,则a =________. 解析:由f (x )=1x 的图象知,f (x )=1x在(0,+∞)上是减函数,∵[2,a ]⊆(0,+∞), ∴f (x )=1x在[2,a ]上也是减函数, ∴f (x )max =f (2)=12,f (x )min =f (a )=1a, ∴12+1a =34,∴a =4. 答案:410.(2019·甘肃会宁联考)若f (x )=x +a -1x +2在区间(-2,+∞)上是增函数,则实数a 的取值范围是________.解析:f (x )=x +a -1x +2=x +2+a -3x +2=1+a -3x +2,要使函数在区间(-2,+∞)上是增函数,需使a -3<0,解得a <3.答案:(-∞,3)11.已知函数f (x )=1a -1x(a >0,x >0). (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2, ∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知,f (x )在⎣⎢⎡⎦⎥⎤12,2上是增函数, ∴f ⎝ ⎛⎭⎪⎫12=1a-2=12,f (2)=1a -12=2, 解得a =25. 12.已知f (x )=xx -a (x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围.解:(1)证明:当a =-2时,f (x )=xx +2.任取x 1,x 2∈(-∞,-2),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2x 1-x 2x 1+2x 2+2. 因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)内单调递增.(2)任取x 1,x 2∈(1,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a. 因为a >0,x 2-x 1>0,又由题意知f (x 1)-f (x 2)>0,所以(x 1-a )(x 2-a )>0恒成立,所以a ≤1.所以0<a ≤1.所以a 的取值范围为(0,1].B 级——创高分自选1.若f (x )=-x 2+4mx 与g (x )=2m x +1在区间[2,4]上都是减函数,则m 的取值范围是( )A .(-∞,0)∪(0,1]B .(-1,0)∪(0,1]C .(0,+∞)D .(0,1] 解析:选D 函数f (x )=-x 2+4mx 的图象开口向下,且以直线x =2m 为对称轴,若在区间[2,4]上是减函数,则2m ≤2,解得m ≤1;g (x )=2m x +1的图象由y =2m x的图象向左平移一个单位长度得到,若在区间[2,4]上是减函数,则2m >0,解得m >0.综上可得,m 的取值范围是(0,1].2.已知函数f (x )=ln x +x ,若f (a 2-a )>f (a +3),则正数a 的取值范围是________. 解析:因为f (x )=ln x +x 在(0,+∞)上是增函数, 所以⎩⎪⎨⎪⎧ a 2-a >a +3,a 2-a >0,a +3>0,解得-3<a <-1或a >3.又a >0,所以a >3.答案:(3,+∞)3.已知定义在R 上的函数f (x )满足:①f (x +y )=f (x )+f (y )+1,②当x >0时,f (x )> -1.(1)求f (0)的值,并证明f (x )在R 上是单调增函数;(2)若f (1)=1,解关于x 的不等式f (x 2+2x )+f (1-x )>4.解:(1)令x =y =0,得f (0)=-1.在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1-x 2)>-1.又f (x 1)=f [(x 1-x 2)+x 2]=f (x 1-x 2)+f (x 2)+1>f (x 2),所以函数f (x )在R 上是单调增函数.(2)由f (1)=1,得f (2)=3,f (3)=5.由f (x 2+2x )+f (1-x )>4得f (x 2+x +1)>f (3),又函数f (x )在R 上是增函数,故x 2+x +1>3,解得x <-2或x >1,故原不等式的解集为{x |x <-2或x >1}.。

高考数学专题复习《函数的单调性与最大值》PPT课件

高考数学专题复习《函数的单调性与最大值》PPT课件

解 当a>0时,f(x)在(-1,1)上单调递减,当a<0时,f(x)在(-1,1)上单调递增.证明
如下:
(方法1 定义法)任取x1,x2∈(-1,1),且x1<x2,
因为
-1+1
1
f(x)=a(
)=a(1+ ),则
-1
-1
1
1
( 2 - 1 )
f(x1)-f(x2)=a(1+ )-a(1+ )=
(-1)-
(方法2 导数法) f'(x)=
2
(-1)
=
-
(-1)2
,所以当a>0时,f'(x)<0,当a<0
时,f'(x)>0,即当a>0时,f(x)在(-1,1)上单调递减,当a<0时,f(x)在(-1,1)上单调
递增.
解题心得1.判断函数单调性的四种方法:
(1)定义法;
(2)图像法;
3
∴f(-2)<f(- )<f(-1).故选
2
D.
f(x)在(-∞,-1]上是增函数,
3 1
4.(2020 全国 2,文 10)设函数 f(x)=x - 3 ,则 f(x)(

