磁法勘探6-解释
磁法勘探-地球的磁场

磁法勘探的测量方法
地面磁测
在地面上设置测点,测量地磁场强度和 方向,适用于大面积区域勘探。
海洋磁测
在海洋调查船上安装磁力仪,测量海 底地磁场强度和方向,适用于海洋资
源勘探。
航空磁测
在空中飞行器上安装磁力仪,测量地 磁场强度和方向,适用于山区、沼泽 等复杂地形区域。
井中磁测
在钻孔中安装磁力仪,测量地磁场强 度和方向,适用于地质勘探和地下资 源调查。
01
02
03
磁力梯度测量
通过测量磁场的变化率, 提高对地下磁性体分辨能 力,能够探测更小的目标。
磁力扫描技术
采用多通道磁力仪,实现 大面积、快速、高精度的 磁场测量,提高勘探效率。
磁力成像技术
利用多分量磁力仪,获取 地下磁性体的三维形态和 分布特征,实现地下构造 的三维重建。
磁法勘探与其他地球物理方法的结合
04
磁法勘探的实际应用
资源勘探
铁矿
石油和天然气
磁法勘探能够通过测量地磁场的变化, 发现地下铁矿的磁异常,从而确定铁 矿的位置和规模。
磁法勘探可以通过测量地磁场的变化, 发现地下油气藏的磁异常,为石油和 天然气的勘探提供重要线索。
煤炭Leabharlann 煤炭是一种具有较强磁性的物质,磁 法勘探可以用来探测煤田,了解煤层 的分布和埋深。
磁法勘探-地球的磁场
contents
目录
• 磁法勘探概述 • 地球磁场的基本知识 • 磁法勘探的技术和方法 • 磁法勘探的实际应用 • 磁法勘探的未来发展
01
磁法勘探概述
磁法勘探的定义
磁法勘探:利用地球磁场的变化规律 来探测地下矿藏、地质构造和其他地 质体的地球物理方法。
磁法勘探通过测量地球磁场强度的变 化,推断出地下地质体的磁性差异, 进而确定其分布、形态和规模。
磁法勘探的基本原理及应用

磁法勘探的基本原理及应用磁法勘探的概述磁法勘探是一种非破坏性地球物理勘探方法,通过测量地球磁场的变化来获取地下结构信息。
它基于地球的地磁场以及地下的磁性物质的相互作用,可以在地下发现磁性物质的存在、分布和性质。
磁法勘探的基本原理磁法勘探利用地球磁场和地下磁性物质之间的相互作用来获取地下情况。
磁法勘探的基本原理如下:1.地球磁场:地球本身具有一个磁场,也称为地球磁场。
地球磁场是由地球内部液体外核的流动所产生的,它在地表形成一个相对稳定的磁场。
2.地下磁性物质:地下存在各种不同类型的磁性物质,如矿石、岩石、土壤、岩层或地下水。
3.磁场异常:地下磁性物质与地球磁场相互作用会导致磁场异常。
当地下磁性物质的磁性与地球磁场不同或存在不均匀分布时,就会产生磁场异常。
4.磁场测量:磁法勘探使用磁力仪器来测量地磁场的强度和方向变化。
测量点位于地表或以人工井筒方式进入地下。
5.数据处理和解释:通过对测量数据的处理和解释,可以获得地下磁性物质的位置、形状、大小、磁性强度等信息。
这些信息可用于地质勘探、矿产资源评估、地下水资源管理等领域。
磁法勘探的应用领域磁法勘探在地质和工程勘探中有广泛的应用。
以下是一些常见的应用领域:•矿产勘探:磁法勘探可以用于寻找矿藏、判断矿石的性质和储量。
根据地下磁性物质的反应,可以识别出具有磁性的矿石,如铁矿、钴矿等。
•水资源管理:磁法勘探可以用于寻找地下水的分布和储量。
地下水和地下磁性物质之间存在一定的关系,通过对磁场异常的测量和分析,可以确定地下水的位置和深度,从而实现对地下水资源的科学利用。
•地下工程:磁法勘探可以用于地下隧道、地铁、坑道等地下工程的勘察和地质状况评估。
通过磁法勘探,可以探测出地下磁性物质的存在,并评估其对工程建设的影响。
•环境地质:磁法勘探可以用于环境地质调查和污染物监测。
地下沉积物中的磁性物质与环境污染物之间存在一定的关系,通过对磁性物质的测量和分析,可以识别出地下污染物的位置和分布情况。
磁法勘探复习资料

