届高考理科数学第一轮总复习教案

合集下载

高考数学第一轮复习教案

高考数学第一轮复习教案

高考数学第一轮复习教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、策划方案、演讲致辞、合同协议、条据文书、教案资料、好词好句、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, job reports, planning plans, speeches, contract agreements, doctrinal documents, lesson plans, good words and sentences, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学第一轮复习教案高考数学第一轮复习教案七篇高考数学第一轮复习教案都有哪些?新的数学方法和概念,常常比解决数学问题本身更重要。

高三理科数学第一轮总复习教案13

高三理科数学第一轮总复习教案13

第十五章复数高考导航知识网络15.1 复数的概念及其运算典例精析题型一 复数的概念【例1】 (1)如果复数(m 2+i)(1+m i)是实数,则实数m = ;(2)在复平面内,复数1+i i对应的点位于第 象限; (3)复数z =3i +1的共轭复数为z = .【解析】 (1)(m 2+i)(1+m i)=m 2-m +(1+m 3)i 是实数⇒1+m 3=0⇒m =-1.(2)因为1+i i =i(1+i)i 2=1-i ,所以在复平面内对应的点为(1,-1),位于第四象限.(3)因为z =1+3i ,所以z =1-3i.【点拨】 运算此类题目需注意复数的代数形式z =a +b i(a ,b ∈R ),并注意复数分为实数、虚数、纯虚数,复数的几何意义,共轭复数等概念.【变式训练1】(1)如果z =1-a i 1+a i为纯虚数,则实数a 等于( ) A.0 B.-1 C.1 D.-1或1(2)在复平面内,复数z =1-i i(i 是虚数单位)对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限【解析】(1)设z =x i ,x ≠0,则x i =1-a i 1+a i ⇔1+ax -(a +x )i =0⇔⎩⎨⎧=+=+0,01x a ax ⇔⎩⎨⎧-==1,1x a 或⎩⎨⎧=-=.1,1x a 故选D.(2)z =1-i i=(1-i)(-i)=-1-i ,该复数对应的点位于第三象限.故选C.题型二 复数的相等【例2】(1)已知复数z 0=3+2i ,复数z 满足z ·z 0=3z +z 0,则复数z = ;(2)已知m 1+i=1-n i ,其中m ,n 是实数,i 是虚数单位,则m +n i = ;(3)已知关于x 的方程x 2+(k +2i)x +2+k i =0有实根,则这个实根为 ,实数k 的值为 .【解析】(1)设z =x +y i(x ,y ∈R ),又z 0=3+2i ,代入z ·z 0=3z +z 0得(x +y i)(3+2i)=3(x +y i)+3+2i ,整理得 (2y +3)+(2-2x )i =0,则由复数相等的条件得⎩⎨⎧=-=+,022,032x y 解得⎪⎩⎪⎨⎧-==,23,1y x 所以z =1-i 23. (2)由已知得m =(1-n i)(1+i)=(1+n )+(1-n )i.则由复数相等的条件得⎩⎨⎧==⇒⎩⎨⎧-=+=,1,210,1n m n n m所以m +n i =2+i.(3)设x =x 0是方程的实根,代入方程并整理得0,i )2()2(0020=++++k x kx x由复数相等的充要条件得⎪⎩⎪⎨⎧=+=++.02,020020k x kx x 解得⎪⎩⎪⎨⎧-==22,20k x 或⎪⎩⎪⎨⎧=-=.22,20k x所以方程的实根为x =2或x =-2,相应的k 值为k =-22或k =2 2.【点拨】复数相等须先化为z =a +b i(a ,b ∈R )的形式,再由相等得实部与实部相等、虚部与虚部相等.【变式训练2】(1)设i 是虚数单位,若1+2i 1+i=a +b i(a ,b ∈R ),则a +b 的值是( )A.-12B.-2C.2D.12 (2)若(a -2i)i =b +i ,其中a ,b ∈R ,i 为虚数单位,则a +b = .【解析】(1)C.1+2i 1+i =(1+2i)(1-i)(1+i)(1-i)=3+i 2,于是a +b =32+12=2.(2)3.2+a i =b +i ⇒a =1,b =2.题型三 复数的运算【例3】 (1)若复数z =-12+32i , 则1+z +z 2+z 3+…+z 2 008= ;(2)设复数z 满足z +|z |=2+i ,那么z = .【解析】 (1)由已知得z 2=-12-32i ,z 3=1,z 4=-12+32i =z .所以z n 具有周期性,在一个周期内的和为0,且周期为3. 所以1+z +z 2+z 3+…+z 2 008=1+z +(z 2+z 3+z 4)+…+(z 2 006+z 2 007+z 2 008)=1+z =12+32i. (2)设z =x +y i(x ,y ∈R ),则x +y i +x 2+y 2=2+i , 所以⎪⎩⎪⎨⎧==++,1,222y y x x 解得⎪⎩⎪⎨⎧==,1,43y x 所以z =43+i. 【点拨】 解(1)时要注意x 3=1⇔(x -1)(x 2+x +1)=0的三个根为1,ω,ω-,其中ω=-12+32i ,ω-=-12-32i , 则 1+ω+ω2=0, 1+ω-+ω-2=0 ,ω3=1,ω-3=1,ω·ω-=1,ω2=ω-,ω-2=ω.解(2)时要注意|z |∈R ,所以须令z =x +y i.【变式训练3】(1)复数11+i +i 2等于( ) A.1+i 2 B.1-i 2 C.-12 D.12(2)(2010江西鹰潭)已知复数z =23-i 1+23i+(21-i )2 010,则复数z 等于( )A.0B.2C.-2iD.2i【解析】(1)D.计算容易有11+i +i 2=12. (2)A.总结提高复数的代数运算是重点,是每年必考内容之一,复数代数形式的运算:①加减法按合并同类项法则进行;②乘法展开、除法须分母实数化.因此,一些复数问题只需设z =a +b i(a ,b ∈R )代入原式后,就可以将复数问题化归为实数问题来解决.。