)
A.是奇函数,且在(0,+∞)上单调递增 B.是奇函数,且在(0,+∞)上单调递减
C.是偶函数,且在(0,+∞)上单调递增 D.是偶函数,且在(0,+∞)上单调递减
3.若f(x)满足f(-x)=f(x),且在(-∞,-1]上是增函数,则(
3
A.f(-2)<f(-1)<f(2)
3
B.f(-1)<f(-2)<f(2)

函数的最值 课件

函数的最值    课件
从而 f(x)=-12x2+300x-20 000,0≤x≤400, 60 000-100x,x>400.
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(总收 益=总成本+利润) 解 当 0≤x≤400 时,f(x)=-12(x-300)2+25 000; ∴当x=300时,f(x)max=25 000, 当x>400时,f(x)=60 000-100x是减函数, f(x)<60 000-100×400<25 000. ∴当x=300时 ,f(x)max=25 000. 即每月生产300台仪器时利润最大, 最大利润为25 000元.
题型三 闭区间上二次函数的最值问题 例3 已知函数f(x)=x2+ax+3,x∈[-1,1].
(1)若a=1,求函数f(x)的最值; 解 当 a=1 时,f(x)=x2+x+3=(x+12)2+141, 故函数在[-1,-12]上单调递减, 在[-12,1]上单调递增, 又 f(-1)=3,f(-12)=141,f(1)=5, ∴函数 f(x)的最大值为 5,最小值为141.
(2)若a∈R,求函数f(x)的最小值. 解 ∵f(x)的对称轴为 x=-a2. 当-2a<-1,即 a>2 时,函数 f(x)=x2+ax+3
在[-1,1]上单调递增,f(x)min=f(-1)=4-a. 当-1≤-a2≤1,即-2≤a≤2 时,f(x)min=f(-a2)=a42-a22+3=3-a42. 当-a2>1,即 a<-2 时,f(x)=x2+ax+3 在[-1,1]上单调递减,f(x)min=f(1)=4+a.
4-a,a>2, 综上可知,f(x)min=3-a42,-2≤a≤2,
4+a,a<-2.
题型四 函数最值的实际应用 例 4 某公司生产一种电子仪器的固定成本为 20 000 元,每生产一台仪器需 增加投入 100 元,已知总收益满足函数:R(x)=400x-12x2,0≤x≤400,

函数的最值数学必修一

函数的最值数学必修一

优化问题,以实现利益最大化或成本最小化。
极值问题
极值问题的概念
极值问题是指研究函数在某点或某个点的邻域内取得局部最大值 或局部最小值的问题。
求解方法
通过求导数、判断单调性、利极值定理等方法来求解函数的极 值点。
应用场景
在物理学、工程学、经济学等领域中,常常需要解决极值问题, 以解释某些现象或解决实际问题。
开区间上的连续函数 不一定存在最大值和 最小值。
02
函数最值的求法
导数法
01
02
03
求导数
根据函数的导数,判断函 数的单调性,确定函数的 极值点。
判断单调性
通过导数的正负判断函数 在某区间内的单调性,进 而确定最值点。
求最值
在极值点处求函数的值, 即为所求的最值。
配方法
配方
将函数进行配方转换,使 其成为完全平方形式。
函数在某点的最小值
对于函数$f(x)$在区间$[a, b]$上的任意一点$x_0$,如果对于所有$x in [a, b]$, 都有$f(x) geq f(x_0)$,则称$f(x_0)$为函数在区间$[a, b]$上的最小值。
函数最值的性质
最值的唯一性
在一个闭区间上,一个函数只能 有一个最大值和一个最小值,如 果有多个最值点,则它们必然相
04
函数最值的实际例子
生产成本最低问题
生产成本最低是企业追求的重要目标之一。在生产过程中, 企业需要不断优化生产流程、降低生产成本,以提高经济效 益。
函数最值的应用可以帮助企业找到最优的生产方案,使得生 产成本最低。例如,通过建立生产成本函数,并求导找到最 小值点,企业可以确定最优的生产规模、原材料采购量等, 从而降低生产成本。