2011磁法勘探复习资料(主要为思考题)第一章1.解释下列名词:(1)地磁要素:以观测点为坐标原点,选取一个直角坐标系。
取X 轴指向地理北,Y 轴指向地理东,Z 轴铅直向下。
观测点处地磁场强度T 在X 、Y 、Z 轴上的分量分别称为北向分量X ,东向分量Y 和垂直分量Z 。
T 在XOY 平面上的分量H 称为水平分量。
H 指向磁北,其延长线即是磁子午线。
我们规定,各分量与相应坐标轴的正向一致时为正,反之为负。
磁子午线(磁北)与地理子午线(地理北)的夹角称为磁偏角,以D 表示。
H 偏东时D 为正,反之为负。
T 与XOY 平面的夹角称为磁倾角,以I 表示。
T 下倾时I 为正,反之为负。
(2)国际地磁参考场IGRF:1968年国际地磁和高空物理协会(IAGA )首次提出并公认了1965.0年代高斯球谐分析模式,并在1970年正式批准了这种模式,称为国际地磁参考场模式,记为IGRF 。
它是由一组高斯球谐系数( 、 )和年变率系数( 、 )组成的,为地球基本磁场和长期变化场的数学模型,并规定国际上每五年发表一次球谐系数,及绘制一套世界地磁图(3)通化:地磁要素是随时空变化的,要了解其分布特征,必须把不同时刻所观测的数值都归算到某一特定的日期,国际上将此日期一般选在1月1日零点零分,这个步骤称之为通化(4)地磁图:将经通化后的某一地磁要素值按各个测点的经纬度坐标标在地图上,再把数值相等的各点用光滑的曲 线连结起来,编绘成某个地磁要素的等值线图,便称为地磁图。
(5)磁暴:磁暴是一种强烈的扰动。
从赤道到极区均可观察到磁暴现象,而且几乎是全球同时发生。
发生时对地磁场水平分量的强度影响特别显著,而对垂直分量影响相对小些。
因此,通常研究磁暴的形态和特征是通过水平分量变化来进行的。
2、试述地磁场随空间、时间变化的基本特征?答:(1)地磁场长期变化总的特征是随时间变化缓慢,周期长。
一般变化周期为几年,几十年,有的 更长。
地磁场的短期变化主要起因于固体地球外部的各种电流体系。
磁法勘探的基本原理及应用

沉积岩:
磁场微弱、平静、单调 常作为正常场
部分砂页岩或含磁铁矿的大理岩显示 磁性
五、异常特征的识别
不同地质体上的异常特征
火山岩: 基性→酸性 强→弱
起伏大、跳跃频繁、正负交替
五、异常特征的识别
不同地质体上的异常特征
变质岩:
取决于原岩磁性 含铁石英岩呈明显条带异常
五、异常特征的识别
不同地质体上的异常特征
• • • • 高斯球鞋分析模型(IRGF) 假定内部磁偶极,拟合基本场 由一组球谐系数及年变化率组成 国际上每5年发布一次球谐系数
二、地磁场及岩石磁性
• 地磁场的正常梯度:地球表面正常分布的 地磁场强度随距离的变化率(伽马/公里) • 南北向梯度大于东西向 • 随维度变化:Za梯度低纬度地区大,高纬 度地区小;H梯度与之相反 • 我国由南到北垂直分量的正常梯度值的变 化范围约为13.0—6.5伽马/公里 • 随垂直高度也有变化
高程改正→ △T
日变站选择弱磁性沉积岩区;
正常场利用国际地磁参考场
四、数据处理的方法
• 2、异常的处理与转换:
空间转换
分量转换
导数转换 不同磁化方向转化
四、数据处理的方法
• 目的:1、复杂→简化(曲面→平面;叠加 →孤立) 2、满足解释方法(某一分量→另一 分量;磁场值→频谱值) 3、突出某一方面的特点(上延→压 制浅部、突出深部;匹配滤波→可 突出深或浅的某个方面)
两侧异常特征明显 不同的分界线
(3)异常的错动
它们往往是平推断裂的反映,原来是一整体重磁异常,由于断 裂的作用,造成了异常的错动,异常轴错位。
异常轴线明显错动 的部位
(4)异常等值线的规则性扭曲
指在等值线趋势背景上的同向局部扰动,和等值线基本保持平 行的同向扭曲
磁法勘探

航空磁测:
工作方法
用安装在飞机的磁力仪进行磁测。具有快速,不受高山、水域、森林、 沼泽限制等特点。由于飞机距地面一定高度飞行,减弱了地表磁性不均 匀影响,更有利于磁力仪记录深部区域地质构造的磁场。