高考数学一轮复习教案

高考数学一轮复习教案

高考数学一轮复习教案教案标题:高考数学一轮复习教案教案目标:1. 确保学生对高考数学考试的各个知识点有全面的了解和掌握。

2. 帮助学生提高解题能力,培养分析和推理的能力。

3. 强化学生的数学思维和解题策略,提高应试能力。

教学内容:本教案主要围绕高考数学考试的各个知识点展开复习,包括代数、函数、几何、概率与统计等内容。

教学步骤:第一步:复习代数知识1. 复习一元二次方程的求根公式和应用。

2. 复习指数与对数的性质和运算法则。

3. 复习不等式的性质和解法。

第二步:复习函数知识1. 复习函数的定义和性质。

2. 复习函数的图像与性质,包括一次函数、二次函数、指数函数和对数函数等。

3. 复习函数的运算法则和复合函数的求解。

第三步:复习几何知识1. 复习平面几何的基本概念和性质。

2. 复习三角函数的定义和性质,包括正弦、余弦和正切等。

3. 复习平面几何中的相似三角形和勾股定理等。

第四步:复习概率与统计知识1. 复习概率的基本概念和计算方法。

2. 复习统计学中的数据收集、整理和分析方法。

3. 复习概率与统计在实际问题中的应用。

第五步:解题技巧和策略的讲解1. 教授解题的基本思路和步骤,包括审题、分析、解答和检查等。

2. 引导学生掌握解题中常用的技巧和策略,如代入法、逆向思维和分类讨论等。

3. 提供一些典型例题和解题方法的讲解和练习。

第六步:模拟考试和反馈1. 安排模拟考试,模拟高考数学试卷的形式和要求。

2. 收集学生的答卷并进行批改,给予详细的评价和建议。

3. 针对学生的错误和不足,进行有针对性的指导和讲解。

教学评估:1. 教师对学生的参与度和理解程度进行观察和评估。

2. 模拟考试的成绩和学生的答卷质量作为评估指标。

3. 学生对教学内容的反馈和问题的解答情况作为评估依据。

教学资源:1. 高考数学教材和辅助教材。

2. 高考数学模拟试卷和真题。

3. 多媒体设备和投影仪等。

教学延伸:1. 鼓励学生进行自主学习和拓展阅读,加深对数学知识的理解和应用能力。

高三理科数学第一轮总复习教案9

高三理科数学第一轮总复习教案9

第十七章坐标系与参数方程高考导航2.(知识网络17.1 坐标系典例精析题型一 极坐标的有关概念【例1】已知△ABC 的三个顶点的极坐标分别为A(5,π6),B(5,π2),C(-43,π3),试判断△ABC 的形状,并求出它的面积.【解析】在极坐标系中,设极点为O ,由已知得∠AOB =π3,∠BOC=5π6,∠AOC =5π6.又|OA|=|OB|=5,|OC|=43,由余弦定理得|AC|2=|OA|2+|OC|2-2|OA|·|OC|·cos ∠AOC =52+(43)2-2×5×43·cos 5π6=133,所以|AC|=133.同理,|BC|=133.所以|AC|=|BC|,所以△ABC 为等腰三角形.又|AB|=|OA|=|OB|=5,所以AB 边上的高h =|AC|2-(12|AB|)2=1332,所以S △ABC =12×1332×5=6534.【点拨】判断△ABC 的形状,就需要计算三角形的边长或角,在本题中计算边长较为容易,所以先计算边长.【变式训练1】(1)点A(5,π3)在条件:①ρ>0,θ∈(-2π,0)下极坐标为 ,②ρ<0,θ∈(2π,4π)下极坐标为 ; (2)点P(-12,4π3)与曲线C :ρ=cos θ2的位置关系是 .【解析】(1)(5,-5π3);(-5,10π3).(2)点P 在曲线C 上.题型二 直角坐标与极坐标的互化【例2】⊙O1和⊙O2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ.(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;(2)求经过⊙O1和⊙O2交点的直线的直角坐标方程.【解析】(1)以极点为原点,极轴为x 轴正半轴,建立直角坐标系,且两坐标系取相同单位长.因为x =ρcos θ,y =ρsin θ,由ρ=4cos θ,得ρ2=4ρcos θ,所以x2+y2=4x ,即x2+y2-4x =0为⊙O1的直角坐标方程.同理,x2+y2+4y =0为⊙O2的直角坐标方程.(2)由⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x 解得⎩⎨⎧==0,011y x 或⎩⎨⎧-==.2,222y x 即⊙O1,⊙O2的交点为(0,0)和(2,-2)两点,故过交点的直线的直角坐标方程为x +y =0.【点拨】 互化的前提条件:原点对应着极点,x 轴正向对应着极轴.将互化公式代入,整理可以得到.【变式训练2】在极坐标系中,设圆ρ=3上的点到直线ρ(cos θ+3sinθ)=2的距离为d ,求d 的最大值.【解析】将极坐标方程ρ=3化为普通方程x2+y2=9,ρ(cos θ+3sin θ)=2可化为x +3y =2.在x2+y2=9上任取一点A(3cos α,3sin α),则点A 到直线的距离为d =|3cos α+33sin α-2|2=|6sin(α+30°)-2|2,它的最大值为4.题型三 极坐标的应用【例3】过原点的一动直线交圆x2+(y -1)2=1于点Q ,在直线OQ上取一点P ,使P 到直线y =2的距离等于|PQ|,用极坐标法求动直线绕原点一周时点P 的轨迹方程.【解析】以O 为极点,Ox 为极轴,建立极坐标系,如右图所示,过P 作PR 垂直于直线y =2,则有|PQ|=|PR|.设P(ρ,θ),Q(ρ0,θ),则有ρ0=2sin θ.因为|PR|=|PQ|,所以|2-ρsin θ|=|ρ-2sin θ|,所以ρ=±2或sin θ=±1,即为点P 的轨迹的极坐标方程,化为直角坐标方程为x2+y2=4或x =0.【点拨】用极坐标法可使几何中的一些问题得到很直接、简单的解法,但在解题时关键是极坐标要选取适当,这样可以简化运算过程,转化为直角坐标时也容易一些.【变式训练3】如图,点A 在直线x =5上移动,等腰△OPA 的顶角∠OPA 为120°(O ,P ,A 按顺时针方向排列),求点P 的轨迹方程.【解析】取O 为极点,x 正半轴为极轴,建立极坐标系,则直线x =5的极坐标方程为ρcos θ=5.设A(ρ0,θ0),P (ρ,θ),因为点A 在直线ρcos θ=5上,所以ρ0cos θ0=5.①因为△OPA 为等腰三角形,且∠OPA =120°,而|OP|=ρ,|OA|=ρ0以及∠POA =30°,所以ρ0=3ρ,且θ0=θ-30°.②把②代入①,得点P 的轨迹的极坐标方程为3ρcos(θ-30°)=5.题型四 平面直角坐标系中坐标的伸缩变换【例4】定义变换T :⎩⎨⎧'=-'=+∙∙∙∙, cos sin , sin cos y y x x y x θθθθ可把平面直角坐标系上的点P(x ,y)变换成点P′(x′,y′).特别地,若曲线M 上一点P 经变换公式T变换后得到的点P′与点P 重合,则称点P 是曲线M 在变换T 下的不动点.(1)若椭圆C 的中心为坐标原点,焦点在x 轴上,且焦距为22,长轴顶点和短轴顶点间的距离为2.求椭圆C 的标准方程,并求出当tan θ=34时,其两个焦点F1、F2经变换公式T 变换后得到的点F1′和F2′的坐标;(2)当tan θ=34时,求(1)中的椭圆C 在变换T 下的所有不动点的坐标.【解析】(1)设椭圆C 的标准方程为x2a2+y2b2=1(a >b >0),由椭圆定义知焦距2c =22⇒c =2,即a2-b2=2.①又由已知得a2+b2=4,②故由①、②可解得a2=3,b2=1.即椭圆C 的标准方程为x23+y2=1,且椭圆C 两个焦点的坐标分别为F1(-2,0)和F2(2,0).