高中数学基础之函数最值的求法

高中数学基础之函数最值的求法

高中数学基础之函数最值的求法函数的最值定义:(1)一般地,设函数y =f (x )的定义域为I .如果存在实数M 满足:①∀x ∈I ,都有f (x )≤M ;②∃x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最大值.(2)一般地,设函数y =f (x )的定义域为I .如果存在实数M 满足:①∀x ∈I ,都有f (x )≥M ;②∃x 0∈I ,使得f (x 0)=M .那么,我们称M 是函数y =f (x )的最小值.函数最值存在的两条结论:(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.例1 函数y =x x -1在区间[2,3]上的最大值是________. 答案 2解析 函数y =x x -1=1+1x -1在区间[2,3]上是减函数,当x =2时,y =x x -1取得最大值22-1=2. 例2 函数y =x -x (x ≥0)的最大值为________.答案 14解析 令t =x ,则t ≥0,所以y =t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,当t =12,即x =14时,y max =14. 例3 若函数f (2-x )=x -x 2,则f (x )在[0,1]上的最大值与最小值之和为( )A.-2 B .-74 C .0 D .14答案 A解析 令2-x =t ,则x =2-t ,所以f (t )=(2-t )-(2-t )2=-t 2+3t -2,所以f (x )=-x 2+3x -2,图象开口向下,对称轴为直线x =-32×(-1)=32,所以f (x )在[0,1]上单调递增,f (x )max =f (1)=0,f (x )min =f (0)=-2,所以f (x )在[0,1]上的最大值与最小值之和为-2.故选A.例4 若函数y =f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F (x )=f (2x +1)+1f (2x +1)的值域是________.答案 ⎣⎢⎡⎦⎥⎤2,103解析 由函数y =f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,得函数t =f (2x +1)的值域为⎣⎢⎡⎦⎥⎤12,3,函数F (x )变为y =t +1t ,t ∈⎣⎢⎡⎦⎥⎤12,3,由对勾函数的性质知y =t +1t 在⎣⎢⎡⎦⎥⎤12,1上递减,在[1,3]上递增,t =1时,y min =2,而t =12时,y =52,t =3时,y =103,即y max =103,所以原函数的值域是⎣⎢⎡⎦⎥⎤2,103. 例5 函数f (x )=2-x +x 2-6x +10的值域为________.答案 [)2,+∞解析 由已知得⎩⎨⎧2-x ≥0,x 2-6x +10≥0,解得x ≤2,所以f (x )的定义域为{x |x ≤2},且x ≤2时,y =2-x 与y =x 2-6x +10都是减函数,所以f (x )在(-∞,2]上是减函数,f (x )≥f (2)=2,所以f (x )的值域为[2,+∞).例6 已知二次函数f (x )=mx 2-4x +n 的值域为[0,+∞),且f (1)≤4,则K =m 2+n 2m +n的最大值为________.答案 7解析 由题意可知m >0,n >0,Δ=16-4mn =0,得mn =4,f (1)=m +n -4≤4,即m +n ≤8,又m +n ≥2mn =4,当且仅当m =n =2时取等号,所以4≤m +n ≤8,K =m 2+n 2m +n=(m +n )2-2mn m +n =m +n -8m +n,设m +n =t ,则4≤t ≤8,y =t -8t ,函数y =t -8t 在[4,8]上单调递增,所以当t =8时,函数y =t -8t 取得最大值,y max =8-88=7.求函数值域(最值)的方法(1)分离常数法形如y =cx +d ax +b(ac ≠0)的函数的值域经常使用“分离常数法”求解. (2)配方法配方法是求“二次函数型函数”值域的基本方法,形如F (x )=a [f (x )]2+bf (x )+c (a ≠0)的函数的值域问题,均可使用配方法.(3)换元法①代数换元.形如y =ax +b ±cx +d (a ,b ,c ,d 为常数,ac ≠0)的函数,可设 cx +d =t(t≥0),转化为二次函数求值域.②三角换元:如y=x+1-x2,可令x=cos θ,θ∈[0,π].利用换元法求值域,一定要注意新元的范围对值域的影响.(4)判别式法把函数转化成关于x的一元二次方程,通过方程有实根,知判别式Δ≥0,从而求得原函数的值域,形如y=a1x2+b1x+c1a2x2+b2x+c2(a1,a2不同时为零)的函数的值域常用此法求解.用判别式法求值域的注意事项:①函数的定义域应为R;②分式的分子、分母没有公因式.(5)有界性法形如sin α=f(y),x2=g(y),a x=h(y)等,由|sin α|≤1,x2≥0,a x>0可解出y的范围,从而求出其值域.(6)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数形结合的方法.(7)基本不等式法利用基本不等式:a+b≥2ab(a>0,b>0).用此法求函数值域时,要注意条件“一正,二定,三相等”.(8)单调性法:先确定函数的单调性,再由单调性求最值.(9)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(10)导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值.。