航磁比例尺根据地质任务、探测对象的规模、所测区域的地球物理特征 和航空定位技术等来确定。金属矿航磁比例尺一般多为 1:10万、1:5万, 有望远景区可达1:2.5万。构造航磁比例尺一般为1:100万、1:50万和1:20 万等。测线应与矿带或主要构造带垂直。为了获得明显可靠的磁异常信 息,飞行高度应尽量低,由比例尺、定位技术和地形条件等确定。 航磁工作中,一般采用无线电导航仪同步照相定位。为消除飞行本身的 磁干扰,还需采用特殊的磁补偿技术。航测过程中除进行测线上的磁场 测量外,还需进行基线飞行和辅助飞行。基线飞行是确定磁异常的起算 点和计算仪器的零点位移;辅助飞行包括:了解测区情况、飞行条件和 仪器工作状态的试验飞行;检查评价磁测质量的重复线飞行;检查调整 不同架次观测磁场水平的切割线飞行等。 航磁测量结果除进行与地面磁测相类似的改正外,还需进行偏向改正和 高度改正,改正后的结果再经切割线飞行观测资料调整,最后编绘航磁 异常剖面平面图和平面等值线图。
数据改正
磁法勘探野外观测数据应作各种改正才能得到正确的异常值。其中 主要的改正有﹕正常场改正﹑日变改正﹑仪器的温度系数和零点漂移改 由于磁异常的特点与磁性体的形状有关﹐故可根据磁异常的特点推断磁性体 正。作大面积磁测时﹐正常场的改正中﹐还应包括纬度改正。经过改正 的形状﹑埋深﹑走向﹑倾斜方向﹐及磁化强度的大小和方向等。这个过程称 后的异常值﹐常用等值线平面图表示。 为磁异常的解释﹐其内容大致是﹕根据工作地区已知的地质情况﹐岩石和矿 石的磁性资料﹐地磁纬度﹐磁异常的特点及积累的经验﹐初步推断引起磁异 常的地质原因﹐磁性体的大致形状和空间位置。根据上述推断结果﹐选择适 利用电子计算机可以对磁异常作各种处理﹐首先是匀滑曲线以消除 当的方法对磁异常作定量计算﹐例如计算磁性体的埋深﹑大小﹑走向和倾斜 偶然误差和随机干扰﹐提高观测数据的质量﹔其次﹐是将分布范围大的 方向等。根据前述推断结果﹐并综合其他物探方法的资料﹐确定引起磁异常 区域异常与分布范围小的局部异常分开﹐以便根据区域异常研究区域地 的地质原因﹐对工作地区的地质构造﹑矿体贮存情况及其大小等作出推论﹐ 质构造﹐根据局部异常研究局部地质构造﹐寻找有用矿产。对磁异常还 对下步工作提出建议。根据对磁异常验证结果﹐补做必要的工作﹐对异常作 可作各种变换﹐以突出异常的内在特点或改变条件 ﹐有利于解释推断。 再解释 (见地球物理勘探数据处理)。 例如将航磁异常化极﹐即化到垂直磁化时的垂向磁异常﹐可以消除倾斜 磁化的影响﹐使异常简化﹐便于解释。
磁法勘探06磁异常的处理与换算资料

第一节 磁异常的处理与换算的目的意义
应当指出,磁异常处理和转换时,有两个问题必须要明确: 1.应当合理的选择处理和转换的方法。由于转换、处理方法 较多,具有各自的特点、作用、适用条件,不应盲目的对各 种方法都使用一遍。应当认真分析磁异常特征、测区内地质、 物性情况及所要解决的地质问题,根据各个方法的功能和适 用条件,合理的选择若干种处理方法; 2.磁异常的处理和转换只是一种数学加工处理,它能使资料 中某些信息更加突出和明显。但不能获得在观测数据中不包 含的信息。数学变换只能改变异常的信噪比,而不能提供新 信息;因此,在应用各个方法时必须要注意到实际资料的精
15
第二节 磁异常的处理
1.剖面网格化
16
17
第三节 磁异常的空间转换
延拓是把原观测面的磁异常通过一定的数学方法换算到高 于或低于原观测面上,分为向上延拓与向下延拓。向上延拓 是一种常用的处理方法,它的主要用途是削弱局部干扰异 常,反映深部异常。我们知道,磁场随距离的衰减速度与 具磁性的地质体体积有关。体积大,磁场衰减慢;体积小, 磁场衰减快。对于同样大小的地质体,磁场随距离衰减的 速度与地质体埋深有关。埋深大,磁场衰减慢;埋深小, 磁场衰减快。因此小而浅的地质体磁场比大而深的地质体 磁场随距离衰减要快得多。这样就可以通过向上延拓来压 制局部异常的干扰,反映出深部大的地质体。