对于变换T :⎩⎨⎧'=-'=+∙∙∙∙, cos sin , sin cos y y x x y x θθθθ当tan θ=43时,可得⎪⎪⎩⎪⎪⎨⎧'=-'=+.5453,5354y y x x y x设F1′(x1,y1)和F2′(x2,y2)分别是由F1(-2,0)和F2(2,0)的坐标经变换公式T 变换得到. 于是⎪⎪⎩⎪⎪⎨⎧-=⨯--⨯=-=⨯+-⨯=,523054)2(53,524053)2(5411y x即F1′的坐标为(-425,-325); 又⎪⎪⎩⎪⎪⎨⎧=⨯-⨯==⨯+⨯=,523054253,52405325422y x即F2′的坐标为(425,325).(2)设P(x ,y)是椭圆C 在变换T 下的不动点,则当tan θ=34时,有⎪⎪⎩⎪⎪⎨⎧=-=+y y x x y x 5453,5354⇒x =3y ,由点P(x ,y)∈C ,即P(3y ,y)∈C ,得(3y)23+y2=1⇒⎪⎪⎩⎪⎪⎨⎧±=±=,23,21x y 因而椭圆C 的不动点共有两个,分别为(32,12)和(-32,-12).【变式训练4】在直角坐标系中,直线x -2y =2经过伸缩变换 后变成直线2x′-y′=4.【解析】⎩⎨⎧='='.4,y y x x总结提高1.平面内一个点的极坐标有无数种表示方法.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;反之也成立.2.熟练掌握几种常用的极坐标方程,特别是直线和圆的极坐标方程.17.2 参数方程典例精析题型一 参数方程与普通方程互化【例1】 把下列参数方程化成普通方程:(1) ⎩⎨⎧+=-=θθθθ sin cos 2, sin 4 cos y x (θ为参数); (2)⎪⎪⎩⎪⎪⎨⎧-=+=--2)e e (,2)e e (t t t t b y a x (t 为参数,a ,b >0).【解析】(1),1)94()92(94 cos ,92 sin sin cos 2, sin 4 cos 22=++-⇒⎪⎪⎩⎪⎪⎨⎧+=-=⇒⎩⎨⎧+=-=y x x y y x x y y x θθθθθθ所以5x2+4xy +17y2-81=0.(2)由题意可得⎪⎪⎩⎪⎪⎨⎧-=+=--②.e e 2,①e e 2t t t t b y a x所以①2-②2得4x2a2-4y2b2=4,所以x2a2-y2b2=1,其中x >0.【变式训练1】把下列参数方程化为普通方程,并指出曲线所表示的图形.(1)⎩⎨⎧=+=; cos sin , cos sin θθθθy x (2)⎪⎩⎪⎨⎧+==;1,1t t y x (3) ⎪⎪⎩⎪⎪⎨⎧+=+=;13,13222t t y t t x (4) ⎩⎨⎧-=+= 3. tan 5, sec 46θθy x【解析】(1)x2=2(y +12),-2≤x≤2,图形为一段抛物线弧.(2)x =1,y≤-2或y≥2,图形为两条射线.(3)x2+y2-3y =0(y≠3),图形是一个圆,但是除去点(0,3). (4)(x -6)216-(y +3)225=1,图形是双曲线.题型二 根据直线的参数方程求弦长【例2】已知直线l 的参数方程为⎪⎩⎪⎨⎧=+=t y t x 3,2(t 为参数),曲线C 的极坐标方程为ρ2cos 2θ=1.(1)求曲线C 的普通方程;(2)求直线l 被曲线C 截得的弦长.【解析】(1)由曲线C :ρ2cos 2θ=ρ2(cos2θ-sin2θ)=1,化成普通方程为x2-y2=1.①(2)方法一:把直线参数方程化为标准参数方程⎪⎪⎩⎪⎪⎨⎧=+=t y t x 23,212(t 为参数).②把②代入①得(2+t 2)2-(32t)2=1,整理得t2-4t -6=0.设其两根为t1,t2,则t1+t2=4,t1t2=-6.从而弦长为|t1-t2|=(t1+t2)2-4t1t2=42-4(-6)=40=210. 方法二:把直线的参数方程化为普通方程为y =3(x -2), 代入x2-y2=1,得2x2-12x +13=0.设l 与C 交于A(x1,y1),B(x2,y2),则x1+x2=6,x1x2=132,所以|AB|=1+3·(x1+x2)2-4x1x2=262-26=210.【变式训练2】在直角坐标系xOy 中,直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧--=+=t y t x 531,541(t 为参数),若以O 为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为ρ=2cos(θ+π4),求直线l 被曲线C 所截的弦长. 【解析】将方程⎪⎪⎩⎪⎪⎨⎧--=+=t y t x 531,541(t 为参数)化为普通方程为3x +4y +1=0.将方程ρ=2cos(θ+π4)化为普通方程为x2+y2-x +y =0.表示圆心为(12,-12),半径为r =22的圆,则圆心到直线的距离d =110,弦长=2r2-d2=212-1100=75. 题型三 参数方程综合运用【例3】(2009海南、宁夏)已知曲线C1:⎩⎨⎧+=+-=t y t x sin 3, cos 4 (t 为参数),C2:⎩⎨⎧==θθ sin 3, cos 8y x (θ为参数).(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C1上的点P 对应的参数为t =π2,Q 为C2上的动点,求PQ 中点M 到直线C3:⎩⎨⎧+-=+=t y t x 2,23(t 为参数)距离的最小值.【解析】(1)C1:(x +4)2+(y -3)2=1,C2:x264+y29=1.C1是以(-4,3)为圆心,1为半径的圆;C2是以坐标原点为中心,焦点在x 轴,长半轴长是8,短半轴长是3的椭圆.(2)当t =π2时,P(-4,4),Q(8cos θ,3sin θ),故M(-2+4cos θ,2+32sin θ).C3为直线x -2y -7=0,M 到C3的距离d =55|4cos θ-3sin θ-13|,从而cos θ=45,sin θ=-35时,d 取最小值855.【变式训练3】在平面直角坐标系xOy 中,曲线C1的参数方程为⎩⎨⎧==θθ sin 2, cos 4y x (θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,得曲线C2的极坐标方程为ρ=2cos θ-4sin θ(ρ>0).(1)化曲线C1、C2的方程为普通方程,并说明它们分别表示什么曲线;(2)设曲线C1与x 轴的一个交点的坐标为P(m,0)(m >0),经过点P 作曲线C2的切线l ,求切线l 的方程.【解析】(1)曲线C1:x216+y24=1;曲线C2:(x -1)2+(y +2)2=5.曲线C1为中心是坐标原点,焦点在x 轴上,长半轴长是4,短半轴长是2的椭圆;曲线C2为圆心为(1,-2),半径为5的圆. (2)曲线C1:x216+y24=1与x 轴的交点坐标为(-4,0)和(4,0),因为m>0,所以点P 的坐标为(4,0).显然切线l 的斜率存在,设为k ,则切线l 的方程为y =k(x -4).由曲线C2为圆心为(1,-2),半径为5的圆得|k +2-4k|k2+1=5, 解得k =3±102,所以切线l 的方程为y =3±102(x -4).总结提高1.在参数方程与普通方程互化的过程中,要保持化简过程的同解变形,避免改变变量x ,y 的取值范围而造成错误.2.消除参数的常用方法有:①代入消参法;②三角消参法;③根据参数方程的特征,采用特殊的消参手段.3.参数的方法在求曲线的方程等方面有着广泛的应用,要注意合理选参、巧妙消参.。