高三数学函数的最值

高三数学函数的最值
2.数形结合是解题的一个非常重要的思想.
3.二次函数在闭区间上求最值时往往需要考虑根据区 间与对称轴的相对位置进行分类讨论
4.恒成立问题往往可转化为最值问题 (如f (x) 0
恒成立,即 f (x) 的最小值大于0)
二.应用举例
例1.求右边 函数的最值
① x 1 2x
外链发布 https:/// 外链发布
伤兵罗雯依琦妖女细长的耳朵,此时正惨碎成海马样的暗白色飞丝,快速射向远方女伤兵罗雯依琦妖女怪嚷着狂鬼般地跳出界外,急速将细长的耳朵复原,但元气已受损伤砸壮扭公主:“哈哈! 这位同志的风格极为迷离哦!非常有完美性呢!”女伤兵罗雯依琦妖女:“ 哎!我要让你们知道什么是疯狂派!什么是缠绵流!什么是温柔完美风格!”壮扭公主:“哈哈!小老样,有什么 法术都弄出来瞧瞧!”女伤兵罗雯依琦妖女:“ 哎!我让你享受一下『白冰跳祖牙膏理论』的厉害!”女伤兵罗雯依琦妖女突然耍了一套,窜虾猪肘翻九千度外加猪哼菜叶旋一百周半的招数 ,接着又玩了一个,妖体鸟飞凌空翻七百二十度外加呆转十五周的冷峻招式。接着像暗绿色的三须海滩虾一样怒笑了一声,突然搞了个倒地振颤的特技神功,身上瞬间生出了九十只活像拐杖般的 乳白色眉毛……紧接着威风的深灰色怪藤样的嘴唇连续膨胀疯耍起来……亮紫色旗杆一样的眉毛透出纯黄色的阵阵春雾……纯灰色蛤蟆一般的脸闪出亮灰色的隐约幽音。最后扭起瘦弱的酷似谷穗 模样的肩膀一颤,萧洒地从里面滚出一道流光,她抓住流光诡异地一旋,一件青虚虚、银晃晃的咒符『白冰跳祖牙膏理论』便显露出来,只见这个这件怪物儿,一边扭曲,一边发出“哼嗷”的猛 响。!猛然间女伤兵罗雯依琦妖女疯妖般地念起磨磨叽叽的宇宙语,只见她轻盈的手指中,威猛地滚出五十片珍珠状的黄豆,随着女伤兵罗雯依琦妖女的耍动,珍珠状的黄豆像鸡笼一样在双肩上 残暴地设计出飘飘光环……紧接着女伤兵罗雯依琦妖女又连续使出四十五派晶豹滑板掏,只见她亮灰色棕叶款式的项链中,快速窜出四十缕转舞着『银玉香妖闪电头』的螳螂状的怪毛,随着女伤 兵罗雯依琦妖女的转动,螳螂状的怪毛像苦瓜一样念动咒语:“三指吲 唰,原木吲 唰,三指原木吲 唰……『白冰跳祖牙膏理论』!爷爷!爷爷!爷爷!”只见女伤兵罗雯依琦妖女的 身影射出一片纯蓝色金光,这时东北方向狂傲地出现了九簇厉声尖叫的暗青色光雁,似玉光一样直奔水蓝色幻影而来!,朝着壮扭公主齐整严密的牙齿乱晃过来。紧跟着女伤兵罗雯依琦妖女也狂 耍着咒符像缰绳般的怪影一样向壮扭公主乱晃过来壮扭公主突然来了一出,蹦鹏灯笼翻九千度外加雁乐烟囱旋一百周半的招数!接着又搞了个,团身犀醉后空翻七百二十度外加傻转七周的惊人招 式!接着像灰蓝色的飞臂海湾鹏一样疯喊了一声,突然耍了一套倒立抽动的特技神功,身上忽然生出了九十只美如杠铃一般的暗黑色鼻子!紧接着圆润光滑、无忧无虑的快乐下巴奇特紧缩闪烁起 来……时常露出欢快光