是很重要的。随着磁测量精度的不断提高,实测异常中所包含 的可靠信息也不断增加。如何有效地提取和利用这些信息,就 成为磁异常解释理论研究的重要课题。早在20世纪40、50年代, 诸如导数异常的计算,磁场解析延拓,化磁极等处理方法已相 继问世。到60、70年代,由于电子计算机的广泛应用,使磁异 常的处理和转换容易实现,从而其理论和方法得到了迅速的发 展,并不断得到完善。由于在实践中磁异常的转换和处理对提 高磁方法解决问题的能力和改善地质效果起到了应有的作用, 因此它已成为当今磁异常推断解释中不可缺少的重要环节。
磁法勘探

磁法勘探一、基础知识1.磁法勘探利用磁力仅观测由岩石的磁性差异引起的磁场变化的一种物探方法,称为磁法勘探,也称为磁力测量或磁测。
按其观测的空间位置不同,可分为地面磁测、航空磁测及海洋磁测。
2.磁极、磁偶及磁矩在磁性体的两端,带有符号相反的两种磁荷,即正磁荷和负磁荷,称之为磁极。
磁极所含磁荷的多少,用磁量m 表示。
由磁库仑定律可知,真空中Q (ξ,η,ζ)点处的点磁荷m Q 对P (x ,y ,z )点上的正点磁荷0m Q 的作用力为γγπμ3m0m 0Q Q 41f ⋅=(6—24)式中 γ——m Q 指向0m Q 的失径,即由源点Q (ξ,η,ζ)到场点P (x ,y ,z )的失径。
其值为()()()[]21222ζηζγ-+-+-=z y x式中 0μ——真空磁导率。
在SI 单位制中,270/104A N -⨯=πμ(或H/m ,亨利/米),磁荷的SI 单位为m ·N/A 或Wb 。
磁场强度是单位正磁荷所受的力,即γγπμ30041mm Q Q f H ==(6—25) 磁场强度的SI 单位为A /m 。
真空中,磁感应强度的定义式为H B 0μ= (6—26)磁感应强度的SI 单位是Wb/㎡或N/(A ·m),称特斯拉。
不管是条形磁铁或是磁针,都具有正负磁荷的两个磁极,宦们是磁量相等而符号相反的两个点磁极,总是成对共同出现,将其作为一个整体,通常称之为磁偶极子。
如图6—30所示,磁偶极子的极矩为mL P = (6—27)式中 m ——磁量;L ——两极之间距离。
磁偶极子的磁矩μPM =(6—28)磁偶所产生磁场如图6—31所示,任一点P 处的磁场强度可表示为图6—30 磁偶极子示意图 图6—31 磁偶产生磁场示意图Q MH 23cos 31+=γ (6—29)式中 M ——磁矩;γ——S ,N 之间中点到P 点距离; Q ——S ,N 连线与r 之间夹角。
由物理学可知,磁化强度的定义是单位体积(V )的磁矩。
什么是磁法勘探

磁法勘探,什么是磁法勘探?磁法勘探(magnetic prospecting)磁法勘探是地球物理勘探方法之一。
自然界的岩石和矿石具有不同磁性,可以产生各不相同的磁场,它使地球磁场在局部地区发生变化,出现地磁异常。
利用仪器发现和研究这些磁异常,进而寻找磁性矿体和研究地质构造的方法称为磁法勘探。
磁法勘探是常用的地球物理勘探方法之一。
它包括地面、航空、海洋磁法勘探及井中磁测等。
磁法勘探主要用来寻找和勘探有关矿产(如铁矿、铅锌矿、铜锦矿等);进行地质填图;研究与油气有关的地质构造及大地构造等问题。
我国建国以来大多数铁矿区、多金属矿区及油气田等都进行了大量的磁法勘探工作,取得了良好的地质效果。
磁法勘探也是基本地球物理手段,国家已纳入在全国范围内进行系统测量的计划,并已基本覆盖了全国重要地区。
磁法勘探的发展历史磁法勘探是物探方法中最古老的一种。
17世纪中叶瑞典人利用磁罗盘直接找磁铁矿。
1879年塔伦(R.Thaln)制造了简单的磁力仪,磁法才正式用于生产。