高三数学人教版A版数学(理)高考一轮复习教案离散型随机变量的期望与方差、正态分布1

高三数学人教版A版数学(理)高考一轮复习教案离散型随机变量的期望与方差、正态分布1

第九节 离散型随机变量的期望与方差、正态分布1.均值与方差理解取有限个值的离散型随机变量均值、方差的概念,能计算简单 离散型随机变量的均值、方差,并能解决一些实际问题. 2.正态分布利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的 意义. 知识点一 均值1.一般地,若离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.2.若Y =aX +b ,其中a ,b 为常数,则Y 也是随机变量,且E (aX +b )=aE (X )+b . 3.(1)若X 服从两点分布,则E (X )=p . (2)若X ~B (n ,p ),则E (X )=np .易误提醒 理解均值E (X )易失误,均值E (X )是一个实数,由X 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 值的取值平均状态.[自测练习]1.已知X 的分布列为X -1 0 1 P121316设Y =2X +3,则E (Y )A.73 B .4 C .-1D .1 解析:E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.答案:A知识点二 方差1.设离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑ni =1(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差.2.D (aX +b )=a 2D (X ).3.若X 服从两点分布,则D (X )=p (1-p ). 4.若X ~B (n ,p ),则D (X )=np (1-p ).易误提醒 (1)D (ξ)表示随机变量ξ对E (ξ)的平均偏离程度.D (ξ)越大,表明平均偏离程度越大,说明ξ的取值越分散.反之D (ξ)越小,ξ的取值越集中在E (ξ)附近.统计中常用标准差D (ξ) 来描述ξ的分散程度.(2)D (ξ)与E (ξ)一样也是一个实数,由ξ的分布列唯一确定.(3)D (ξ)的单位与随机变量ξ的单位不同,而E (ξ)、D (ξ) 与ξ的单位相同. (4)注意E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ).[自测练习]2.已知随机变量ξ的分布列为P (ξ=k )=13,k =1,2,3,则D (3ξ+5)=( )A .6B .9C .3D .4解析:由E (ξ)=13(1+2+3)=2,得D (ξ)=23,D (3ξ+5)=32×D (ξ)=6. 答案:A3.有一批产品,其中有12件正品和4件次品,从中有放回地任取3件,若X 表示取到次品的次数,则D (X )=________.解析:∵X ~B ⎝⎛⎭⎫3,14,∴D (X )=3×14×34=916. 答案:916知识点三 正态分布 1.正态曲线的特点(1)曲线位于x 轴上方,与x 轴不相交. (2)曲线是单峰的,它关于直线x =μ对称. (3)曲线在x =μ处达到峰值1σ2π.(4)曲线与x 轴之间的面积为1.(5)当σ一定时,曲线随着μ的变化而沿x 轴平移.(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.2.正态分布的三个常用数据 (1)P (μ-σ<X ≤μ+σ)=0.682_6. (2)P (μ-2σ<X ≤μ+2σ)=0.954_4. (3)P (μ-3σ<X ≤μ+3σ)=0.997_4.易误提醒 一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.[自测练习]4.若随机变量ξ~N (2,1),且P (ξ>3)=0.158 7,则P (ξ>1)=________.解析:由ξ~N (2,1),得μ=2,因为P (ξ>3)=0.158 7,所以P (ξ<1)=0.158 7,所以P (ξ>1)=1-0.158 7=0.841 3.答案:0.841 3考点一 离散型随机变量的均值|(2015·高考安徽卷)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).[解] (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310,P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610.故X 的分布列为X 200 300 400 P110310610E (X )=200×110+300×310+400×610=350.求离散型随机变量均值的步骤(1)理解随机变量X 的意义,写出X 可能取得的全部值. (2)求X 的每个值的概率. (3)写出X 的分布列. (4)由均值定义求出E (X ).1.(2016·合肥模拟)某校在全校学生中开展物理和化学实验操作大比拼活动,活动要求:参加者物理、化学实验操作都必须参加,有50名学生参加这次活动,评委老师对这50名学生实验操作进行评分,每项操作评分均按等级采用5分制(只打整数分),评分结果统计如表:学生数物理得分y化学得分x1分2分3分4分5分1分 1 3 1 0 1 2分 1 0 7 5 1 3分 2 1 0 9 3 4分 1 2 6 0 1 5分1133分”的学生被抽取的概率;(2)从这50名参赛学生中任取1名,其物理实验与化学实验得分之和为ξ,求ξ的数学期望.解:(1)从表中可以看出,“化学实验得分为4分且物理实验得分为3分”的学生有6名,所以“化学实验得分为4分且物理实验得分为3分”的学生被抽取的概率为650=325.(2)ξ所有可能的取值为2、3、4、5、6、7、8、9、10,则ξ的分布列为:ξ 2 3 4 5 6 7 8 9 10 P1504503509508501650450250350∴E (ξ)=2×150+3×450+4×350+5×950+6×850+7×1650+8×450+9×250+10×350=31150.考点二 方差问题|设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量X 为取出此2球所得分数之和,求X 的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量Y 为取出此球所得分数.若E (Y )=53,D (Y )=59,求a ∶b ∶c .[解] (1)由题意得X =2,3,4,5,6. 故P (X =2)=3×36×6=14,P (X =3)=2×3×26×6=13,P (X =4)=2×3×1+2×26×6=518,P (X =5)=2×2×16×6=19,P (X =6)=1×16×6=136.所以X 的分布列为X 2 3 4 5 6 P141351819136(2)由题意知Y 的分布列为Y 1 2 3 Paa +b +cba +b +cca +b +c所以E (Y )=a a +b +c +2b a +b +c +3c a +b +c =53,D (Y )=⎝⎛⎭⎫1-532·a a +b +c +⎝⎛⎭⎫2-532·b a +b +c +⎝⎛⎭⎫3-532·c a +b +c =59. 化简得⎩⎪⎨⎪⎧ 2a -b -4c =0,a +4b -11c =0.解得⎩⎪⎨⎪⎧a =3c ,b =2c .故a ∶b ∶c =3∶2∶1.利用均值、方差进行决策的两个方略(1)当均值不同时,两个随机变量取值的水平可见分晓,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.2.有甲、乙两种棉花,从中各抽取等量的样品进行质量检验,结果如下:X 甲 28 29 30 31 32 P 0.1 0.15 0.5 0.15 0.1 X 乙 28 29 30 31 32 P0.130.170.40.170.13其中X 表示纤维长度(单位:mm),根据纤维长度的均值和方差比较两种棉花的质量. 解:由题意,得E (X 甲)=28×0.1+29×0.15+30×0.5+31×0.15+32×0.1=30, E (X 乙)=28×0.13+29×0.17+30×0.4+31×0.17+32×0.13=30.又D (X 甲)=(28-30)2×0.1+(29-30)2×0.15+(30-30)2×0.5+(31-30)2×0.15+(32-30)2×0.1=1.1,D (X 乙)=(28-30)2×0.13+(29-30)2×0.17+(30-30)2×0.4+(31-30)2×0.17+(32-30)2×0.13=1.38,所以E (X 甲)=E (X 乙),D (X 甲)<D (X 乙),故甲种棉花的质量较好.考点三 正态分布|1.(2015·高考湖北卷)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t )解析:由正态分布密度曲线的性质可知,X ~N (μ1,σ21),Y ~N (μ2,σ22)的密度曲线分别关于直线x =μ1,x =μ2对称,因此结合题中所给图象可得,μ1<μ2,所以P (Y ≥μ2)<P (Y ≥μ1),故A 错误.又X ~N (μ1,σ21)的密度曲线较Y ~N (μ2,σ22)的密度曲线“瘦高”,所以σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),B 错误.对任意正数t ,P (X ≤t )≥P (Y ≤t ),P (X ≥t )<P (Y ≥t ),C 错误,D 正确.答案:D2.(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74%解析:由已知μ=0,σ=3.所以P (3<ξ<6)=12[P (-6<ξ<6)-P (-3<ξ<3)]=12(95.44%-68.26%)=12×27.18%=13.59%.故选B.答案:B正态总体在某个区间内取值的概率求法(1)熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值; (2)充分利用正态曲线的对称性和曲线与x 轴之间面积为1.①正态曲线关于直线x =μ对称,从而在关于x =μ对称的区间上概率相等. ②P (X <a )=1-P (X ≥a ),P (X <μ-a )=P (X ≥μ+a ).10.离散型随机变量的均值的综合问题的答题模板【典例】 (12分)(2015·高考山东卷)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”; (2)若甲参加活动,求甲得分X 的分布列和数学期望EX .