2010年高考数学函数的最大值与最小值

2010年高考数学函数的最大值与最小值

当q 84时4 ,L 0, 当q 84时,L 0因此在q 84处,
L取到极大值,并且这个极大值就是最大值
答:产量q为84是利润L最大
五、小结
1.求在[a,b]上有定义,(a,b)上可导的函数f(x)在[a,b]上的最值的 步骤:
(1)求f(x)在(a,b)内的极值; (2)将f(x)的各极值与f(a)、f(b)比较,其中最大的一个
x -2 (-2,-1) -1 (-1,0) 0 (0,1) 1 (1,2) 2
y’
- 0 + 0 - 0+
y 13 ↘ 4 ↗ 5 ↘ 4 ↗ 13
从上表可知,最大值是13,最小值是4.
例2: 6 x2 1
在区间[-1,3]上的最大值与
解:
f
2.导数为零的点是该点为极值点的必要条件,而不是充 分条件.极值只能在函数不可导的点或导数为零的点 取到.
3.在某些问题中,往往关心的是函数在一个定义区间上, 哪个值最大,哪个值最小,而不是极值.
二、新课——函数的最值 y
观察右边一
个定义在区间
[a,b]上的函数
y=f(x)的图象.
a x1 o X2
②导数为0的点不一定是极值点
一、复习与引入
1.当函数f(x)在x0处连续时,判别f(x0)是极大(小)值的方 法是: ①如果在x0附近的左侧 f (x) 0 右侧 f (x) 0 ,那么,f(x0) 是极大值; ②如果在x0附近的左侧 f (x) 0右侧 f (x) 0 ,那么,f(x0) 是极小值.
①:求y=f(x)在(a,b)内的极值(极大值与极小值);
②:将函数y=f(x)的各极值与f(a)、f(b)作比较,其中 最大的一个为最大值,最小的一个为最小值.

2010上海高考数学 专题复习 代数推理题的经典类型与解法沪教版

2010上海高考数学 专题复习 代数推理题的经典类型与解法沪教版

2010某某专题:代数推理题的经典类型与解法一.移项,数形结合例1设函数134)(,4)(2+=--+=x x g x x a x f ,已知]0,4[-∈x ,时恒有)()(x g x f ≤,求a 的取值X 围.二.构造函数,恒成立的问题, 函数最值解法例2 已知不等式32)1(log 121212111+-≥+++++a n n n a 对于大于1的正整数n 恒成立,试确定a 的取值X 围.三.分类讨论例3 已知函数)0(49433)(22>++--=b b x x x f 在区间[-b ,1-b]上的最大值为25,求b 的值.四.逆向分析法例4已知).1(1)(-≠+=x x xx f)()1(x f 求的单调区间;(2)若.43)()(:,)(1,0>+-=>>c f a f b b a c b a 求证五.数学猜想能力。

证明.对称可采用解几中的坐标证法例5 已知函数f(x)=a a a xx+(a>0,a≠1).(1) 证明函数f(x)的图象关于点P(21,21)对称.(2) 令an =)1()(n f n f a -,对一切自然数n ,先猜想使an >n2成立的最小自然数a,并证明之.(3) 求证:n n n n )(!(lg 3lg )1(41>+∈N).六.采用反证法例6对于函数)(x f ,若存在000)(,x x f R x =∈使成立,则称)(0x f x 为的不动点。