1915年,施密特(A.Schmidt)发明了石英刃口磁力仪,磁法开始大规模用于找矿,以及在小面积上研究地质构造。
第二次世界大战後,航空磁法推广使用,人们可以快速而经济地测出大面积的磁场分布。
磁法开始用于研究大地构造,及解决地质填图中的一些问题。
中国于1936年在攀枝花﹑易门﹑水城等地开始了试验性的磁法勘探, 1950年後才大规模开展起来。
磁法勘探的发展历史应用范围磁法勘探可用于地质调查的各个阶段。
在地质填图时,磁法勘探可以划分沉积岩﹑喷出岩﹑基性岩﹑超基性岩及变质岩的分布范围;可以研究沉积岩下面的基底构造 ;查明各种控制成矿的构造,如深大断裂和火山口等。
在普查找矿时,磁法勘探可用来直接寻找磁铁矿床,并可与其他物探方法配合,间接寻找或预测石油﹑天然气﹑煤﹑铜﹑铝﹑镍和其他金属﹑金刚石等。
在勘探磁铁矿床时,结合钻探资料,可以推定矿体的形状,指导正确布置钻孔和寻找钻孔旁侧及深部的盲矿体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
划分大地构造单元
在典型的地台区,磁异常则主要主要表现为异 常走向的多样性,这是于不同期造山旋回,地 壳变动的主要构造线方向不一致所引起的。 在地槽区和地台区的过渡带,由于其兼具槽台 的地质特征,磁异常也应表现为两者的过渡形 式;如果地槽和地台以深大断裂为界,磁场特 点是相邻区域异常特征截然不同。
沉积盆地磁性基底的航磁异常特征
磁异常的幅值大小并不对应于基底的深浅,而 是异常的宽缓形态与深度对应。
凹陷区的磁异常宽缓,隆起区的磁异常小且多 变。
沉积盆地基底的磁异常剖面
局部构造在磁异常图上表现
磁异常与地震勘探的解释结果有偏差,但还是 比较接近的。
断裂带上雁行排列的T异常 郯城—庐江深大断裂中部T异常
断裂构造的磁异常标志
异常梯级带、走向突变带
串珠状异常
异常性质突变带
3. 划分不同岩性区
利用磁测资料划分不同岩性区的前提是不同岩 石的磁性参数不同,所产生的异常特征不同。 虽然根据密度差别,利用重力资料也可以划分 岩性,但不如磁测资料的效果好。岩石(地层) 间磁性差异较大,磁场特征明显不同。
火山喷发岩的磁场
火山岩磁异常共同的特 点是异常呈跳跃变化, 尖锐而且梯度大,相邻 测线难以对比。狭窄的 磁力高或低可能是火山 喷出裂隙的反映;单个 极强的峰值可能是火山 口的反映。 另一个特点是异常强度 随高度的增加而迅速衰 减。
火山侵入岩的磁场
侵入岩异常峰值可能很 大,但形态比较圆滑, 相邻测线上的异常曲线 可以对比。 异常形态与埋深之间有 明显的依赖关系,埋藏 较浅时常表现为多个孤 峰,埋藏较深时只显示 异常不规则的背景。
第七节 磁异常的解释及应用
一、磁异常的定性、定量解释
(一)磁异常的定性解释
1.将磁异常进行分类 区域异常 局部异常
2.由“已知”到“未知”
确定引起异常的原因
1、磁性不均匀的影响 2、剩余磁性的影响 3、多个磁性体的叠加 4、磁性围岩的影响 5、地形的影响
注意:充分注意某些条件变化对异常的影响
地台与地槽区的磁场特征
地台区的磁异常特征是:异常宽阔,变化平缓, 没有一定的方向性,异常数量少,梯度小,通 常表现为较低的正负磁异常,幅值约为几百伽 玛。 地槽区的磁异常特征与地台区相反,表现为异 常数量多,幅值大,梯度大,有明显的方向性。
2. 确定断裂构造
断裂的磁异常特征主 要有:
① 线性异常带; ② 串珠状异常带; ③ 异常轴线发生水平错 动; ④ 异常强度和宽度发生 变化; ⑤ 雁形排列的异常带; ⑥ 不同特征磁场的截然 分界等。
4. 研究沉积盆地结晶基底的岩性和起伏
在基底比较平缓且埋深不太大的情况下,基底内部的结构 和岩性是决定磁异常的主要因素,根据磁测资料可以解释 基底褶皱构造的走向,基底构造的某些特点,甚至组成基 底的岩石类型。
1.