[思路点拨] (1)根据题意明确“三位递增数”的定义,从而得到个位数字是5的“三位递增数”.(2)首先根据题意确定随机变量X 的所有可能取值,然后求出每个取值对应事件的概率,列出分布列,从而求得数学期望.[规范解答] (1)个位数是5的“三位递增数”有 125,135,145,235,245,345.(4分)(2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为:0,-1,1,因此 P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142.(8分)所以X 的分布列为则EX =0×23+(-1)×114+1×1142=421.(12分)[模板形成]理解题意求相应事件的概率↓由条件写出随机变量的取值↓求出每个取值对应事件的概率↓列出分布列并求均值↓反思解题过程注意规范化[跟踪练习] 据《中国新闻网》报道,全国很多省、市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了 3 600人就是否应该“取消英语听力”的问题进行调查,调查统计的结果如下表:(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,则应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望E (ξ).解:(1)∵抽到持“应该保留”态度的人的概率为0.05, ∴120+x3 600=0.05,解得x =60. ∴持“无所谓”态度的人数为3 600-2 100-120-600-60=720. ∴应在持“无所谓”态度的人中抽取720×3603 600=72(人).(2)由(1)知持“应该保留”态度的一共有180人,∴在所抽取的6人中,在校学生有120180×6=4(人),社会人士有60180×6=2(人),于是第一组的在校学生人数ξ的所有可能取值为1,2,3.P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12C 36=35,P (ξ=3)=C 34C 02C 36=15,即ξ的分布列为∴E (ξ)=1×15+2×35+3×15=2.A 组 考点能力演练1.若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12C.12D .1 解析:因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a =-2(舍去)或a =1,所以E (X )=12.故选C.答案:C2.(2016·长春质量监测)已知随机变量ξ服从正态分布N (1,σ2),若P (ξ>2)=0.15,则P (0≤ξ≤1)=( )A .0.85B .0.70C .0.35D .0.15解析:P (0≤ξ≤1)=P (1≤ξ≤2)=0.5-P (ξ>2)=0.35.故选C. 答案:C3.(2016·九江一模)已知随机变量X 服从正态分布N (5,4),且P (X >k )=P (X <k -4),则k 的值为( )A .6B .7C .8D .9解析:∵(k -4)+k 2=5,∴k =7,故选B.答案:B4.在某次数学测试中,学生成绩ξ服从正态分布N (100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为( )A .0.05B .0.1C .0.15D .0.2解析:根据正态曲线的对称性可知,ξ在(80,100)内的概率为0.4,因为ξ在(0,100)内的概率为0.5,所以ξ在(0,80)内的概率为0.1,故选B.答案:B5.设随机变量X ~B (8,p ),且D (X )=1.28,则概率p 的值是( ) A .0.2 B .0.8 C .0.2或0.8D .0.16解析:由D (X )=8p (1-p )=1.28,∴p =0.2或p =0.8. 答案:C6.一枚质地均匀的正六面体骰子,六个面上分别刻着1点到6点,一次游戏中,甲、乙二人各掷骰子一次,若甲掷得的向上的点数比乙大,则甲掷得的向上的点数的数学期望是________.解析:共有36种可能,其中,甲、乙掷得的向上的点数相等的有6种,甲掷得的向上的点数比乙大的有15种,所以所求期望为6×5+5×4+4×3+3×2+215=143.答案:1437.(2016·贵州七校联考)在我校2015届高三11月月考中理科数学成绩ξ~N (90,σ2)(σ>0),统计结果显示P (60≤ξ≤120)=0.8,假设我校参加此次考试有780人,那么试估计此次考试中,我校成绩高于120分的有________人.解析:因为成绩ξ~N (90,σ2),所以其正态曲线关于直线x =90对称.又P (60≤ξ≤120)=0.8,由对称性知成绩在120分以上的人数约为总人数的12(1-0.8)=0.1,所以估计成绩高于120分的有0.1×780=78(人).答案:788.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 的值为________. 解析:因为随机变量ξ服从正态分布N (3,4),P (ξ<2a -3)=P (ξ>a +2),所以2a -3+a +2=6,解得a =73.答案:739.市一中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x 的值;(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1 200名,请估计新生中有多少名学生可以申请住宿;(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率)解:(1)由直方图可得20x +0.025×20+0.006 5×20+0.003×2×20=1,所以x =0.012 5.(2)新生上学所需时间不少于1小时的频率为0.003×2×20=0.12,因为1 200×0.12=144,所以估计1 200名新生中有144名学生可以申请住宿. (3)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,P (X =0)=⎝⎛⎭⎫344=81256,P (X =1)=C 14×14×⎝⎛⎭⎫343=2764,P (X =2)=C 24×⎝⎛⎭⎫142×⎝⎛⎭⎫342=27128,P (X =3)=C 34×⎝⎛⎭⎫143×34=364,P (X =4)=⎝⎛⎭⎫144=1256.所以X 的分布列为E (X )=0×81256+1×2764+2×27128+3×364+4×1256=1(或E (X )=4×14=1).所以X 的数学期望为1.10.(2016·郑州模拟)某商场每天(开始营业时)以每件150元的价格购入A 商品若干件(A 商品在商场的保鲜时间为10小时,该商场的营业时间也恰好为10小时),并开始以每件300元的价格出售,若前6小时内所购进的商品没有售完,则商场对没卖出的A 商品将以每件100元的价格低价处理完毕(根据经验,4小时内完全能够把A 商品低价处理完毕,且处理完毕后,当天不再购进A 商品).该商场统计了100天A 商品在每天的前6小时内的销售量,制成如下表格(注:视频率为概率).(其中x +y =70)前6小时内的销售量t (单位:件)4 5 6 频数30xy(1)若某天该商场共购入6件该商品,在前6个小时中售出4件.若这些商品被6名不同的顾客购买,现从这6名顾客中随机选2人进行服务回访,则恰好一个是以300元价格购买的顾客,另一个是以100元价格购买的顾客的概率是多少?(2)若商场每天在购进5件A 商品时所获得的平均利润最大,求x 的取值范围. 解:(1)设“恰好一个是以300元价格购买的顾客,另一个是以100元价格购买的顾客”为事件A ,则P (A )=C 14C 12C 26=815.(2)设销售A 商品获得的利润为ξ(单位:元),依题意,视频率为概率,为追求更多的利润,则商场每天购进的A 商品的件数取值可能为4件,5件,6件. 当购进A 商品4件时,E (ξ)=150×4=600,当购进A 商品5件时,E (ξ)=(150×4-50)×0.3+150×5×0.7=690, 当购进A 商品6件时,E (ξ)=(150×4-2×50)×0.3+(150×5-50)×x100+150×6×70-x100=780-2x ,由题意780-2x ≤690,解得x ≥45,又知x ≤100-30=70,所以x 的取值范围为[45,70],x ∈N *.B 组 高考题型专练1.(2015·高考湖南卷)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( ) A .2 386 B .2 718 C .3 413D.4 772附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.解析:由题意可得,P(0<x≤1)=12P(-1<x≤1)=0.341 3,设落入阴影部分的点的个数为n,则P=S阴影S正方形=0.341 31=n10 000,则n=3 413,选C.答案:C2.(2015·高考福建卷)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)=56×45×34=12.(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=16,P(X=2)=56×15=16,P(X=3)=56×45×1=23.所以X的分布列为所以E(X)=1×16+2×16+3×23=52.3.(2015·高考陕西卷)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为以频率估计概率得从而ET=25×0.2+30(2)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立.且与T的分布列相同.设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.法一:P(A)=P(T1+T2≤70)=P(T1=25,T2≤45)+P(T1=30,T2≤40)+P(T1=35,T2≤35)+P(T1=40,T2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.法二:P(A)=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09.故P(A)=1-P(A)=0.91.。