如果函数),()(2N c b c bx a x x f ∈-+=有且只有两个不动点0,2,且,21)2(-<-f(1)求函数)(x f 的解析式;(2)已知各项不为零的数列1)1(4}{=⋅nn n a f S a 满足,求数列通项n a ;(3)如果数列}{n a 满足)(,411n n a f a a ==+,求证:当2≥n 时,恒有3<n a 成立.七.赋值法例7.已知函数f(t)满足对任意实数x 、y 都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2. (1)求f(1)的值;(2)证明:对一切大于1的正整数t ,恒有f(t)>t ; (3)试求满足f(t)=t 的整数t 的个数,并说明理由.例8已知函数f (x )在(-1,1)上有定义,1)21(-=f 且满足x 、y ∈(-1,1) 有 )1()()(xy y x f y f x f ++=+.(1)证明:f (x )在(-1,1)上为奇函数;(2)对数列,12,21211nn n x x x x +==+求)(n x f ;(3)求证.252)(1)(1)(121++->+++n n x f x f x f n八.解析几何中的推理证明例9.一动圆经过点A (2,0),且在y 轴上截得的弦长为4. (1)求动圆圆心P 的轨迹方程;(2)设AO 的中点为B (其中O 为坐标原点),如果过点B 的直线l 与动圆圆心P 的轨迹相交于不同的两点C 、D ,证明:以CD 为直径的圆与一定直线相切.例10.如图,直角坐标系xOy 中,一直角三角形ABC ,∠C =90°,B 、C 在x 轴上且关于原点O 对称,D 在边BC 上,BD =3DC ,∆ABC 的周长为12.若一双曲线E 以B 、C 为焦点,且经过A 、D 两点.(1)求双曲线E 的方程;(2)若一过点P (m ,0)(m 为非零常数)的直线l 与双曲线E 相交于不同于双曲线顶点的两点M 、N ,且→MP =λ→PN ,问在x 轴上是否存在定点G ,使→BC ⊥(→GM -λ→GN )?若存在,求出所有这样定点G 的坐标;若不存在,请说明理由.例11.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点A (0,2)为圆心,1为半径为圆相切,又知C 的一个焦点与A关于直线y =x 对称. (1)求双曲线C 的方程;(2)若Q 是双曲线C 上的任一点,F1、F2为双曲线C 的左、右两个焦点,从F1引∠F1QF2的平分线的垂线,垂足为N ,试求点N 的轨迹方程;(3)设直线y =mx +1与双曲线C 的左支交于A 、B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值X 围.例12.设函数f (x )的定义域为R ,当x <0时,0<f (x )<1,且对任意的实数x 、y ∈R ,有f (x +y )=f (x )f (y ). (1)求f (0);(2)试判断函数f (x )在(-∞,0]上是否存在最大值,若存在,求出该最大值,若不存在说明理由;(3)设数列{an }各项都是正数,且满足a1=f (0),f (an +12-an2)=1f (an +1-3an -2),(n ∈N*)又设bn =(12)an ,Sn =b1+b2+…+bn ,Tn =1a1a2+1a2a3+…+1anan +1,试比较Sn 与Tn 的大小.13.已知等比数列{xn }的各项为不等于1的正数,数列{yn }满足ynlogaxn =2(a >0,且a≠1),设y3=18,y6=12.(1)数列{yn }的前多少项和最大,最大值为多少?(2)试判断是否存在自然数M ,使得当n >M 时,xn >1恒成立,若存在,求出相应的M ;若不存在,请说明理由;(3)令an =logxnxn +1(n >13,n ∈N ),试比较an 与an +1的大小.例14.设对于任意实数x 、y ,函数f (x )、g (x )满足f (x +1)=13f (x ),且f (0)=3,g (x +y )=g (x )+2y ,g (5)=13,n ∈N*. (1)求数列{f (n )}、{g (n )}的通项公式; (2)设=g [n2f (n )],求数列{}的前n 项和Sn ;(3)设F (n )=Sn -3n ,是否存在整数m 和M ,使得对任意正整数n 不等式m <F (n )<M 恒成立?若存在,分别求出m 和M 的集合,并求出M -m 的最小值;若不存在,请说明理由.例15.已知F1、F2分别是椭圆x2a2+y2b2=1(a >b >0)的左、右焦点,P 是此椭圆的一动点,并且→PF1⋅→PF2的取值X 围是[-43,43].(1)求此椭圆的方程;(2)点A 是椭圆的右顶点,直线y =x 与椭圆交于B 、C 两点(C 在第一象限内),又P 、Q 是椭圆上两点,并且满足(→CP |→CP |+→CQ |→CQ |)⋅→F1F2=0,求证:向量→PQ 与→AB 共线.例16.设f (n ,p )=C p2n (n ,p ∈N ,p ≤2n ).数列{a (n ,p )}满足a (1,p )+a (2,p )+…+a (n ,p )=f (n ,p ). (1)求证:{a (n ,p )}是等差数列;(2)求证:f (n ,1)+f (n ,2)+…+f (n ,n )=22n -1+12C n2n-1;(3)设函数H (x )=f (n ,1)x +f (n ,2)x2+…+f (n ,2n )x2n ,试比较H (x )-H (a )与2n (1+a )2n -1(x -a )的大小.例17.已知系统M 是由6条网线并联而成,且这6条网线能通过的信息量个数分别为1,1,2,2,3,3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的最值(值域)●高考要求掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法最值问题,几乎涉及到高中数学的各个分支,是历年高考重点考查的知识点之一,有一些基础题,也有一些小综合的中档题,更有一些以难题形式出现.它经常与三角函数、二次函数、一元二次方程、不等式及某些几何知识紧密联系.所以其解法灵活,综合性强,能力要求高.解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法.考生的运算能力,分析问题和解决问题能力在这里充分展现.因此我们应注意总结最大、最小值问题的解题方法与技巧,以提高高考应变能力因函数的最大、最小值求出来了,值域也就知道了反之,若求出的函数的值域为非开区间,函数的最大或最小值也等于求出来了●重难点归纳(1)求函数的值域此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、导数法 数形结合法(图像法)导数法 数形结合法、判别式法、部分分式、均值不等式、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强(3)运用函数的值域解决实际问题此类问题关键是把实际问题转化为函数问题,从而利用所学知识去解决此类题要求考生具有较强的分析能力和数学建模能力 ●知识点归纳 一、相关概念1、值域:函数A x x f y ∈=,)(,我们把函数值的集合}/)({A x x f ∈称为函数的值域。