呈条带状分布,延伸很远,垂直走向方向上正负异常 相互交替的称为带状异常。这种异常多为基底在横向 上的岩性变化所致,如褶皱、变质层、层状侵入体等 岩性分界面类型。 没有明显走向,平面形态呈椭圆形、环形或多角形的 异常称为等轴状异常。这种异常的地质原因多为侵入 体、喷出岩等局部地质因素。
沉积岩的磁场
沉积岩的磁场特征一般 是异常值微弱,形态平 缓、光滑、梯度小,沉 积厚度较大时呈现为平 静的负异常区。 主要是由于沉积岩的磁 化率小,而且磁性矿物 在缓慢的沉积过程中分 布较为均匀,无方向性。
某地沉积岩区的T异常
变质岩的磁场
异常强弱与变质母岩的磁性和变质类型 有关。一般正变质岩的磁性较强,负变 质岩的磁性则相对弱得多。
2.
研究沉积盆地结晶基底的岩性和起伏
磁异常解释过程中,一些正负相伴的异常应做为整体 来考虑。另外,无论是磁法还是重力,单独解释基底 岩性都有多解性,综合利用密度和磁性资料可以提高 解释的可信度。
与划分大地构造单元的原理相同,磁法研究盆地基底 起伏依靠的是异常的形态。在沉积盆地内,沉积岩的 磁性一般很弱,除侵入岩体外,磁测资料主要反映了 基底的磁性。在基底隆起区,磁异常一般范围小、幅 值高、梯度大、正负极性变化多;在基底凹陷区,磁 异常的特征是范围大、幅值小、梯度小、正负极性交 替少。
1. 划分大地构造单元
在典型的地槽区,磁异常的主要特点是: 一系列走向平行的宽大的异常带组,它们所占的 面积相当广大,长度可达一、两千公里,宽度可 达几百公里,其中每一条线性异常的规模也相当 可观,沿走向有起伏变化,有线状的,链状的, 串珠状的; 平行的线性磁异常带组有的有共同的正背景,有 的是负背景,这与地槽褶皱带中构造岩相带的空 间分布有关。
1、磁性不均匀的影响
2、剩余磁性的影响
2、剩余磁性的影响
Mr
Mr
Mr
Mr
Mr(a)构造作用前AMr MrBC
Mr
(b)构造作用后
3、多个磁性体的叠加
4、磁性围岩的影响
3.对异常进行详细分析
异常的形态:两侧无负异常
一侧有负异常 两侧有负异常
异常的位置 异常的叠加程度及规则状态
(二)磁异常的定量解释
判断场源的性质
提供磁性地层或基底的几何参数在平面 或剖面的变化关系 提供磁性地质体在平面上的投影位置、 埋深及倾向
二、在区域地质调查中的应用
不同比例尺的区域地质调查中,磁测资料能够和可能解 决的地质问题与重力勘探类似,可概括为:
① 划分地质构造单元,确定深大断裂,研究能源和 金属矿产的分布规律; ② 进行地质填图,如确定接触带,断裂带,破碎带, 圈定侵入体,喷出岩,沉积岩和变质岩; ③ 划分成矿带,确定成矿远景区,指出找矿方向; ④ 大比例尺(如1:5万)的磁测测量还具有直接或间 接找矿的作用。