高三数学一轮复习教案

高三数学一轮复习教案

高三数学一轮复习教案教案标题:高三数学一轮复习教案教学目标:1. 复习高三数学的基础知识和重点概念,巩固学生的数学基础;2. 帮助学生理解数学知识的应用和解题方法;3. 提高学生的解题能力和应试技巧,为高考数学取得优异成绩做准备。

教学内容:1. 高三数学的基础知识回顾和概念梳理;2. 高考数学常见题型的解题技巧和方法;3. 高考数学试题的分析和解答。

教学步骤:一、复习基础知识和概念(2课时)1. 复习数列与数列的概念,包括等差数列、等比数列等;2. 复习函数与方程的基本概念,包括一次函数、二次函数等;3. 复习三角函数的基本概念和性质;4. 复习概率与统计的基本概念和计算方法。

二、解题技巧和方法(4课时)1. 高考数学常见题型的解题技巧和方法,包括选择题、填空题、解答题等;2. 解析高考数学试题中的典型题目,讲解解题思路和方法;3. 练习高考数学试题,让学生熟悉不同题型的解题方法。

三、高考数学试题分析与解答(4课时)1. 分析高考数学试题的命题思路和考点,帮助学生理解题目的出题思想;2. 解答高考数学试题,讲解解题步骤和思路;3. 强化练习,让学生熟悉高考数学试题的解答过程。

四、综合复习与提高(2课时)1. 综合复习高三数学各个章节的重点内容和难点;2. 解析高考数学真题中的典型题目,加强学生的解题能力;3. 模拟高考数学试卷,让学生在考试环境下进行综合复习和提高。

教学评估:1. 每节课结束时进行小测验,检查学生对所学知识的掌握情况;2. 每周安排一次模拟考试,评估学生的学习进展和应试能力;3. 针对学生的学习情况和问题,及时进行个别辅导和指导。

教学资源:1. 教材:高中数学教材;2. 题库:高考数学真题、模拟试题等;3. 多媒体设备:投影仪、电脑等。

教学反思:1. 每节课结束后进行教学反思,总结教学过程中的优点和不足;2. 收集学生的反馈意见,了解他们的学习情况和需求,及时调整教学策略;3. 与其他教师进行交流和讨论,互相借鉴教学经验,提高教学质量。

【高三】2021届高考理科数学第一轮总复习导数及其应用教案

【高三】2021届高考理科数学第一轮总复习导数及其应用教案

【高三】2021届高考理科数学第一轮总复习导数及其应用教案高考导航考试要求重而难1.导数概念及其几何意义(1)了解衍生概念的实践背景;(2)理解导数的几何意义.2.衍生工具的运作(1)能根据导数定义,求函数y=c(c为常数),y=x,y=x2,y=x3,y=,y=的导数;(2)它可以使用基本初等函数的导数公式和四种导数算法来计算简单函数的导数和简单复合函数的导数(仅限于F(AX+b)形式的复合函数)3.导数在研究函数中的应用(1)了解函数单调性与导数的关系,能用导数研究函数的单调性,能找到函数的单调区间(多项式函数一般不超过三次);(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.生活中的优化问题会利用导数解决某些实际问题.5.定积分和微积分的基本定理(1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念;(2)理解微积分基本定理的含义本章的要点:1.导数的概念;2.用导数计算切线的斜率;3.利用导数判断函数单调性或求单调区间;4.用导数计算极值或最大值;5.利用导数求实际问题最优解.本章的难点:导数和定积分的综合应用是微积分的核心概念之一,由于其广泛的应用,也是中学选课内容中较为重要的知识之一,它为我们解决函数和序列问题提供了一种更通用、更有效的方法。

因此,本章的知识往往反映在高考试题中函数、序列等相关的最大不等式问题上。

它不仅研究了数字和形状的结合,还通过分类讨论了概念,考查学生灵活运用所学知识和方法的能力。

考题可以以多项选择题或填空题的形式考查导数和定积分的基本运算和简单几何意义,全面考核学生以解题的形式分析问题、解决问题的能力知识网络3.1衍生工具的概念和操作典例精析第一类导数的概念【例1】已知函数f(x)=2ln3x+8x,求f(1-2)δx)-f(1)δx的值【解析】由导数的定义知:f(1-2δx)-f(1)δx=2f(1-2δx)-f(1)-2δx=2f′(1)=20。

高三数学理一轮复习课件教案教案课程知识

高三数学理一轮复习课件教案教案课程知识

考 情
证明含综合法与分析法;间接证明的一种基本方法是反证法
课 时 知 能 训 练
菜单
一轮复习 ·新课标 ·数学(理)(广东专用)


若 x,y 都是正实数,且 x+y>2,求证:1+y x<2 或1+x y<2 中至少有
探 究 ·

一个成立.