2、最值:求函数最值常用方法和函数值域的方法基本相同。

事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。

因此,求函数的最值和值域,其实质是相同的,只是提问不同而已。

最大值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0) = M 。

那么,称M 是函数y =f (x )的最大值。

记作()max 0y f x = 最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0) = M 。

那么,称M 是函数y =f (x )的最小值。

记作()min 0y f x = 注意:①函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f (x 0) = M ;② 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f (x )≤M (f (x )≥M )。

二、 确定函数值域的原则1、当函数)(x f y =用表格给出时,函数的值域指表格中实数y 的集合;则值域为{1,2,3,4}2、数)(x f y =的图像给出时,函数的值域是指图像在y 轴上的投影所覆盖的实数y 的集合;3、数)(x f y =用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定;4、由实际问题给出时,函数的值域由问题的实际意义决定。

三、基本函数的值域1、一次函数)(0≠+=a b kx y 的定义域为R ,值域为R ;2、二次函数)(02≠++=a c bx ax y 的定义域为R ,;当]44(0);44[022ab ac ,,a ,a b ac ,a --∞<∞+->值域是时值域是时3、反比例函数)0(≠=k xk y的定义域为{x|x ≠0},值域为}0/{≠y y ;4、数函数)10(≠>=a a a y x 且的值域为}0/{>y y ;5、对数函数)10(log ≠>=a a x y a 且的值域为R ;6、函数y=sinx 、y=cosx 的值域是 ][1,1-;7、函数 2k x ,tan ππ+≠=x y ,cot x y =),(Z k k x ∈≠π的值域为R 。

四、求函数值域的方法函数的值域是由其对应法则和定义域共同决定的其类型依解析式的特点分可分三类:(1)求常见函数值域;(2)求由常见函数复合而成的函数的值域;(3)求由常见函数作某些“运算”而得函数的值域求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题。

常用方法:(1)观察法(用非负数的性质,如:20x ≥;0x ≥0(0)x ≥≥等)例如:求下列函数的值域:y=-3x 2+2;{y|y ≥2}变式:y=5+21+x (x ≥-1).{y|y ≥5}最值问题,几乎涉及到高中数学的各个分支,是历年高考重点考查的知识点之一,有一些基础题,也有一些小综合的中档题,更有一些以难题形式出现.它经常与三角函数、二次函数、一元二次方程、不等式及某些几何知识紧密联系.所以其解法灵活,综合性强,能力要求高.解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法.考生的运算能力,分析问题和解决问题能力在这里充分展现.函数y=ax+1 (a ≠0,-1≤x ≤1)的值域是______. (2)直接法:利用常见函数的值域来求,(3)配方法:(二次或四次) 转化为二次函数,利用二次函数的特征来求值;常转化为含有自变量的平方式与常数的和,型如:),(,)(2n m x c bx ax x f ∈++=的形式,然后根据变量的取值范围确定函数的最值;例如:求值域:y=21x x ++,x R ∈;x []3,1-∈; (1,5]x ∈;[5,1]x ∈-- 变式1:y =-x 2+4x -1 x ∈[-1,3); 变式2:求函数y=34252+-x x 的值域.变式3:当]2,0(∈x 时,函数3)1(4)(2-++=x a ax x f 在2=x 时取得最大值,则a 的取值范围是___(答:21-≥a );(4)换元法(代数换元法)通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题,化归思想;例如:求函数x x y -+=142的值域. (]4,∞- 变式1:求函数y=3x-x 21-的值域.{y|y ≤23}变式2:21y x =++的值域为_____(答:(3,)+∞)t =,0t ≥。