自 主
【证明】 假设1+y x<2 和1+x y<2 都不成立,
·

明理由


思路点拨 根据理想函数的定义;证明gx满足理想函数的三个
Hale Waihona Puke 条件即可课时




菜单
一轮复习 ·新课标 ·数学(理)(广东专用)




尝试解答 gx=2x1x∈0;1是理想函数
· 提
证明如下:∵x∈0;1;
知 能

∴2x≥1;∴2x1≥0;即对任意x∈0;1;总有fx≥0;满足条件①

落 实
即证明|a-c|< c2-ab,
高 考 体
· 固 基
即要证(a-c)2<c2-ab, 即要证 a2-2ac<-ab,注意到 a>0,

即要证 a+b<2c,
验 · 明 考 情
因此原不等式成立.,
课 时 知 能 训 练
菜单
一轮复习 ·新课标 ·数学(理)(广东专用)

反证法


已知 f(x)=ax+xx+-12(a>1),
时 知 能


菜单
一轮复习 ·新课标 ·数学(理)(广东专用)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案37合情推理与演绎推理导学目标: 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.2.了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.3.了解合情推理和演绎推理之间的联系和差异.自主梳理自我检测1.(2010·山东)观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)等于()A.f(x) B.-f(x) C.g(x) D.-g(x)2.(2010·珠海质检)给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):①“若a,b∈R,则a-b=0?a=b”类比推出“若a,b∈C,则a-b=0?a=b”;②“若a,b,c,d∈R,则复数a+b i=c+d i?a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b2=c+d2?a=c,b=d”;③“若a,b∈R,则a-b>0?a>b”类比推出“若a,b∈C,则a -b>0?a>b”.其中类比结论正确的个数是()A.0 B.1 C.2 D.33.(2009·江苏)在平面上,若两个正三角形的边长比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长比为1∶2,则它们的体积比为________.4.(2010·陕西)观察下列等式:13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,第五个等式为________________________________.5.(2011·苏州月考)一切奇数都不能被2整除,2100+1是奇数,所以2100+1不能被2整除,其演绎推理的“三段论”的形式为___________________________________________.探究点一归纳推理例1在数列{a n}中,a1=1,a n+1=2a n2+a n ,n ∈N *,猜想这个数列的通项公式,这个猜想正确吗?请说明理由.变式迁移1 观察:①sin 210°+cos 240°+sin 10°cos 40°=34;②sin 26°+cos 236°+sin 6°cos 36°=34.由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.探究点二 类比推理例2 (2011·银川月考)在平面内,可以用面积法证明下面的结论:从三角形内部任意一点,向各边引垂线,其长度分别为p a ,p b ,p c ,且相应各边上的高分别为h a ,h b ,h c ,则有p a h a +p b h b +p ch c=1.请你运用类比的方法将此结论推广到四面体中并证明你的结论.变式迁移2在Rt△ABC中,若∠C=90°,AC=b,BC=a,则△ABC的外接圆半径r=a2+b22,将此结论类比到空间有_______________________________________________.探究点三演绎推理例3在锐角三角形ABC中,AD⊥BC,BE⊥AC,D、E是垂足.求证:AB的中点M到D、E的距离相等.变式迁移3指出对结论“已知2和3是无理数,证明2+3是无理数”的下述证明是否为“三段论”,证明有错误吗?证明:∵无理数与无理数的和是无理数,而2与3都是无理数,∴2+3也是无理数.1.合情推理是指“合乎情理”的推理,数学研究中,得到一个新结论之前,合情推理常常能帮助我们猜测和发现结论;证明一(满分:75分)一、选择题(每小题5分,共25分)1.(2011·福建厦门华侨中学模拟)定义A*B,B*C,C*D,D*A 的运算分别对应下图中的(1)、(2)、(3)、(4),那么下图中的(A)、(B)所对应的运算结果可能是()A .B *D ,A *D B .B *D ,A *C C .B *C ,A *DD .C *D ,A *D 2.(2011·厦门模拟)设f (x )=1+x1-x,又记f 1(x )=f (x ),f k +1(x )=f (f k (x )),k =1,2,…,则f 2 010(x )等于( )A .-1x B .x3.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a·b =b·a ”; ②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a·c +b·c ”; ③“(m ·n )t =m (n ·t )”类比得到“(a·b )·c =a·(b·c )”; ④“t ≠0,mt =xt ?m =x ”类比得到“p ≠0,a·p =x·p ?a =x ”; ⑤“|m ·n |=|m |·|n |”类比得到“|a·b |=|a|·|b |”;⑥“ac bc =a b ”类比得到“a·c b·c =ab”.以上的式子中,类比得到的结论正确的个数是( ) A .1 B .2 C .3 D .4 4.(2009·湖北)古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图(2)中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A .289B .1 024C .1 225D .1 378 5.已知整数的数对如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),…则第60个数对是( )A .(3,8)B .(4,7)C .(4,8)D .(5,7)二、填空题(每小题4分,共12分)6.已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是________________________________________________________________________.7.(2011·广东深圳高级中学模拟)定义一种运算“*”:对于自然数n 满足以下运算性质:8.(2011·陕西)观察下列等式1=12+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49…照此规律,第n 个等式为_____________________________________________________.三、解答题(共38分)9.(12分)已知数列{a n }的前n 项和为S n ,a 1=-23,且S n +1S n +1+2=0(n ≥2).计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.10.(12分)(2011·杭州调研)已知函数f (x )=-aa x +a(a >0且a ≠1),(1)证明:函数y =f (x )的图象关于点⎝ ⎛⎭⎪⎫12,-12对称; (2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.11.(14分)如图1,若射线OM ,ON 上分别存在点M 1,M 2与点N 1,N 2,则=OM 1OM 2·ON 1ON 2;如图2,若不在同一平面内的射线OP ,OQ 和OR 上分别存在点P 1,P 2,点Q 1,Q 2和点R 1,R 2,则类似的结论是什么?这个结论正确吗?说明理由.学案37 合情推理与演绎推理自主梳理归纳推理 全部对象 部分 个别 类比推理 这些特征特殊到特殊①一般原理②特殊情况③特殊情况一般特殊自我检测1.D[由所给函数及其导数知,偶函数的导函数为奇函数.因此当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=-g(x).] 2.C[①②正确,③错误.因为两个复数如果不全是实数,不能比较大小.]3.1∶8解析∵两个正三角形是相似的三角形,∴它们的面积之比是相似比的平方.同理,两个正四面体是两个相似几何体,体积之比为相似比的立方,所以它们的体积比为1∶8.4.13+23+33+43+53+63=212解析由前三个式子可以得出如下规律:每个式子等号的左边是从1开始的连续正整数的立方和,且个数依次多1,等号的右边是一个正整数的平方,后一个正整数依次比前一个大3,4,…,因此,第五个等式为13+23+33+43+53+63=212.5.一切奇数都不能被2整除大前提2100+1是奇数小前提所以2100+1不能被2整除结论课堂活动区例1 解题导引 归纳分为完全归纳和不完全归纳,由归纳推理所得的结论虽然未必是可靠的,但它由特殊到一般、由具体到抽象的认识功能,对科学的发现是十分有用的,观察、实验,对有限的资料作归纳整理,提出带规律性的说法是科学研究的最基本的方法之一.解 在{a n }中,a 1=1,a 2=2a 12+a 1=23,a 3=2a 22+a 2=12=24,a 4=2a 32+a 3=25,…,所以猜想{a n }的通项公式为a n =2n +1.这个猜想是正确的,证明如下:因为a 1=1,a n +1=2a n2+a n,所以1a n +1=2+a n 2a n =1a n +12,即1a n +1-1a n =12,所以数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,12为公差的等差数列,所以1a n=1+(n -1)×12=12n +12,所以通项公式a n =2n +1.变式迁移1 解 猜想sin 2α+cos 2(α+30°)+sin αcos(α+30°)=34. 证明如下:左边=sin 2α+cos(α+30°)[cos(α+30°)+sin α]=sin 2α+⎝ ⎛⎭⎪⎫32cos α-12sin α⎝ ⎛⎭⎪⎫32cos α+12sin α=sin 2α+34cos 2α-14sin 2α=34=右边.例2 解题导引 类比推理是根据两个对象有一部分属性类似,推出这两个对象的其他属性亦类似的一种推理方法,例如我们拿分式同分数来类比,平面几何与立体几何中的某些对象类比等等.我们必须清楚类比并不是论证,它可以帮助我们发现真理.类比推理应从具体问题出发,通过观察、分析、联想进行对比、归纳、提出猜想.解类比:从四面体内部任意一点向各面引垂线,其长度分别为p a ,p b ,p c ,p d ,且相应各面上的高分别为h a ,h b ,h c ,h d .则有p a h a +p b h b +p c h c +p dh d=1.证明如下:p a h a =13S △BCD ·pa 13S △BCD ·h a=V P —BCDV A —BCD , 同理有p b h b =V P —CDA V B —CDA ,p c h c =V P —BDA V C —BDA ,p d h d =V P —ABCV D —ABC,V P —BCD +V P —CDA +V P —BDA +V P —ABC =V A —BCD , ∴p a h a +p b h b +p c h c +p d h d=V P —BCD +V P —CDA +V P —BDA +V P —ABC V A —BCD=1. 变式迁移2 在三棱锥A —BCD 中,若AB 、AC 、AD 两两互相垂直,且AB =a ,AC =b ,AD =c ,则此三棱锥的外接球半径R =a 2+b 2+c 22例3解题导引在演绎推理中,只有前提(大前提、小前提)和推理形式都是正确的,结论才是正确的,否则所得的结论可能就是错误的.推理时,要清楚大前提、小前提及二者之间的逻辑关系.证明(1)因为有一个内角是直角的三角形是直角三角形,——大前提在△ABD中,AD⊥BC,即∠ADB=90°,——小前提所以△ADB是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提而M是Rt△ADB斜边AB的中点,DM是斜边上的中线,——小前提所以DM=12AB.——结论同理EM=12AB,所以DM=EM.变式迁移3 解 证明是“三段论”模式,证明有错误.证明中大前提使用的论据是“无理数与无理数的和是无理数”,这个论据是假的,因为两个无理数的和不一定是无理数,因此原理的真实性仍无法断定.课后练习区1.B [由(1)(2)(3)(4)图得A 表示|,B 表示□,C 表示—,D 表示○,故图(A)(B)表示B *D 和A *C .]2.A [计算f 2(x )=f ⎝ ⎛⎭⎪⎫1+x 1-x =1+1+x 1-x 1-1+x 1-x=-1x ,f 3(x )=f ⎝ ⎛⎭⎪⎫-1x =1-1x1+1x =x -1x +1,f 4(x )=1+x -1x +11-x -1x +1=x ,f 5(x )=f 1(x )=1+x1-x ,归纳得f 4k +i (x )=f i (x ),k ∈N *,i =1,2,3,4.∴f 2 010(x )=f 2(x )=-1x .]3.B [只有①、②对,其余错误,故选B.]4.C [设图(1)中数列1,3,6,10,…的通项公式为a n ,则 a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,…,a n -a n -1=n . 故a n -a 1=2+3+4+…+n ,∴a n =n ?n +1?2.而图(2)中数列的通项公式为b n =n 2,因此所给的选项中只有 1225满足a 49=49×502=b 35=352=1 225.]5.D [观察可知横坐标和纵坐标之和为2的数对有1个,和为3的数对有2个,和为4的数对有3个,和为5的数对有4个,依次类推和为n +1的数对有n 个,多个数对的排序是按照横坐标依次增大的顺序来排的,由n ?n +1?2=60?n (n +1)=120,n ∈Z ,n =10时,n ?n +1?2=55个数对,还差5个数对,且这5个数对的横、纵坐标之和为12,它们依次是(1,11),(2,10),(3,9),(4,8),(5,7),∴第60个数对是(5,7).]6.空间正四面体的内切球的半径是高的14 解析 利用体积分割可证明. 7.n8.n +(n +1)+…+(3n -2)=(2n -1)2解析 ∵1=12,2+3+4=9=32,3+4+5+6+7=25=52,∴第n 个等式为n +(n +1)+…+(3n -2)=(2n -1)2.9.解 当n =1时,S 1=a 1=-23.(2分)当n =2时,1S 2=-2-S 1=-43,∴S 2=-34.(4分)当n =3时,1S 3=-2-S 2=-54,∴S 3=-45.(6分)当n =4时,1S 4=-2-S 3=-65,∴S 4=-56.(8分)猜想:S n =-n +1n +2(n ∈N *).(12分)10.(1)证明 函数f (x )的定义域为R ,任取一点(x ,y ),它关于点⎝ ⎛⎭⎪⎫12,-12对称的点的坐标为(1-x ,-1-y ).(2分) 由已知得y =-aa x +a,则-1-y =-1+a a x +a =-a xa x +a ,(4分)f (1-x )=-a a 1-x +a=-aa a x +a=-a ·a x a +a ·a x =-a xa x +a,∴-1-y =f (1-x ).即函数y =f (x )的图象关于点⎝ ⎛⎭⎪⎫12,-12对称.(6分) (2)解 由(1)有-1-f (x )=f (1-x ), 即f (x )+f (1-x )=-1.(9分)∴f (-2)+f (3)=-1,f (-1)+f (2)=-1, f (0)+f (1)=-1,则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3. (12分)11.解 类似的结论为:VO —P 1Q 1R 1VO —P 2Q 2R 2=OP 1OP 2·OQ 1OQ 2·OR 1OR 2. (4分)这个结论是正确的,证明如下:如图,过R 2作R 2M 2⊥平面P 2OQ 2于M 2,连接OM 2.过R 1在平面OR 2M 2作R 1M 1∥R 2M 2交OM 2于M 1, 则R 1M 1⊥平面P 2OQ 2.由V O —P 1Q 1R 1=13S △P 1OQ 1·R 1M 1=13·12OP 1·OQ 1·sin ∠P 1OQ 1·R 1M 1 =16OP 1·OQ 1·R 1M 1·sin ∠P 1OQ 1,(8分)同理,V O —P 2Q 2R 2=16OP 2·OQ 2·R 2M 2·sin ∠P 2OQ 2. 所以111222o p o r o p o r V V --=OP 1·OQ 1·R 1M 1OP 2·OQ 2·R 2M 2.(10分) 由平面几何知识可得R 1M 1R 2M 2=OR 1OR 2.(12分) 所以111222o p o r o p o r V V --=OP 1·OQ 1·OR 1OP 2·OQ 2·OR 2.所以结论正确.(14分)。

相关文档
最新文档