运用换元法时,要特别要注意新元t 的范围);变式3:4y x =++的值域为____(答:[1,4]);变式4:函数21x x y --=的值域为____变式5:22sin 3cos 1y x x =--的值域为_____(答:17[4,]8-);变式6:sin cos sin cos y x x x x =++ 的值域为____(答:1[1,2-+);变式7:求函数)42(5loglog241241≤≤+-=x xx y的值域(5)分离常数法(分式转化法);对某些分式函数,可通过分离常数法,化成部分分式来求值域.(6)逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型如:),(,n m x dcx b ax y ∈++=例如:求下列函数的值域:y=12++x x ({y|y 1≠})变式:函数y =2211xx +-的值域是( )A.[-1,1]B.(-1,1]C.[-1,1)D.(-1,1)解法一:y =2211xx +-=212x+-1. ∵1+x 2≥1,∴0<212x+≤2.∴-1<y ≤1.解法二:由y =2211xx +-,得x 2=yy +-11.∵x 2≥0,∴yy +-11≥0,解得-1<y ≤1.解法三:令x =tan θ(-2π<θ<2π),则y =θθ22tan 1tan 1+-=cos2θ.∵-π<2θ<π,∴-1<cos2θ≤1,即-1<y ≤1.答案:B 求函数()3025x y x x -=≥+的值域求函数122+=x xy 的值域(7)利用判别式法(将函数转化为二次方程);若函数y =f (x )可以化成一个系数含有y 的关于x 的二次方程a (y )x 2+ b (y )x +c (y )=0,则在a (y )≠0时,由于x 、y 为实数,故必须有Δ=b 2(y )-4a (y )·c (y )≥0,从而确定函数的最值,检验这个最值在定义域内有相应的x 值.例5 求函数y =432+x x 的最值.[-43,43]变式:22221x x y x x -+=++;[1,5](8)三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;求函数2sin 11sin y θθ-=+,313x xy =+,2sin 11cos y θθ-=+的值域(答: 1(,]2-∞、(0,1)、3(,]2-∞);(9)基本不等式法:转化成型如:)0(>+=k xk x y ,利用基本不等式公式来求值域;设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21221)(b b a a +的取值范围是____________.(答:(,0][4,)-∞+∞ )。

求函数)52(1≤≤+=x xx y的值域求函数41422+++=xx y 的最小值(10)单调性法:函数为单调函数,可根据函数的单调性求值域如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减则函数y =f (x )在x =b 处有最大值f (b );如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增则函数y =f (x )在x =b 处有最小值f (b );求1(19)y x x x=-<<,229sin 1sin y x x=++的值域为______(答:80(0,)9、11[,9]2); 函数f (x )=xx x1log823-+-的值域【2,3⎡⎫+∞⎪⎢⎣⎭】 函数412)21(--=x x y 的值域【(】(11)数形结合:根据函数图象或函数的几何图形,利用数型结合的方法来求值域已知点(,)P x y 在圆221x y +=上,求2y x +及2y x -的取值范围(答:[33-、[); 求函数y =的值域. 求函数2sin 2cos x y x-=-的值域(12)导数法―求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。

(答:-48)●典例剖析题型一:函数值域问题 例1、求下列函数的值域① y=3x+2(-1≤x ≤1) ②x x f -+=42)( ③1+=x x y ④xx y 1+=解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是[-1,5]②∵),0[4+∞∈-x ∴),2[)(+∞∈x f 即函数x x f -+=42)(的值域是 { y| y ≥2}③1111111+-=+-+=+=x x x x x y ∵011≠+x ∴1≠y当x<0时,)1(xx y -+--==-2)1(2----xx 2-≤∴值域是 ]2,(--∞[2,+∞)(此法也称为配方法) 函数xx y 1+=的图像为:∴值域是 ]2,(--∞[2,+∞)例2.求下列函数的值域:(1)232y x x =-+;(2)y =(3)312x y x +=-;(4)y x =+(5)y x =+(6)|1||4|y x x =-++;(7)22221x x y x x -+=++;(8)2211()212x x y x x -+=>-;(9)1sin 2cos x y x-=-。

相关文档
最新文档